Rare-event Simulation of Brownian Motion Avoiding Hard Obstacles

Jose Blanchet (joint work with Paul Dupuis)

Columbia IEOR Department

Rubinstein’s Celebration
Agenda

- **Introduction: Rare-event Simulation**
- Brownian Motion Avoiding Obstacles
- Explaining the Strategy
- Conclusions
Assumptions:

- Let \(B(t) : t \geq 0 \) be a Brownian motion in \(\mathbb{R}^d \).
- Let \(N(t) : t \geq 0 \) be a Poisson spatial process in \(\mathbb{R}^d \) independent of \(B(t) \).

To each point of \(N(t) \) attach a square of volume \(a \) corresponding to an obstacle (obstacles can have intersections, that's fine).

Let \(T = 1 \text{st time } B(t) \text{ hits the boundary of an obstacle} \).

Question: Design an efficient simulation algorithm to estimate \(P(T > t) \) for large \(t \).
Assumptions:

Let \(B(t) : t \geq 0 \) be a Brownian motion in \(\mathbb{R}^d \)

Let \((N(t) : t \geq 0) \) be a Poisson spatial process in \(\mathbb{R}^d \) independent of \(B(t) \). To each point of \(N(t) \) attach a square of volume \(a \) corresponding to an obstacle (obstacles can have intersections, that's not the case).

Let \(T = 1 \)st time \(B(t) \) hits the boundary of an obstacle

Question:

Design an efficient simulation algorithm to estimate \(\mathbb{P}(T > t) \) for large \(t \)
Assumptions:

- Let $(B(t) : t \geq 0)$ be a Brownian motion in \mathbb{R}^d.
- Let $(N(t) : t \geq 0)$ be a Poisson spatial process in \mathbb{R}^d independent of $B(\cdot)$.

Question:

Design an efficient simulation algorithm to estimate $\mathbb{P}(T > t)$ for large t.
Assumptions:

- Let \((B(t) : t \geq 0)\) be a Brownian motion in \(R^d\).
- Let \((N(t) : t \geq 0)\) be a Poisson spatial process in \(R^d\) independent of \(B(\cdot)\).
- To each point of \(N(\cdot)\) attach a **square of volume** \(a\) corresponding to an obstacle (obstacles can have intersections, that’s fine).
Assumptions:

- Let \((B(t) : t \geq 0)\) be a Brownian motion in \(R^d\).
- Let \((N(t) : t \geq 0)\) be a Poisson spatial process in \(R^d\) independent of \(B(\cdot)\).
- To each point of \(N(\cdot)\) attach a **square of volume** \(a\) corresponding to an obstacle (obstacles can have intersections, that’s fine).
- Let \(T = 1\text{st time } B(\cdot)\) hits the boundary of an obstacle.
Assumptions:

Let $(B(t) : t \geq 0)$ be a Brownian motion in R^d

Let $(N(t) : t \geq 0)$ be a Poisson spatial process in R^d independent of $B(\cdot)$.

To each point of $N(\cdot)$ attach a square of volume a corresponding to an obstacle (obstacles can have intersections, that’s fine).

Let $T = 1$st time $B(\cdot)$ hits the boundary of an obstacle

Question:
Assumptions:

- Let \((B(t) : t \geq 0)\) be a Brownian motion in \(\mathbb{R}^d\).
- Let \((N(t) : t \geq 0)\) be a Poisson spatial process in \(\mathbb{R}^d\) independent of \(B(\cdot)\).
- To each point of \(N(\cdot)\) attach a square of volume \(a\) corresponding to an obstacle (obstacles can have intersections, that’s fine).
- Let \(T = 1st\ time\ B(\cdot)\) hits the boundary of an obstacle.

Question:

Design an efficient simulation algorithm to estimate \(P(T > t)\) for large \(t\).
Motivation

- Undetected objects for long period of time
- Motivation as a problem in random media (study of polymers in random environments)
- Materials properties (obstacles represent impurities)
- Introduced by Smoluchowsky (1918) in Chemistry and Physics / now proposed as model of molecules in motion in cells (http://jb.asm.org/cgi/content/full/187/1/23)
- *It provides an interesting example of importance sampling that involves infinite dimensional simulation (control) problem...*.

Blanchet (Columbia)
Brownian Motion Avoiding Hard Obstacles
07/08 4 / 34
Suppose want to estimate \(P(Z \in A) \)
Basic Facts about Importance Sampling

- Suppose want to estimate $P(Z \in A)$
- Importance sampling estimation says: Find an appropriate change-of-measure $Q(d\omega)$ and produce the importance sampling (IS) estimator

$$Y = \frac{dP}{dQ}(\omega) I(Z(\omega) \in A)$$
Suppose want to estimate $P(Z \in A)$

Importance sampling estimation says: Find an appropriate change-of-measure $Q(d\omega)$ and produce the importance sampling (IS) estimator

$$Y = \frac{dP}{dQ}(\omega) I(Z(\omega) \in A)$$

Simulate iid replications of Y to estimate $P(Z \in A) = E^Q Y$.

Basic Facts about Importance Sampling

- **Suppose want to estimate** $P(Z \in A)$
- Importance sampling estimation says: Find an appropriate *change-of-measure* $Q(d\omega)$ and produce the importance sampling (IS) estimator
 \[Y = \frac{dP}{dQ}(\omega) I(Z(\omega) \in A) \]
- Simulate iid replications of Y to estimate $P(Z \in A) = E^Q Y$.
- Want to reduce the variance of Y
An Obvious Observation and a Powerful Principle

- Select $Q(\cdot)$ as conditional distribution given $Z \in A$

$$Q(d\omega) = \frac{I(Z(\omega) \in A) P(d\omega)}{P(Z \in A)},$$

Obviously useless to implement but yields a powerful principle: WE SHALL CALL IT GISP ("Good Importance Sampling Principle").

GISP: "To design a good importance sampling try to mimic the conditional distribution of the process given the rare event" (Asmussen and Rubinstein '85)
Select $Q(\cdot)$ as conditional distribution given $Z \in A$

$$Q(d\omega) = \frac{I(Z(\omega) \in A) P(d\omega)}{P(Z \in A)},$$

Then $Y = P(Z \in A)$ is unbiased with zero variance...
An Obvious Observation and a Powerful Principle

- Select $Q(\cdot)$ as conditional distribution given $Z \in A$

$$Q(d\omega) = \frac{I(Z(\omega) \in A) P(d\omega)}{P(Z \in A)},$$

- Then $Y = P(Z \in A)$ is unbiased with zero variance...

- Obviously useless to implement BUT yields a powerful principle: WE SHALL CALL IT GISP ("Good Importance Sampling Principle").
An Obvious Observation and a Powerful Principle

- Select $Q(\cdot)$ as conditional distribution given $Z \in A$

\[Q(d\omega) = \frac{I(Z(\omega) \in A) P(d\omega)}{P(Z \in A)} , \]

- Then $Y = P(Z \in A)$ is unbiased with zero variance...

- Obviously useless to implement BUT yields a powerful principle: WE SHALL CALL IT GISP ("Good Importance Sampling Principle").

- **GISP**: "To design a good importance sampling try to mimic the conditional distribution of the process given the rare event" (Asmussen and Rubinstein ’85)
Goal of GISP: Finding an efficient or *asymptotically optimal* estimator.
Goal of GISP: Finding an efficient or asymptotically optimal estimator

Definition: Given $\alpha_n = P(A_n) \to 0$ as $n \to \infty$ we say that Z_n is asymptotically optimal or (weakly) efficient if $\alpha_n = EZ_n$ and

$$\lim_{n \to \infty} \frac{\log EZ_n^2}{\log \alpha_n} = 2.$$
Goal of GISP: Finding an efficient or *asymptotically optimal estimator*

Definition: Given $\alpha_n = P(A_n) \to 0$ as $n \to \infty$ we say that Z_n is *asymptotically optimal* or (weakly) efficient if $\alpha_n = EZ_n$ and

$$\lim_{n \to \infty} \frac{\log EZ_n^2}{\log \alpha_n} = 2.$$

Remark: Need to also consider the computer time to generate Z_n that is typically polynomial in $|\log \alpha_n|$ so doesn’t contribute significantly to complexity.
Agenda

- Introduction: Rare-event Simulation
- **Brownian Motion Avoiding Obstacles**
- Explaining the Strategy
- Conclusions
Recall $T = 1$st time $B(\cdot)$ hits a Poissonian obstacle

$$\begin{align*}
P (T > t) &= E \left(P (T > t | B (s) : 0 \leq s \leq t) \right) \\
&= E \left(P \left(\text{No obstacle in trajectory} | B (\cdot) \right) \right) \\
&= E \exp (-V(t, a)),
\end{align*}$$

where

$$V(t, a) = Vol \left(\bigcup_{0 \leq s \leq t} \text{Square (center} = B(s), \text{vol} = a) \right)$$
By the invariance principle, if \(\tau = t^{d/(d+2)} \) then we have

\[
E \exp (-V(t,a)) = E \exp \left(-\tau V \left(\tau, a\tau^{-1/d} \right) \right)
\]
By the invariance principle, if $\tau = t^{d/(d+2)}$ then we have

$$E \exp(-V(t,a)) = E \exp(-\tau V(\tau, a\tau^{-1/d}))$$

We define and study estimation for

$$\alpha(\tau, \delta) = E_0 \exp(-\tau V(\tau, \delta))$$
By the invariance principle, if $\tau = t^{d/(d+2)}$ then we have

$$E \exp (-V(t,a)) = E \exp \left(-\tau V \left(\tau, a\tau^{-1/d}\right) \right)$$

We define and study estimation for

$$\alpha(\tau, \delta) = E_0 \exp (-\tau V(\tau, \delta))$$

How to obtain a "GISP" here? What does large deviations tell us?
Donsker and Varadhan '75 proved that when $\delta \downarrow 0 \geq a\tau^{-1/d}$ as $\tau \downarrow 0$ (also Bolthausen '90, Sznitman '89) then

$$\frac{1}{\tau} \log \alpha(\tau, \delta) \to -\inf_{f: \int f = 1} \left(\text{vol}(\text{supp}(f)) + \frac{1}{8} \int \frac{\|\nabla f\|^2}{f} \right)$$

$$= -\inf_{G \text{ open}} (\text{vol}(G) + \lambda_G),$$

where $\lambda_G = \text{principal e-value of } \triangle/2$ on $G \to$ discuss optimal path
Conditional description (Schmock $d = 1$, Sznitman $d = 2$, Povel $d > 2$): B. Motion travels $O\left(\tau^{1/d}\right)$ distance to find an optimal center (random even at $\tau^{1/d}$ scales!) and it confines itself inside a ball with optimal radius at spatial scales of $O\left(\tau^{1/d}\right)$.

Brownian motion in 2 dimensions

Picture at scale of order $O(\tau^{1/d})$
Question:
Summary: What is the Problem?

- Question:
 * How to describe a change-of-measure that mimics the conditional distribution close enough to obtain an asymptotically optimal estimator – GISP?
Question:

How to describe a change-of-measure that mimics the conditional distribution close enough to obtain an asymptotically optimal estimator – GISP?

Such change-of-measure must find an optimal ball with the right distribution and do it step-by-step from the Brownian path...
Agenda

- Introduction: Rare-event Simulation
- Brownian Motion Avoiding Obstacles
- **Explaining the Strategy**
- Conclusions
The Strategy

- $\alpha (\tau, \delta) = E_0 \exp (-\tau V (\tau, \delta))$
- Divide the space in cubes of volume

![Diagram showing a grid with a yellow spot indicating an obstacle of area δ.]
We generate a *suitable process* that keeps exploring regions as follows:

Initial “explored” region.
Explored regions are painted pink.
The Strategy

- The distribution of the process adapts according to explored regions (we’ll see how!)
The Strategy

Blanchet (Columbia)
Brownian Motion Avoiding Hard Obstacles

07/08 18 / 34
And one goes on sequentially — now we’ll explain the evolution
Recall the goal: $\alpha(\tau, \delta) = E_0 \exp(-\tau V(\tau, \delta))$
The Strategy

- Recall the goal: $\alpha(\tau, \delta) = E_0 \exp(-\tau V(\tau, \delta))$
- Given total pink region \mathcal{R}_M (say $R_0 \cup R_1 \cup ... \cup R_M$), where M is the region \textit{JUST visited}
Recall the goal: \(\alpha(\tau, \delta) = E_0 \exp(-\tau V(\tau, \delta)) \)

Given total pink region \(R_M \) (say \(R_0 \cup R_1 \cup \ldots \cup R_M \)), where \(M \) is the region \textit{JUST visited}

Want to spend as much as possible in the explored region (which is free of obstacles!)
The Strategy

- Recall the goal: \(\alpha(\tau, \delta) = E_0 \exp(-\tau V(\tau, \delta)) \)
- Given total pink region \(\mathcal{R}_M \) (say \(R_0 \cup R_1 \cup \ldots \cup R_M \)), where \(M \) is the region *JUST visited*
- Want to spend as much as possible in the explored region (which is free of obstacles!)
- Let \(T_M = \inf\{t \geq 0 : B(t) \notin \mathcal{R}_M\} \ldots \)
The Strategy

- Recall the goal: $\alpha(\tau, \delta) = E_0 \exp(-\tau V(\tau, \delta))$
- Given total pink region \mathcal{R}_M (say $R_0 \cup R_1 \cup \ldots \cup R_M$), where M is the region *JUST visited*
- Want to spend as much as possible in the explored region (which is free of obstacles!)
- Let $T_M = \inf\{t \geq 0 : B(t) \notin \mathcal{R}_M\}$...
- Select θ_M such that

 $$E(\exp(\theta_M T_M) | \text{Visited region } \mathcal{R}_M) = \exp(\gamma \varepsilon \tau),$$

 AND γ which will be chosen...
The Strategy

- Implement the strategy sequentially: Given region \mathcal{R}_M sample according to the SDE

$$dX(t) = \nabla \log \nu_{\mathcal{R}_M}(X(t), \theta_M) \, dt + dB(t),$$

where $\nu_{\mathcal{R}_M}(x) = E_x(\exp(\theta_M T_M)|\text{Visited region } \mathcal{R}_M)$ for $x \in \mathcal{R}_M$.
The Strategy

- Implement the strategy sequentially: Given region \mathcal{R}_M sample according to the SDE

$$dX(t) = \nabla \log v_{\mathcal{R}_M}(X(t), \theta_M) \, dt + dB(t),$$

where $v_{\mathcal{R}_M}(x) = E_x(\exp(\theta_M T_M) | \text{Visited region } \mathcal{R}_M)$ for $x \in \mathcal{R}_M$.

- The likelihood ratio

$$L_\tau = \frac{1}{v_{\mathcal{R}_M(\tau)}(B_\tau, \theta_M(\tau))} \exp \left(\gamma \varepsilon \tau M_\tau - \int_0^\tau \theta_M(s) \, ds \right),$$
So, the I.S. estimator is

\[
L_\tau \exp(-\tau V(\tau, \delta)) = \frac{\exp\left(-\tau (V(\tau, \delta) - \gamma \epsilon M_\tau) - \int_0^\tau \theta_M(s) \, ds\right)}{\nu_{R_M(\tau)}(B_\tau, \theta_M(\tau))},
\]

So, the I.S. estimator is

\[L_\tau \exp\left(-\tau V(\tau, \delta)\right) = \frac{\exp\left(-\tau \left(V(\tau, \delta) - \gamma \varepsilon M_\tau\right) - \int_0^\tau \theta_{M(s)} ds\right)}{\nu_{R_{M(\tau)}}(B_\tau, \theta_{M(\tau)})}, \]

\[\nu_{R_{M}}(x, \theta_{M}) = E_x\left(\exp\left(\theta_{M} T_{M}\right) | R_{M}\right) \geq 1 \]
So, the I.S. estimator is

\[L_\tau \exp(-\tau V(\tau, \delta)) \leq \exp\left(-\tau (V(\tau, \delta) - \gamma \varepsilon M_{\tau}) - \int_0^\tau \theta_{M(s)} ds \right), \]

\[v_{R_M}(x, \theta_M) = E_x(\exp(\theta_M T_M) | R_M) \geq 1 \]
So, the I.S. estimator is

$$L_{\tau} \exp(-\tau V(\tau, \delta)) \leq \exp\left(-\tau (V(\tau, \delta) - \gamma \varepsilon M_\tau) - \int_0^\tau \theta_M(s) \, ds\right),$$

1. $v_{\mathcal{R}_M}(x, \theta_M) = E_x(\exp(\theta_M T_M) | \mathcal{R}_M) \geq 1$
2. $P(T_M > x | \mathcal{R}_M) = \exp(-\lambda_{\mathcal{R}_M} x + o(x))$
3. **By the choice of θ_M, we have that** $\theta_M(s) = \lambda_{\mathcal{R}_M(s)} + o(1/\tau)$
So, the I.S. estimator is

\[L_\tau \exp(-\tau V(\tau, \delta)) \leq \exp\left(-\tau (V(\tau, \delta) - \gamma \varepsilon M_\tau) - \int_0^\tau \lambda_{\mathcal{R}_M(s)} ds\right), \]

1. \(\nu_{\mathcal{R}_M}(x, \theta_M) = E_x(\exp(\theta_M T_M)|\mathcal{R}_M) \geq 1 \)
2. \(P(T_M > x|\mathcal{R}_M) = \exp(-\lambda_{\mathcal{R}_M} x + o(x)) \)
3. By the choice of \(\theta_M \), we have that \(\theta_M(s) = \lambda_{\mathcal{R}_M(s)} + o(1/\tau) \)
The Strategy

So, the I.S. estimator is

$$L_\tau \exp \left(-\tau V (\tau, \delta) \right) \leq \exp \left(-\tau \left(V (\tau, \delta) - \gamma \varepsilon M_\tau \right) - \int_0^\tau \lambda R_M(s) \, ds \right),$$

1. \(\nu_{R_M} (x, \theta_M) = E_x (\exp (\theta_M T_M) | R_M) \geq 1 \)
2. \(P (T_M > x | R_M) = \exp (-\lambda R_M x + o(x)) \)
3. By the choice of \(\theta_M \), we have that \(\theta_M(s) = \lambda R_M(s) + o(1/\tau) \)
4. \(\lambda R_M(s) \geq \lambda R_M(\tau) \geq 0 \text{ for } r \geq s \)
So, the I.S. estimator is

\[L_\tau \exp (-\tau V(\tau, \delta)) \leq \exp \left(-\tau \left(V(\tau, \delta) - \gamma \varepsilon M_\tau \right) - \tau \lambda_{R_M(\tau)} \right), \]

1. \(v_{R_M}(x, \theta_M) = E_x(\exp(\theta_M T_M) | R_M) \geq 1 \)
2. \(P(T_M > x | R_M) = \exp(-\lambda_{R_M} x + o(x)) \)
3. By the choice of \(\theta_M \), we have that \(\theta_M(s) = \lambda_{R_M(s)} + o(1/\tau) \)
4. \(\lambda_{R_M(s)} \geq \lambda_{R_M(\tau)} \geq 0 \) for \(r \geq s \)
So, the I.S. estimator is

\[L_\tau \exp \left(-\tau V(\tau, \delta) \right) \leq \exp \left(-\tau (V(\tau, \delta) - \gamma \varepsilon M_\tau) - \tau \lambda_{\mathcal{R}_{M(\tau)}} \right), \]

1. \(v_{\mathcal{R}_M}(x, \theta_M) = E_x(\exp(\theta_M T_M) | \mathcal{R}_M) \geq 1 \)
2. \(P(T_M > x | \mathcal{R}_M) = \exp(-\lambda_{\mathcal{R}_M} x + o(x)) \)
3. By the choice of \(\theta_M \), we have that \(\theta_M(s) = \lambda_{\mathcal{R}_M(s)} + o(1/\tau) \)
4. \(\lambda_{\mathcal{R}_M(s)} \geq \lambda_{\mathcal{R}_M(\tau)} \geq 0 \) for \(r \geq s \)
5. \(\varepsilon M_\tau = \text{Vol}(\mathcal{R}_{M(\tau)}) \leq V(\tau, \delta) \) (for \(\varepsilon \leq \delta/2 \))
The Strategy

So, the I.S. estimator is

\[L_\tau \exp (-\tau V(\tau, \delta)) \leq \exp \left(-\tau \left((1 - \gamma) \text{Vol}(R_{M(\tau)}) + \lambda R_{M(\tau)} \right) \right) \]

1. \(v_{R_M}(x, \theta_M) = E_x \left(\exp (\theta_M T_M) | R_M \right) \geq 1 \)
2. \(P(T_M > x | R_M) = \exp (-\lambda_{R_M} x + o(x)) \)
3. By the choice of \(\theta_M \), we have that \(\theta_M(s) = \lambda_{R_M(s)} + o(1/\tau) \)
4. \(\lambda_{R_M(s)} \geq \lambda_{R_M(\tau)} \geq 0 \) for \(r \geq s \)
5. \(\epsilon M_\tau = \text{Vol}(R_{M(\tau)}) \leq V(\tau, \delta) \). For \(\epsilon \leq \delta/2 \)
The Strategy

- Take $\varepsilon = \delta$ and this takes us to...

$$\text{IS EST}$$

$$\leq \exp \left(-\tau \min_{G: \text{open}} (\text{Vol}(G) (1 - \gamma) + \lambda_G) \right)$$

$$= \exp (\tau O(\gamma)) \exp \left(-\tau \min_{G: \text{open}} (\text{Vol}(G) + \lambda_G) \right)$$
The Strategy

- Take $\varepsilon = \delta$ and this takes us to...

\[
\text{IS EST} \\
\leq \exp \left(-\tau \min_{G: \text{open}} (\text{Vol}(G)(1 - \gamma) + \lambda_G) \right) \\
= \exp(\tau O(\gamma)) \exp \left(-\tau \min_{G: \text{open}} (\text{Vol}(G) + \lambda_G) \right)
\]

- Therefore

\[
E(\text{Estimator}^2) = \alpha(\tau, \delta)^2 \exp(\tau O(\gamma) + o(\tau))
\]

and weak efficiency follows (for $\delta, \gamma \to 0$ sufficiently slow as $\tau \to \infty$)
A path for $\tau = 1000$, using $\gamma = .1$
A path for $\tau = 5000$, using $\gamma = .1$
Agenda

- Introduction: Rare-event Simulation
- Brownian Motion Avoiding Obstacles
- Explaining the Strategy
- Conclusions
Brownian motion avoiding obstacles gives an example where history dependent importance sampling should be performed to achieve efficiency.

Strategy induces confinement \rightarrow particle tries to stay inside explored region, which is obstacle free.

Eventually, explored region is basically a ball with optimal radius and specific distribution center.