On Exact Sampling of Multidimensional SDEs

Jose Blanchet (joint work with X. Chen, J. Dong, K. Murthy)

Columbia University

May, 2014

[Agenda](#page-1-0)

- 2 [A \(very\) quick primer on acceptance / rejection](#page-5-0)
- **[Exact sampling of SDEs](#page-9-0)**
- [Exact sampling of multidimensional RBM](#page-24-0)
- [Exact sampling of SDEs with non-gradient drift](#page-57-0)

[References](#page-63-0)

- **1** What do we know about exact sampling of SDEs?
- ² Exact simulation of multidimensional RBM
- **1** What do we know about exact sampling of SDEs?
- ² Exact simulation of multidimensional RBM
- ³ SDEs with non-gradient drift vector fields

[Agenda](#page-1-0)

- 2 [A \(very\) quick primer on acceptance / rejection](#page-5-0)
	- **[Exact sampling of SDEs](#page-9-0)**
	- [Exact sampling of multidimensional RBM](#page-24-0)
	- [Exact sampling of SDEs with non-gradient drift](#page-57-0)

[References](#page-63-0)

• GOAL: Sample ω under $P(\cdot) <$ HARD problem.

- GOAL: Sample ω under $P(\cdot) <$ + HARD problem.
- Assume easier to sample ω under $Q(\cdot)$, and there is $c \in (0, \infty)$ deterministic so that

$$
0\leq p(\omega):=\frac{1}{c}\frac{dP}{dQ}(\omega)\leq 1.
$$

- **GOAL:** Sample ω under $P(\cdot) <$ HARD problem.
- Assume easier to sample ω under $Q(\cdot)$, and there is $c \in (0, \infty)$ deterministic so that

$$
0\leq p(\omega):=\frac{1}{c}\frac{dP}{dQ}(\omega)\leq 1.
$$

• If $B(\omega)$ is Bernoulli $(p(\omega))$ under $Q(\cdot)$, then

$$
P(\omega \in \cdot) = Q(\omega \in \cdot | B(\omega) = 1).
$$

[Agenda](#page-1-0)

2 [A \(very\) quick primer on acceptance / rejection](#page-5-0)

3 [Exact sampling of SDEs](#page-9-0)

- [Exact sampling of multidimensional RBM](#page-24-0)
- [Exact sampling of SDEs with non-gradient drift](#page-57-0)

[References](#page-63-0)

 \bullet Under $P(\cdot)$ the 1-dimensional process $X(\cdot)$ satisfies,

$$
dX(t) = \mu' (X(t)) dt + dB(t); X(0) = x.
$$

 \bullet Under $P(\cdot)$ the 1-dimensional process $X(\cdot)$ satisfies,

$$
dX(t) = \mu' (X(t)) dt + dB(t); X(0) = x.
$$

• How to sample $X(T)$ with NO BIAS?

 \bullet Under $P(\cdot)$ the 1-dimensional process $X(\cdot)$ satisfies,

$$
dX(t) = \mu' (X(t)) dt + dB(t); X(0) = x.
$$

- How to sample $X(T)$ with NO BIAS?
- \bullet X(\cdot) is Brownian motion under $Q(\cdot)$, so given $X(T)$

$$
\frac{dP_x}{dQ_x}\left(X(T)\right)=e^{\mu\left(X(T)\right)-\mu\left(x\right)}E_x^Q\left(e^{-\int_0^T\frac{\{\mu''\left(X(s)\right)+\mu'\left(X(s)\right)^2\}}{2}ds}|X(T)\right).
$$

 \bullet Under $P(\cdot)$ the 1-dimensional process $X(\cdot)$ satisfies,

$$
dX(t) = \mu'(X(t)) dt + dB(t); \ \ X(0) = x.
$$

- How to sample $X(T)$ with NO BIAS?
- \bullet X (\cdot) is Brownian motion under $Q(\cdot)$, so given $X(T)$

$$
\frac{dP_x}{dQ_x}\left(X(T)\right)=e^{\mu\left(X(T)\right)-\mu\left(x\right)}E_x^Q\left(e^{-\int_0^T\frac{\{\mu''\left(X(s)\right)+\mu'\left(X(s)\right)^2\}}{2}ds}|X(T)\right).
$$

Assume $|\mu(\cdot)|$, $\mu'(\cdot)^2$, $|\mu''(\cdot)| \le a < 0$, define

$$
\lambda\left(X\left(s\right)\right):=\frac{\left\{\mu''\left(X\left(s\right)\right)+\mu'\left(X\left(s\right)\right)^{2}\right\}}{2}+a\geq0.
$$

 \bullet Under $P(\cdot)$ the 1-dimensional process $X(\cdot)$ satisfies,

$$
dX(t) = \mu' (X(t)) dt + dB(t); X(0) = x.
$$

- How to sample $X(T)$ with NO BIAS?
- \bullet X (\cdot) is Brownian motion under $Q(\cdot)$, so given $X(T)$

$$
\frac{dP_x}{dQ_x}\left(X(T)\right)=e^{\mu\left(X(T)\right)-\mu\left(x\right)}E_x^Q\left(e^{-\int_0^T\frac{\{\mu''\left(X(s)\right)+\mu'\left(X(s)\right)^2\}}{2}ds}|X(T)\right).
$$

Assume $|\mu(\cdot)|$, $\mu'(\cdot)^2$, $|\mu''(\cdot)| \le a < 0$, define

$$
\lambda\left(X\left(s\right)\right):=\frac{\left\{\mu''\left(X\left(s\right)\right)+\mu'\left(X\left(s\right)\right)^{2}\right\}}{2}+a\geq0.
$$

REMEMBER $|\mu \left(\cdot \right)|$, $\mu' \left(\cdot \right)^2$, $|\mu'' \left(\cdot \right)| \le a < 0$ FOR NEXT SLIDE **ONLYI**

Apply Acceptance / Rejection, sample $X(T) \sim x + B^{Q}(T) =_{d} x + N(0, T),$

$$
\frac{dP_x}{dQ_x}(X(T)) = e^{\mu(X(T)) - \mu(x) - Ta} E_x^Q \left(e^{-\int_0^T \lambda(X(s))ds} |X(T)| \right)
$$

\$\leq\$ $e^{a - \mu(x) - Ta}$.

• Apply Acceptance / Rejection, sample $X(T) \sim x + B^{Q}(T) =_{d} x + N(0, T),$

$$
\frac{dP_x}{dQ_x}(X(T)) = e^{\mu(X(T)) - \mu(x) - Ta} E_x^Q \left(e^{-\int_0^T \lambda(X(s))ds} |X(T)| \right)
$$

\$\leq\$ $e^{a - \mu(x) - Ta}$.

 \bullet Here $c = \exp(a - \mu(x) + \tau a)$ and

$$
p(X(T)) := \frac{1}{c} \frac{dP_X}{dQ_X}(X(T)) = \frac{e^{\mu(X(T))}}{e^a} \times E_X^Q \left(e^{-\int_0^T \lambda(X(s))ds} |X(T) \right)
$$

• Apply Acceptance / Rejection, sample $X(T) \sim x + B^{Q}(T) =_{d} x + N(0, T),$

$$
\frac{dP_x}{dQ_x}(X(T)) = e^{\mu(X(T)) - \mu(x) - Ta} E_x^Q \left(e^{-\int_0^T \lambda(X(s))ds} |X(T)| \right)
$$

\$\leq\$ $e^{a - \mu(x) - Ta}$.

• Here
$$
c = \exp(a - \mu(x) + \tau a)
$$
 and

$$
p(X(T)) := \frac{1}{c} \frac{dP_X}{dQ_X}(X(T)) = \frac{e^{\mu(X(T))}}{e^a} \times E_X^Q \left(e^{-\int_0^T \lambda(X(s))ds} |X(T) \right)
$$

• Accepting $X(T)$ reduces to checking if NO ARRIVALS occur in [0, T] from a Cox process with intensity λ (X (·)) where X (·) is Brownian bridge.. \lt - use thinning theorem.

What we know about exact simulation of SDEs...

• Previous strategy due to Beskos & Roberts ('04).

- **•** Previous strategy due to Beskos & Roberts ('04).
- Every single extension so far uses Poisson thinning reduction trick & ONLY in 1 dimension.
- **•** Previous strategy due to Beskos & Roberts ('04).
- Every single extension so far uses Poisson thinning reduction trick & ONLY in 1 dimension.
- Extensions include: relaxing boundedness assumptions, jumps, reflection. Beskos, Roberts, & Papaspiliopoulos '06, Chen & Huang '12, Étoréa & Martinez (2011).
- **•** Previous strategy due to Beskos & Roberts ('04).
- Every single extension so far uses Poisson thinning reduction trick & ONLY in 1 dimension.
- Extensions include: relaxing boundedness assumptions, jumps, reflection. Beskos, Roberts, & Papaspiliopoulos '06, Chen & Huang '12, Étoréa & Martinez (2011).
- **SEVERE LIMITATIONS:**

$$
dX\left(t\right) =\nabla \mu \left(X\left(t\right) \right) dt+dB\left(t\right)
$$

- **•** Previous strategy due to Beskos & Roberts ('04).
- Every single extension so far uses Poisson thinning reduction trick & ONLY in 1 dimension.
- Extensions include: relaxing boundedness assumptions, jumps, reflection. Beskos, Roberts, & Papaspiliopoulos '06, Chen & Huang $'12$, Étoréa & Martinez (2011).
- **SEVERE LIMITATIONS:**

$$
dX\left(t\right) = \nabla \mu\left(X\left(t\right)\right)dt + dB\left(t\right)
$$

 \bullet Drift needs to be a gradient & constant diffusion coefficient...

Our contribution: Introduce a wide range of techniques enabling acceptance/rejection much more widely...

We illustrate in two settings: RBM and multidimensional diffusions of the form

$$
dX(t) = \mu\left(X(t)\right)dt + dB(t)
$$

(i.e. drift may not be a gradient).

[Agenda](#page-1-0)

- 2 [A \(very\) quick primer on acceptance / rejection](#page-5-0)
- **[Exact sampling of SDEs](#page-9-0)**
- 4 [Exact sampling of multidimensional RBM](#page-24-0)
	- [Exact sampling of SDEs with non-gradient drift](#page-57-0)

[References](#page-63-0)

Given $R = I - Q'$, with Q substochasic and $Q^n \to \infty$

- Given $R = I Q'$, with Q substochasic and $Q^n \to \infty$
- \bullet X (\cdot) is a standard Brownian motion in d-dimensions
- Given $R = I Q'$, with Q substochasic and $Q^n \to \infty$
- \bullet X (\cdot) is a standard Brownian motion in d-dimensions
- Skorokhod problem: Find $(Y(\cdot), L(\cdot))$, a pair of process such that

$$
dY(t) = dX(t) + RdL(t),
$$

$$
Y(\cdot) \ge 0, \quad Y_i(t) dL_i(t) = 0, \quad dL_i(t) \ge 0.
$$

- Given $R = I Q'$, with Q substochasic and $Q^n \to \infty$
- \bullet X (\cdot) is a standard Brownian motion in d-dimensions
- Skorokhod problem: Find $(Y(\cdot), L(\cdot))$, a pair of process such that

$$
dY(t) = dX(t) + RdL(t),
$$

$$
Y(\cdot) \ge 0, \quad Y_i(t) dL_i(t) = 0, \quad dL_i(t) \ge 0.
$$

• $Y(\cdot)$ is called multidimensional RBM.

Theorem (B. and Murthy '14)

One can sample exactly $Y(T)$ for a multidimensional RBM in finite time.

• Remark 1: Methodology extends easily to multidimensional reflected diffusions of the form

$$
dY(t) = \nabla u(Y(t)) dt + dB(t) + dL(t), \quad Y(0) = y_0.
$$

 \bullet Consider *Y* = *W* + ∆ where *W* ∈ [2*δ*, 3*δ*] and Δ ∈ [$-\delta$, *δ*] are independent

- \bullet Consider *Y* = *W* + ∆ where *W* ∈ [2*δ*, 3*δ*] and Δ ∈ [$-\delta$, *δ*] are independent
- Density $f_{\Delta}(\cdot)$ is bounded by C' & Lipschitz continuous

- Consider $Y = W + Δ$ where $W \in [2δ, 3δ]$ and $Δ ∈ [-δ, δ]$ are independent
- Density $f_{\Delta}(\cdot)$ is bounded by C' & Lipschitz continuous
- Given, $W = w$, density of Y is $f_Y(z|w) = f_Y(z w)$

- \bullet Consider $Y = W + Δ$ where $W \in [2δ, 3δ]$ and $Δ ∈ [-δ, δ]$ are independent
- Density $f_{\Delta}(\cdot)$ is bounded by C' & Lipschitz continuous
- Given, $W = w$, density of Y is $f_Y(z|w) = f_Y(z w)$
- **TO SAMPLE Y: Sample W & propose** $Z \sim U(\delta, 4\delta)$ **, get likelihood** ratio

$$
\frac{f_Y(Z|W)}{1/3\delta} = 3\delta f_\Delta (Z-W) \leq c := 3\delta C'
$$

- \bullet Consider $Y = W + Δ$ where $W \in [2δ, 3δ]$ and $Δ ∈ [-δ, δ]$ are independent
- Density $f_{\Delta}(\cdot)$ is bounded by C' & Lipschitz continuous
- Given, $W = w$, density of Y is $f_Y(z|w) = f_Y(z w)$
- **TO SAMPLE Y:** Sample W & propose $Z \sim U(\delta, 4\delta)$, get likelihood ratio

$$
\frac{f_Y(Z|W)}{1/3\delta} = 3\delta f_\Delta (Z - W) \leq c := 3\delta C'
$$

• Let $V \sim U(0, 1)$ independent of everything and accept Z IF $V \leq 3\delta f_{\Delta} (Z - W) / c = f_{\Delta} (Z - W) / C'.$

- \bullet Consider $Y = W + Δ$ where $W \in [2δ, 3δ]$ and $Δ ∈ [-δ, δ]$ are independent
- Density $f_{\Delta}(\cdot)$ is bounded by C' & Lipschitz continuous
- Given, $W = w$, density of Y is $f_Y(z|w) = f_Y(z w)$
- **TO SAMPLE Y:** Sample W & propose $Z \sim U(\delta, 4\delta)$, get likelihood ratio

$$
\frac{f_Y(Z|W)}{1/3\delta} = 3\delta f_\Delta (Z - W) \leq c := 3\delta C'
$$

• Let $V \sim U(0, 1)$ independent of everything and accept Z IF $V \leq 3\delta f_{\Delta} (Z - W) / c = f_{\Delta} (Z - W) / C'.$

• Key observation: Don't need to know $W!$ Suffices to have $|W_n - W| \le \varepsilon_n \to 0!$ Sample FIRST Z and if

$$
V < \frac{f_{\Delta}(Z - W_n)}{C'} - K\varepsilon_n \quad \text{---} > \text{ACCEPT}
$$
\n
$$
V > \frac{f_{\Delta}(Z - W_n)}{C'} + K\varepsilon_n \quad \text{---} > \text{REJECT}
$$

Exact Simulation of RBM: Use Following Facts

• FACT 1: $Y(\cdot; X)$ is Lipschitz in $X(\cdot)$. That is for $K > 0$ computable

$$
\max_{t\in[0,1]}\left|Y(t;X)-Y(t;X')\right|\leq K\max_{t\in[0,1]}\left|X\left(t\right)-X'\left(t\right)\right|.
$$

Exact Simulation of RBM: Use Following Facts

• FACT 1: $Y(\cdot; X)$ is Lipschitz in $X(\cdot)$. That is for $K > 0$ computable

$$
\max_{t\in[0,1]}\left|Y(t;X)-Y(t;X')\right|\leq K\max_{t\in[0,1]}\left|X\left(t\right)-X'\left(t\right)\right|.
$$

• FACT 2: $P(Y(t) > 0) = 1$ (deterministic t) and $Y(\cdot)$ is continuous.

Exact Simulation of RBM: Use Following Facts

• FACT 1: $Y(\cdot; X)$ is Lipschitz in $X(\cdot)$. That is for $K > 0$ computable

$$
\max_{t\in[0,1]}\left|Y(t;X)-Y(t;X')\right|\leq K\max_{t\in[0,1]}\left|X\left(t\right)-X'\left(t\right)\right|.
$$

- FACT 2: $P(Y(t) > 0) = 1$ (deterministic t) and $Y(\cdot)$ is continuous.
- **FACT 3** (Beskos, Peluchetti, Roberts '12 & B. Chen '13): Can simulate $X_{\varepsilon}(\cdot)$ piecewise linear such that with probability one

$$
\max_{t\in[0,1]}|X(t)-X_{\varepsilon}(t)|<\varepsilon.
$$

• Refining *ε/2*: Sampling from conditional BESSEL BRIDGE \lt -Known transition density!

 $\textsf{Simulate } X_{\varepsilon_1}\left(\cdot\right),\,X_{\varepsilon_2}\left(\cdot\right),\dots,X_{\varepsilon_N}\left(\cdot\right),\, \varepsilon_N=2^{-N}$ until $Y_{\varepsilon_N}\left(s\right)>0$ for all $s \in [\tau_-, \tau_+] \& \tau \in [\tau_-, \tau_+].$

- $\textsf{Simulate } X_{\varepsilon_1}\left(\cdot\right),\,X_{\varepsilon_2}\left(\cdot\right),\dots,X_{\varepsilon_N}\left(\cdot\right),\, \varepsilon_N=2^{-N}$ until $Y_{\varepsilon_N}\left(s\right)>0$ for all $s \in [\tau_-, \tau_+] \& \tau \in [\tau_-, \tau_+].$
- Stop in finite time: By FACT 2, $Y(T) > 0$ almost surely & $Y(\cdot)$ continuous.

- $\textsf{Simulate } X_{\varepsilon_1}\left(\cdot\right),\,X_{\varepsilon_2}\left(\cdot\right),\dots,X_{\varepsilon_N}\left(\cdot\right),\, \varepsilon_N=2^{-N}$ until $Y_{\varepsilon_N}\left(s\right)>0$ for all $s \in [\tau_-, \tau_+] \& \tau \in [\tau_-, \tau_+].$
- Stop in finite time: By FACT 2, $Y(T) > 0$ almost surely & $Y(.)$ continuous.
- Let $\mathcal{F}_N(\tau_-) =$ information generated by $\{X_N(s): s \leq \tau_-\}.$

- $\textsf{Simulate } X_{\varepsilon_1}\left(\cdot\right),\,X_{\varepsilon_2}\left(\cdot\right),\dots,X_{\varepsilon_N}\left(\cdot\right),\, \varepsilon_N=2^{-N}$ until $Y_{\varepsilon_N}\left(s\right)>0$ for all $s \in [\tau_-, \tau_+] \& \tau \in [\tau_-, \tau_+].$
- Stop in finite time: By FACT 2, $Y(T) > 0$ almost surely & $Y(\cdot)$ continuous.
- Let $\mathcal{F}_N(\tau_-) =$ information generated by $\{X_N(s): s \leq \tau_-\}.$
- Note that

$$
Y(T) = Y(\tau_{-}) + X(T) - X(\tau_{-})
$$
 AND

- $\textsf{Simulate } X_{\varepsilon_1}\left(\cdot\right),\,X_{\varepsilon_2}\left(\cdot\right),\dots,X_{\varepsilon_N}\left(\cdot\right),\, \varepsilon_N=2^{-N}$ until $Y_{\varepsilon_N}\left(s\right)>0$ for all $s \in [\tau_-, \tau_+] \& \tau \in [\tau_-, \tau_+].$
- Stop in finite time: By FACT 2, $Y(T) > 0$ almost surely & $Y(.)$ continuous.
- Let $\mathcal{F}_N(\tau_-) =$ information generated by $\{X_N(s): s \leq \tau_-\}.$
- Note that

$$
Y(T) = Y(\tau_{-}) + X(T) - X(\tau_{-})
$$
 AND

 $\Delta = X(T) - X(\tau)$ is increment of conditional Bessel bridge so KNOWN density $f_{\Lambda}(\cdot)$

- $\textsf{Simulate } X_{\varepsilon_1}\left(\cdot\right),\,X_{\varepsilon_2}\left(\cdot\right),\dots,X_{\varepsilon_N}\left(\cdot\right),\, \varepsilon_N=2^{-N}$ until $Y_{\varepsilon_N}\left(s\right)>0$ for all $s \in [\tau_-, \tau_+] \& \tau \in [\tau_-, \tau_+].$
- Stop in finite time: By FACT 2, $Y(T) > 0$ almost surely & $Y(.)$ continuous.
- Let $\mathcal{F}_N(\tau_-) =$ information generated by $\{X_N(s): s \leq \tau_-\}.$
- Note that

$$
Y(T) = Y(\tau_{-}) + X(T) - X(\tau_{-})
$$
 AND

- $\Delta = X(T) X(\tau_{-})$ is increment of conditional Bessel bridge so KNOWN density $f_{\Lambda}(\cdot)$
- RESULT: $f_{\Lambda}(\cdot)$ is Lipschitz continuous with support inside $[-2^{-N+1}, 2^{-N+1}].$

Apply acceptance rejection: Let $f_{Y(\mathcal{T})}\left(\cdot\right)$ be density of $Y\left(\mathcal{T}\right)$ given $\mathcal{F}_{N_0}(\tau_-)$

$$
f_{Y(T)}(z) = f_{\Delta}(z - Y(\tau_{-}))
$$

Apply acceptance rejection: Let $f_{Y(\mathcal{T})}\left(\cdot\right)$ be density of $Y\left(\mathcal{T}\right)$ given $\mathcal{F}_{N_0}(\tau_-)$

$$
f_{Y(T)}(z) = f_{\Delta}(z - Y(\tau_{-}))
$$

We know that $Y(T) \in [Y_{\varepsilon_{N}}(\tau_{-})-K2^{-N}, Y_{\varepsilon_{N}}(\tau_{-})+K2^{-N}]$ for computable K (FACT 1: Lipschitz continuity of Skorokhod map)

Apply acceptance rejection: Let $f_{Y(\mathcal{T})}\left(\cdot\right)$ be density of $Y\left(\mathcal{T}\right)$ given $\mathcal{F}_{N_0}(\tau_-)$

$$
f_{Y(T)}(z) = f_{\Delta}(z - Y(\tau_{-}))
$$

- We know that $Y(T) \in [Y_{\varepsilon_{N}}(\tau_{-})-K2^{-N}, Y_{\varepsilon_{N}}(\tau_{-})+K2^{-N}]$ for computable K (FACT 1: Lipschitz continuity of Skorokhod map)
- Propose Z from uniformly on $[Y_{\varepsilon_{N}}(\tau_{-}) K2^{-N}, Y_{\varepsilon_{N}}(\tau_{-}) + K2^{-N}]$ then accept Z as a sample from $f_{\boldsymbol{\mathsf{Y}}(\mathcal{T})}\left(\cdot\right)$ IF

$$
V\leq\frac{1}{C\left(N\right)}f_{\Delta}\left(Z-Y\left(\tau_{-}\right)\right),
$$

where V is $U(0, 1)$ independent of everything.

Apply acceptance rejection: Let $f_{Y(\mathcal{T})}\left(\cdot\right)$ be density of $Y\left(\mathcal{T}\right)$ given $\mathcal{F}_{N_0}(\tau_-)$

$$
f_{Y(T)}(z) = f_{\Delta}(z - Y(\tau_{-}))
$$

- We know that $Y(T) \in [Y_{\varepsilon_{N}}(\tau_{-})-K2^{-N}, Y_{\varepsilon_{N}}(\tau_{-})+K2^{-N}]$ for computable K (FACT 1: Lipschitz continuity of Skorokhod map)
- Propose Z from uniformly on $[Y_{\varepsilon_{N}}(\tau_{-}) K2^{-N}, Y_{\varepsilon_{N}}(\tau_{-}) + K2^{-N}]$ then accept Z as a sample from $f_{\boldsymbol{\mathsf{Y}}(\mathcal{T})}\left(\cdot\right)$ IF

$$
V\leq\frac{1}{C\left(N\right)}f_{\Delta}\left(Z-Y\left(\tau_{-}\right)\right),
$$

where V is $U(0, 1)$ independent of everything.

• BIG problem $Y(\tau)$ is unknown... is it really?

• Key observations:

$$
Law\left(\Delta|\sigma(\cup_{k=N}^{\infty}\mathcal{F}_{k}\left(\tau_{-}\right)\right)\right)=Law\left(\Delta|\mathcal{F}_{N}\left(\tau_{-}\right)\right)
$$

and missing information to finally evaluate $Y(\tau)$ is inside $\sigma(\cup_{k>N}^{\infty}F_k(\tau-)).$

• Key observations:

$$
Law\left(\Delta|\sigma(\cup_{k=N}^{\infty} \mathcal{F}_k(\tau_{-}))\right) = Law\left(\Delta|\mathcal{F}_N(\tau_{-})\right)
$$

and missing information to finally evaluate $Y(\tau)$ is inside $\sigma(\cup_{k>N}^{\infty}F_k(\tau-)).$

So, you can continue refining $X_{\varepsilon_{N+1}},X_{\varepsilon_{N+2}},...$ to get $Y_{\varepsilon_{N+1}}\left(\tau_{-}\right)$, $Y_{\varepsilon_{N+2}}(\tau_{-})$, $Y_{\varepsilon_{N+3}}(\tau_{-})...$ using Lipschitz continuity of $f_{\Delta}(\cdot)$ eventually

$$
V \leq \frac{1}{C(N)} f_{\Delta} (Z - Y_{\varepsilon_{N+m}} (\tau_{-})) - \frac{\widetilde{K}}{C(N)} \varepsilon_{N+m} \to \text{ACCEPT}
$$

\nOR
\n
$$
V \geq \frac{1}{C(N)} f_{\Delta} (Z - Y_{\varepsilon_{N+m}} (\tau_{-})) + \frac{\widetilde{K}}{C(N)} \varepsilon_{N+m} \to \text{REJECT}
$$

• Key observations:

$$
Law\left(\Delta|\sigma(\cup_{k=N}^{\infty} \mathcal{F}_k(\tau_{-}))\right) = Law\left(\Delta|\mathcal{F}_N(\tau_{-})\right)
$$

and missing information to finally evaluate $Y(\tau)$ is inside $\sigma(\cup_{k>N}^{\infty}F_k(\tau-)).$

So, you can continue refining $X_{\varepsilon_{N+1}},X_{\varepsilon_{N+2}},...$ to get $Y_{\varepsilon_{N+1}}\left(\tau_{-}\right)$, $Y_{\varepsilon_{N+2}}(\tau_{-})$, $Y_{\varepsilon_{N+3}}(\tau_{-})...$ using Lipschitz continuity of $f_{\Delta}(\cdot)$ eventually

$$
V \leq \frac{1}{C(N)} f_{\Delta} (Z - Y_{\varepsilon_{N+m}} (\tau_{-})) - \frac{\widetilde{K}}{C(N)} \varepsilon_{N+m} \to \text{ACCEPT}
$$

\n
$$
V \geq \frac{1}{C(N)} f_{\Delta} (Z - Y_{\varepsilon_{N+m}} (\tau_{-})) + \frac{\widetilde{K}}{C(N)} \varepsilon_{N+m} \to \text{REJECT}
$$

• Since $\varepsilon_n \to \infty$, algorithm must finish in finite time...

[Agenda](#page-1-0)

- 2 [A \(very\) quick primer on acceptance / rejection](#page-5-0)
- **[Exact sampling of SDEs](#page-9-0)**
- [Exact sampling of multidimensional RBM](#page-24-0)
- 5 [Exact sampling of SDEs with non-gradient drift](#page-57-0)

[References](#page-63-0)

• GOAL: Sample without bias $X(1)$ such that

$$
dX(t) = \mu(X(t)) dt + dB(t); X(0) = x.
$$

• GOAL: Sample without bias $X(1)$ such that

$$
dX(t) = \mu(X(t)) dt + dB(t); X(0) = x.
$$

CHALLENGE: How to "bound stoch. integral" in likelihood ratio?

$$
L = \exp\left(\int_0^T \mu\left(X\left(s\right)\right) dX\left(s\right) - \int_0^T \frac{\left\|\mu\left(X\left(s\right)\right)\right\|^2}{2} ds\right)
$$

Theorem (B., Chen, Dong '14)

Given $\mu(\cdot)$ and $\sigma(\cdot)$ twice differentiable and Lipschitz

$$
dY(t) = \mu(Y(t)) dt + \sigma(Y(t)) dB(t)
$$

$$
Y(0) = x(0).
$$

We can construct $\{X_n(\cdot)\}\$ piecewise linear and jointly simulatable in a computer such that

$$
\sup_{t\in[0,1]}|Y_n(t)-Y(t)|<1/n
$$

with probability 1.

Apply strong simulation to decide if accept or reject

CHALLENGE: How to "bound stoch. integral" in likelihood ratio?

$$
L = \exp\left(\int_0^T \mu\left(X\left(s\right)\right) dX\left(s\right) - \int_0^T \frac{\left\|\mu\left(X\left(s\right)\right)\right\|^2}{2} ds\right)
$$

Apply strong simulation to decide if accept or reject

CHALLENGE: How to "bound stoch. integral" in likelihood ratio?

$$
L = \exp\left(\int_0^T \mu\left(X\left(s\right)\right) dX\left(s\right) - \int_0^T \frac{\left\|\mu\left(X\left(s\right)\right)\right\|^2}{2} ds\right)
$$

DeÖne

$$
dX(t) = \mu(X(t)) dt + dB(t)
$$

\n
$$
dY(t) = \|\mu(X(t))\|_2^2 + \mu(X(t)) dB(t)
$$

and use strong simulation to approximate L to decide if accept or reject.

[Agenda](#page-1-0)

- 2 [A \(very\) quick primer on acceptance / rejection](#page-5-0)
- **[Exact sampling of SDEs](#page-9-0)**
- [Exact sampling of multidimensional RBM](#page-24-0)
- [Exact sampling of SDEs with non-gradient drift](#page-57-0)

Exact simulation of RBM: http://arxiv.org/pdf/1405.6469v1.pdf

- Exact simulation of RBM: http://arxiv.org/pdf/1405.6469v1.pdf
- *ε*-strong simulation of SDEs: http://arxiv-web3.library.cornell.edu/abs/1403.5722v1