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Acceptance / Rejection

GOAL: Sample ω under P (·) <—HARD problem.

Assume easier to sample ω under Q (·), and there is c ∈ (0,∞)
deterministic so that

0 ≤ p (ω) :=
1
c
dP
dQ

(ω) ≤ 1.

If B (ω) is Bernoulli(p (ω)) under Q (·), then

P (ω ∈ ·) = Q (ω ∈ · |B (ω) = 1) .
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Exact sampling of an SDE: One dimensional setting...

Under P (·) the 1-dimensional process X (·) satisfies,

dX (t) = µ′ (X (t)) dt + dB (t) ; X (0) = x .

How to sample X (T ) with NO BIAS?
X (·) is Brownian motion under Q (·), so given X (T )

dPx
dQx

(X (T )) = eµ(X (T ))−µ(x )EQx

(
e−

∫ T
0
{µ′′(X (s))+µ′(X (s))2}

2 ds |X (T )
)
.

Assume |µ (·)| , µ′ (·)2 , |µ′′ (·)| ≤ a < 0, define

λ (X (s)) :=
{µ′′ (X (s)) + µ′ (X (s))2}

2
+ a ≥ 0.

REMEMBER |µ (·)| , µ′ (·)2 , |µ′′ (·)| ≤ a < 0 FOR NEXT SLIDE
ONLY!
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Exact sampling of an SDE: One dimensional setting...

Apply Acceptance / Rejection, sample
X (T ) ∼ x + BQ (T ) =d x +N (0,T ),

dPx
dQx

(X (T )) = eµ(X (T ))−µ(x )−TaEQx
(
e−

∫ T
0 λ(X (s))ds |X (T )

)
≤ ea−µ(x )−Ta.

Here c = exp (a− µ (x) + Ta) and

p (X (T )) :=
1
c
dPx
dQx

(X (T )) =
eµ(X (T ))

ea
×EQx

(
e−

∫ T
0 λ(X (s))ds |X (T )

)
.

Accepting X (T ) reduces to checking if NO ARRIVALS occur in
[0,T ] from a Cox process with intensity λ (X (·)) where X (·) is
Brownian bridge.. <- use thinning theorem.
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What we know about exact simulation of SDEs...

Previous strategy due to Beskos & Roberts (’04).

Every single extension so far uses Poisson thinning reduction trick &
ONLY in 1 dimension.

Extensions include: relaxing boundedness assumptions, jumps,
reflection. Beskos, Roberts, & Papaspiliopoulos ’06, Chen & Huang
’12, Étoréa & Martinez (2011).

SEVERE LIMITATIONS:

dX (t) = ∇µ (X (t)) dt + dB (t)

Drift needs to be a gradient & constant diffusion coeffi cient...
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What do we do?

Our contribution: Introduce a wide range of techniques enabling
acceptance/rejection much more widely...

We illustrate in two settings: RBM and multidimensional diffusions of the
form

dX (t) = µ (X (t)) dt + dB (t)

(i.e. drift may not be a gradient).
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Multidimensional RBM: Harrison-Reiman ’81 definition

Given R = I −Q ′, with Q substochasic and Qn → ∞

X (·) is a standard Brownian motion in d-dimensions
Skorokhod problem: Find (Y (·) , L (·)), a pair of process such that

dY (t) = dX (t) + RdL (t) ,

Y (·) ≥ 0, Yi (t) dLi (t) = 0, dLi (t) ≥ 0.

Y (·) is called multidimensional RBM.
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Exact Simulation of RBM: Our contribution here

Theorem (B. and Murthy ’14)

One can sample exactly Y (T ) for a multidimensional RBM in finite time.

Remark 1: Methodology extends easily to multidimensional reflected
diffusions of the form

dY (t) = ∇u (Y (t)) dt + dB (t) + dL (t) , Y (0) = y0.
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Our Strategy in a Nutshell: Forget RBM for a moment...

Consider Y = W + ∆ where W ∈ [2δ, 3δ] and ∆ ∈ [−δ, δ] are
independent

Density f∆ (·) is bounded by C ′ & Lipschitz continuous
Given, W = w , density of Y is fY (z |w) = f∆ (z − w)
TO SAMPLE Y : Sample W & propose Z ∼ U (δ, 4δ), get likelihood
ratio

fY (Z |W )
1/3δ

= 3δf∆ (Z −W ) ≤ c := 3δC ′

Let V ∼ U (0, 1) independent of everything and accept Z IF
V ≤ 3δf∆ (Z −W ) /c = f∆ (Z −W ) /C ′.

Key observation: Don’t need to know W ! Suffi ces to have
|Wn −W | ≤ εn → 0! Sample FIRST Z and if

V <
f∆ (Z −Wn)

C ′
−K εn – -> ACCEPT

V >
f∆ (Z −Wn)

C ′
+K εn – -> REJECT
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Exact Simulation of RBM: Use Following Facts

FACT 1: Y (· ;X ) is Lipschitz in X (·). That is for K > 0
computable

max
t∈[0,1]

∣∣Y (t;X )− Y (t;X ′)∣∣ ≤ K max
t∈[0,1]

∣∣X (t)− X ′ (t)∣∣ .

FACT 2: P (Y (t) > 0) = 1 (deterministic t) and Y (·) is
continuous.

FACT 3 (Beskos, Peluchetti, Roberts ’12 & B. Chen ’13): Can
simulate Xε (·) piecewise linear such that with probability one

max
t∈[0,1]

|X (t)− Xε (t)| < ε.
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Exact Simulation of RBM: Using uniform simulation
approximations

Simulate by stopping times...
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Exact Simulation of RBM: Using uniform simulation
approximations

Refining ε/2: Sampling from conditional BESSEL BRIDGE <–
Known transition density!
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Exact Simulation of RBM: Algorithm

Simulate Xε1 (·), Xε2 (·),...,XεN (·), εN = 2−N until YεN (s) > 0 for all
s ∈ [τ−, τ+] & T ∈ [τ−, τ+].

Stop in finite time: By FACT 2, Y (T ) > 0 almost surely & Y (·)
continuous.

Let FN (τ−) = information generated by {XN (s) : s ≤ τ−}.
Note that

Y (T ) = Y (τ−) + X (T )− X (τ−) AND

∆ = X (T )− X (τ−) is increment of conditional Bessel bridge so
KNOWN density f∆ (·)
RESULT: f∆ (·) is Lipschitz continuous with support inside
[−2−N+1, 2−N+1].
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Exact Simulation of RBM: Algorithm

Apply acceptance rejection: Let fY (T ) (·) be density of Y (T ) given
FN0 (τ−)

fY (T ) (z) = f∆ (z − Y (τ−)) .

We know that Y (T ) ∈ [YεN (τ−)−K2−N ,YεN (τ−) +K2
−N ] for

computable K (FACT 1: Lipschitz continuity of Skorokhod map)

Propose Z from uniformly on [YεN (τ−)−K2−N ,YεN (τ−) +K2
−N ]

then accept Z as a sample from fY (T ) (·) IF

V ≤ 1
C (N)

f∆ (Z − Y (τ−)) ,

where V is U (0, 1) independent of everything.

BIG problem Y (τ−) is unknown... is it really?
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Exact Simulation of RBM: Algorithm

Key observations:

Law (∆|σ(∪∞
k=NFk (τ−))) = Law (∆|FN (τ−))

and missing information to finally evaluate Y (τ−) is inside
σ(∪∞

k>NFk (τ−)).

So, you can continue refining XεN+1 ,XεN+2 , ...to get YεN+1 (τ−),
YεN+2 (τ−), YεN+3 (τ−)... using Lipschitz continuity of f∆ (·)
eventually

V ≤ 1
C (N)

f∆ (Z − YεN+m (τ−))−
K̃

C (N)
εN+m —> ACCEPT

OR

V ≥ 1
C (N)

f∆ (Z − YεN+m (τ−)) +
K̃

C (N)
εN+m —> REJECT

Since εn → ∞, algorithm must finish in finite time...
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The goal and the challenge

GOAL: Sample without bias X (1) such that

dX (t) = µ (X (t)) dt + dB (t) ; X (0) = x .

CHALLENGE: How to "bound stoch. integral" in likelihood ratio?

L = exp

(∫ T

0
µ (X (s)) dX (s)−

∫ T

0

‖µ (X (s))‖2

2
ds

)
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Key tool strong simulation

Theorem (B., Chen, Dong ’14)

Given µ (·) and σ (·) twice differentiable and Lipschitz

dY (t) = µ (Y (t)) dt + σ (Y (t)) dB (t)

Y (0) = x (0) .

We can construct {Xn (·)} piecewise linear and jointly simulatable in a
computer such that

sup
t∈[0,1]

|Yn (t)− Y (t)| < 1/n

with probability 1.
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Apply strong simulation to decide if accept or reject

CHALLENGE: How to "bound stoch. integral" in likelihood ratio?

L = exp

(∫ T

0
µ (X (s)) dX (s)−

∫ T

0

‖µ (X (s))‖2

2
ds

)

Define

dX (t) = µ (X (t)) dt + dB (t)

dY (t) = ‖µ (X (t))‖22 + µ (X (t)) dB (t)

and use strong simulation to approximate L to decide if accept or
reject.
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Key references behind our contributions

Exact simulation of RBM: http://arxiv.org/pdf/1405.6469v1.pdf

ε-strong simulation of SDEs:
http://arxiv-web3.library.cornell.edu/abs/1403.5722v1
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