Multiscale Modeling of Order Book Dynamics

Jose Blanchet (with Xinyun Chen and Yanan Pei)

Columbia University

May, 2015

1 Goal of the Talk

- 2 Our Model: Definition and Empirical Validation
- 3 Price Formation via Queueing Microstructure
- 4 Cancellation Policy and Continuous Time Dynamics
- 5 Conclusions

- Goal: Present and discuss a model for price and the bid-ask spread which:
 - a) Is informed by the full order book dynamics,
 - b) It captures key stylized features observed empirically,
 - c) Useful in intra-day trading (many minutes / few hours)..

A Picture of a Limit Order Book

FIG. 1 Schematic of a LOB Jose Blanchet (Columbia) Multiscale Modeling of Order Book Dynamics

Goal of the Talk

2 Our Model: Definition and Empirical Validation

- 3 Price Formation via Queueing Microstructure
- 4 Cancellation Policy and Continuous Time Dynamics
- 5 Conclusions

• S(t) = size of bid-ask spread & M(t) = mid-price.

$$\begin{array}{rcl} dS\left(t\right) &=& W_{\mu,\sigma}\left(t\right) + S\left(t_{-}\right) dJ_{+}\left(t\right) + S\left(t_{-}\right) dJ_{-}\left(t\right) + dL\left(t\right),\\ dM\left(t\right) &=& \bar{W}_{\bar{\mu},\bar{\sigma}}\left(t\right) + S\left(t_{-}\right) dJ_{+}\left(t\right) - S\left(t_{-}\right) dJ_{-}\left(t\right),\\ S\left(t\right) dL\left(t\right) &=& 0,\\ dL\left(t\right) &\geq& 0. \end{array}$$

• S(t) =size of bid-ask spread & M(t) =mid-price.

$$\begin{array}{rcl} dS\left(t\right) &=& W_{\mu,\sigma}\left(t\right) + S\left(t_{-}\right) dJ_{+}\left(t\right) + S\left(t_{-}\right) dJ_{-}\left(t\right) + dL\left(t\right),\\ dM\left(t\right) &=& \bar{W}_{\bar{\mu},\bar{\sigma}}\left(t\right) + S\left(t_{-}\right) dJ_{+}\left(t\right) - S\left(t_{-}\right) dJ_{-}\left(t\right),\\ S\left(t\right) dL\left(t\right) &=& 0,\\ dL\left(t\right) &\geq& 0. \end{array}$$

• $W_{\mu,\sigma}$ and $\bar{W}_{\bar{\mu},\bar{\sigma}}$ are independent Brownian motions.

• S(t) =size of bid-ask spread & M(t) =mid-price.

$$\begin{array}{rcl} dS\left(t\right) &=& W_{\mu,\sigma}\left(t\right) + S\left(t_{-}\right) dJ_{+}\left(t\right) + S\left(t_{-}\right) dJ_{-}\left(t\right) + dL\left(t\right),\\ dM\left(t\right) &=& \bar{W}_{\bar{\mu},\bar{\sigma}}\left(t\right) + S\left(t_{-}\right) dJ_{+}\left(t\right) - S\left(t_{-}\right) dJ_{-}\left(t\right),\\ S\left(t\right) dL\left(t\right) &=& 0,\\ dL\left(t\right) &\geq& 0. \end{array}$$

• $W_{\mu,\sigma}$ and $\bar{W}_{\bar{\mu},\bar{\sigma}}$ are independent Brownian motions.

• $J_{-}(\cdot)$ and $J_{+}(\cdot)$ independent compound Poisson processes with jumps V_{-} and V_{+}

How is this Model Related to the Order Book?

• When do we expect this model to perform well for prices?

- When do we expect this model to perform well for prices?
- Answer: When applied to assets with relatively large spread sizes variation (relative to the volatility) over medium time horizon (several minutes, maybe up to a few hours).

- When do we expect this model to perform well for prices?
- Answer: When applied to assets with relatively large spread sizes variation (relative to the volatility) over medium time horizon (several minutes, maybe up to a few hours).
- How is this model informed by the order book?

• A(t) = Ask Price, B(t) = Bid Price.

- A(t) = Ask Price, B(t) = Bid Price.
- $\bar{\Pi}_{BUY}\left(x;A\left(t
 ight),B\left(t
 ight)
 ight)=$ "Buy" orders at price $< B\left(t
 ight)-x$.

- A(t) = Ask Price, B(t) = Bid Price.
- $\bar{\Pi}_{BUY}\left(x;A\left(t
 ight),B\left(t
 ight)
 ight)=$ "Buy" orders at price $< B\left(t
 ight)-x$.
- $\bar{\Pi}_{SELL}\left(x; A\left(t\right), B\left(t\right)\right) =$ "Sell" orders at price $> A\left(t\right) + x$.

- A(t) = Ask Price, B(t) = Bid Price.
- $\bar{\Pi}_{BUY}\left(x;A\left(t
 ight),B\left(t
 ight)
 ight)=$ "Buy" orders at price $< B\left(t
 ight)-x$.
- $\bar{\Pi}_{SELL}\left(x; A\left(t\right), B\left(t\right)\right) =$ "Sell" orders at price $> A\left(t\right) + x$.
- γ_{BUY} = patience *ratio* for "buy" orders ($\gamma_{BUY} \approx 0$ little patience = high cancellation).

- A(t) = Ask Price, B(t) = Bid Price.
- $\bar{\Pi}_{BUY}\left(x;A\left(t
 ight),B\left(t
 ight)
 ight)=$ "Buy" orders at price $< B\left(t
 ight)-x.$
- $\bar{\Pi}_{SELL}\left(x; A\left(t\right), B\left(t\right)\right) =$ "Sell" orders at price $> A\left(t\right) + x$.
- γ_{BUY} = patience *ratio* for "buy" orders ($\gamma_{BUY} \approx 0$ little patience = high cancellation).
- γ_{SELL} = patience *ratio* for "sell" orders.

• Then for
$$x \ge \varepsilon_0 \ge 0$$

$$\Pi_{SELL} (x; A(t), B(t))^{\gamma_{SELL}} = P(V_+ > x/S(t)).$$
and
$$\Pi_{BUY} (x; A(t), B(t))^{\gamma_{BUY}} = P(V_- > x/S(t)).$$

• Step 1: Fit model to MID PRICE AND SPREAD SIZES <- USING PRICE SERIES ONLY.

- Step 1: Fit model to MID PRICE AND SPREAD SIZES <- USING PRICE SERIES ONLY.
- Step 2: Estimate $\bar{\Pi}_{BUY}(\cdot)$.and $\bar{\Pi}_{SELL}(\cdot)$ from ORDER BOOK <- USING ORDER BOOK ONLY.

- Step 1: Fit model to MID PRICE AND SPREAD SIZES <- USING PRICE SERIES ONLY.
- Step 2: Estimate $\bar{\Pi}_{BUY}(\cdot)$.and $\bar{\Pi}_{SELL}(\cdot)$ from ORDER BOOK <- USING ORDER BOOK ONLY.
- Step 3: Plot $\log \overline{F}_{V_{+}}(x/S(t))$ vs $\log \prod_{SELL} (x; A(t), B(t))$.& same for BUY side.

- Step 1: Fit model to MID PRICE AND SPREAD SIZES <- USING PRICE SERIES ONLY.
- Step 2: Estimate $\bar{\Pi}_{BUY}(\cdot)$.and $\bar{\Pi}_{SELL}(\cdot)$ from ORDER BOOK <- USING ORDER BOOK ONLY.
- Step 3: Plot $\log \overline{F}_{V_{+}}(x/S(t))$ vs $\log \prod_{SELL} (x; A(t), B(t))$.& same for BUY side.
- Outcome should look like a straigh line!

Pictures here ...

log tail probability of limit orders at relative price level 0 to 200

log tail probability of limit orders at relative price level 0 to 200

log tail probability of limit orders at relative price level 0 to 40

Avg. Spread Size (in \$ cents)	4/27	4/28	4/29	4/30	5/1
Google	28.69	27.07	34.11	30.39	27.23
Facebook	1.43	1.41	1.68	1.42	1.45
Amazon	16.22	14.86	21.95	20.58	17.23

Bid-Ask processes only encode lots of info from full order book!

Full order book directly feeds the dynamics of Bid-Ask processes!

This whole encoding obeys relatively simple statistical rules! (Proportional hazards.)

Goal of the Talk

- 2 Our Model: Definition and Empirical Validation
- Operation Price Formation via Queueing Microstructure
 - 4 Cancellation Policy and Continuous Time Dynamics

5 Conclusions

• Objective: Use queueing theory to explain price formation.

- Objective: Use queueing theory to explain price formation.
- Motivation:

- Objective: Use queueing theory to explain price formation.
- Motivation:
 - Understand multiscale nature of the problem.

- Objective: Use queueing theory to explain price formation.
- Motivation:
 - Understand multiscale nature of the problem.
 - Inderstand role of cancellation.

- Objective: Use queueing theory to explain price formation.
- Motivation:
 - Understand multiscale nature of the problem.
 - ② Understand role of cancellation.
 - Onderstand why so much information can be decoded from prices only?

• Arrival Limit Orders = $\lambda_n >> \mu_n$ = Arrival Market Orders.

- Arrival Limit Orders = $\lambda_n >> \mu_n$ = Arrival Market Orders.
- ② Times of market orders $\{t_k\}$ (Poisson -> can be relaxed).

- Arrival Limit Orders = $\lambda_n >> \mu_n$ = Arrival Market Orders.
- **2** Times of market orders $\{t_k\}$ (Poisson -> can be relaxed).
- **③** Limit Orders between market orders at relative price $i\delta$ with $p_{BUY}(i\delta, \bar{A}(t_k), \bar{B}(t_k)) \cdot \delta$ (same for SELL).

- Arrival Limit Orders = $\lambda_n >> \mu_n$ = Arrival Market Orders.
- **2** Times of market orders $\{t_k\}$ (Poisson -> can be relaxed).
- Solution Limit Orders between market orders at relative price $i\delta$ with $p_{BUY}(i\delta, \bar{A}(t_k), \bar{B}(t_k)) \cdot \delta$ (same for SELL).
- In the second second

- Arrival Limit Orders = $\lambda_n >> \mu_n$ = Arrival Market Orders.
- **2** Times of market orders $\{t_k\}$ (Poisson -> can be relaxed).
- Solution Limit Orders between market orders at relative price $i\delta$ with $p_{BUY}(i\delta, \bar{A}(t_k), \bar{B}(t_k)) \cdot \delta$ (same for SELL).
- O No cross over of limit orders to opposite side of mid-price.
- **③** Each order at relative price $i\delta$ cancels at rate $\alpha_{BUY}(i\delta, \overline{A}(t_k), \overline{B}(t_k))$ or $\alpha_{SELL}(i\delta, \overline{A}(t_k), \overline{B}(t_k))$.

• Arrival Limit Orders =
$$\lambda_n >> \mu_n$$
 = Arrival Market Orders:

Google	4/27/2015	4/28/2015	4/29/2015	4/30/2015	5/1/2015
Total Limit Orders	80,537	78,944	77,215	100,798	66,238
Total Market Orders	9,412	8,016	5,868	8,505	7,038
Facebook					
Total Limit Orders	442,425	483,338	489,886	472,251	363,833
Total Market Orders	31,973	37,378	29,456	36,558	30,455
Amazon					
Total Limit Orders	100,263	131,648	125,555	162,561	123,127
Total Market Orders	13,148	14,804	9,225	11,344	10,094

• A2: Can use Hawkes instead of Poisson market orders (we'll see why).

- A2: Can use Hawkes instead of Poisson market orders (we'll see why).
- A3: $p_{BUY}(i\delta, \bar{A}(t_k), \bar{B}(t_k)) \cdot \delta$ prob. of placing order at $i\delta$, standard in literature

- A2: Can use Hawkes instead of Poisson market orders (we'll see why).
- A3: $p_{BUY}(i\delta, \bar{A}(t_k), \bar{B}(t_k)) \cdot \delta$ prob. of placing order at $i\delta$, standard in literature
- A4: No cross over of limit orders to opposite side of mid-price.

Proportion of	4/27	4/28	4/29	4/30	5/1
Cross Limit Orders					
Google	2.12%	1.77%	2.31%	1.79%	1.84%
Facebook	2.82%	3.80%	4.77%	3.40%	3.01%
Amazon	2.55%	2.47%	2.45%	1.57%	1.94%

• A5: $\alpha_{BUY}(i\delta, \bar{A}(t_k), \bar{B}(t_k))$ cancellation rate $i\delta$ PER order not standard in literature BUT this makes sense...

Whole system is a coupled multiclass two server queuing network.

Theorem

(B., Chen & Pei) At arrival of (k + 1)-th market order the order book follows the distribution of independent $M/M/\infty$ queueing systems the *i*-th with parameter

$$p_n(i) = \lambda_n \frac{p(i\delta, A(t_k), B(t_k))}{\alpha(i\delta, A(t_k), B(t_k))} \cdot \delta.$$

Recall: Steady-state number in system of $M/M/\infty$ is Poisson with parameter $\rho_n(i)$.

Proof.

Averaging principle for Martingale problems (see Kurtz (1992)).

Goal of the Talk

- 2 Our Model: Definition and Empirical Validation
- 3 Price Formation via Queueing Microstructure
- 4 Cancellation Policy and Continuous Time Dynamics

5 Conclusions

How to Pick a Cancellation Policy that Explains Empirical Findings?

• Assumption (C): For $x > x_0$

$$\alpha(x, A, B) \approx \gamma \times (1 - \overline{\Pi}(x, A, B))$$
.

Discussion of Assumption (C)

• Mainly introduced because of mathematical tractability.

Discussion of Assumption (C)

- Mainly introduced because of mathematical tractability.
- BUT allows us to establish a ONE to ONE correspondance between price increment & ORDER BOOK of the form

 $\Pi(x; A, B)^{\gamma} \approx \theta(x, A, B)$,

for $x > x_0$.

- Mainly introduced because of mathematical tractability.
- BUT allows us to establish a ONE to ONE correspondance between price increment & ORDER BOOK of the form

$$\Pi(x; A, B)^{\gamma} \approx \theta(x, A, B)$$
,

for $x > x_0$.

• Tends to increase as depth increases (very reasonable).

- Mainly introduced because of mathematical tractability.
- BUT allows us to establish a ONE to ONE correspondance between price increment & ORDER BOOK of the form

$$\Pi(x; A, B)^{\gamma} \approx \theta(x, A, B)$$
,

for $x > x_0$.

- Tends to increase as depth increases (very reasonable).
- If $\gamma pprox 1$ one can argue that, the equilibrium rate of execution, is

$$\frac{\mu\theta\left(i\delta,A,B\right)}{\mu\theta\left(i\delta,A,B\right)+\alpha\left(i\delta,A,B\right)}\approx\frac{\mu}{1+\mu}$$

is constant at any level.

• Given Assumption (C) there is a one to one correspondance between increment distribution & Limit Order Book structure.

- Given Assumption (C) there is a one to one correspondance between increment distribution & Limit Order Book structure.
- So, auxiliary increment distribution:= Δ_{k+1} (S (t_k)) depending on spread:

$$\theta\left(x, A, B\right) = P\left(\max(\Delta_{k+1}\left(S\left(t_{k}\right)\right), -\left[S\left(t_{k}\right) / (2\delta)\right]\delta\right) > x\right).$$

- Given Assumption (C) there is a one to one correspondance between increment distribution & Limit Order Book structure.
- So, auxiliary increment distribution:= Δ_{k+1} (S (t_k)) depending on spread:

$$\theta\left(x, A, B\right) = P\left(\max(\Delta_{k+1}\left(S\left(t_{k}\right)\right), -\left[S\left(t_{k}\right) / (2\delta)\right]\delta\right) > x\right).$$

• Formula for $\Delta_{k+1}\left(S\left(t_{k}
ight)
ight)$ ugly, but intuition simple... explain in words

$$\Delta_{k+1} (S(t_k)) = (-1)^{R_{k+1}} (1 - I_{k+1}) \delta_n \left[U_{k+1} / (n^{1/2} \delta_n) \right] \\ + I_{k+1} [S(t_k) V_k / \delta_n] \delta_n.$$

- Given Assumption (C) there is a one to one correspondance between increment distribution & Limit Order Book structure.
- So, auxiliary increment distribution:= Δ_{k+1} (S (t_k)) depending on spread:

$$\theta\left(x, A, B\right) = P\left(\max(\Delta_{k+1}\left(S\left(t_{k}\right)\right), -\left[S\left(t_{k}\right) / (2\delta)\right]\delta\right) > x\right).$$

• Formula for $\Delta_{k+1}\left(S\left(t_{k}
ight)
ight)$ ugly, but intuition simple... explain in words

$$\Delta_{k+1} (S(t_k)) = (-1)^{R_{k+1}} (1 - I_{k+1}) \delta_n \left[U_{k+1} / (n^{1/2} \delta_n) \right] + I_{k+1} [S(t_k) V_k / \delta_n] \delta_n.$$

• Second piece captures the structural part, namely, the fact that for $x > x_{\rm 0}$

$$\Pi\left(x;A,B\right)^{\gamma}\approx\theta\left(x,A,B\right).$$

Why Local Times in Limiting Process?

• It turns out that in terms of auxiliary increment distribution $\Delta_{k+1}\left(S\left(t_k
ight)
ight)$, one gets

$$A(t_{k+1}) = A(t_k) + (\max(\Delta_{k+1}(S(t_k))), -[S(t_k)/(2\delta)]\delta),$$

similar for BUY with "-".

Why Local Times in Limiting Process?

• It turns out that in terms of auxiliary increment distribution $\Delta_{k+1} \left(S\left(t_k
ight)
ight)$, one gets

$$A\left(t_{k+1}
ight)=A\left(t_{k}
ight)+\left(\max\left(\Delta_{k+1}\left(S\left(t_{k}
ight)
ight)
ight)$$
 , $-\left[S\left(t_{k}
ight)/\left(2\delta
ight)
ight]\delta
ight)$,

similar for BUY with "-".

• The "max" operator "similar" to Skorokhod map in queueing theory (but NOT exactly).

• It turns out that in terms of auxiliary increment distribution $\Delta_{k+1} \left(S\left(t_k
ight)
ight)$, one gets

$$A(t_{k+1}) = A(t_k) + (\max(\Delta_{k+1}(S(t_k))), -[S(t_k)/(2\delta)]\delta)$$
,

similar for BUY with "-".

- The "max" operator "similar" to Skorokhod map in queueing theory (but NOT exactly).
- We use techniques from diffusion approximations and continuity of the so-called Skorokhod map to establish the result.

Goal of the Talk

- 2 Our Model: Definition and Empirical Validation
- 3 Price Formation via Queueing Microstructure
- 4 Cancellation Policy and Continuous Time Dynamics

5 Conclusions

- Presented and discussed a model for price and the bid-ask spread which:
 - a) Is informed by the full order book dynamics,
 - b) It captures key stylized features observed empirically,
 - c) Useful in intra-day trading (many minutes / few hours):

Bid-Ask processes only encode lots of info from full order book.

Full order book directly feeds the dynamics of Bid-Ask processes.

log tail probability of limit orders at relative price level 0 to 200

