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What is the Goal

Present techniques to simulate processes that involve information
from "infinite" future.

Application: Optimal Exact Simulation of Max-stable Fields & Density
Estimation
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Main Application of the Talk: Max-stable Fields

e Example 1: M (-) can be represented as

M (t) = sup{—log (An) + Z, (1)},

n>1

where Z, (-) is Gaussian.
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Main Application of the Talk: Max-stable Fields

e Example 1: M (-) can be represented as

M (t) = sup{—log (An) + Z, (1)},

n>1

where Z, (-) is Gaussian.

e A, = n-th arrival of Poisson process with rate 1 (independent of
Y (+).

@ Brown-Resnick, de Haan, Engelke, Kabluchko, Schlather, Smith,
Penrose...
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Additional Applications

o Example 2: Suppose that S, = A; + ... + A, is a mean-zero
multidimensional random walk

M, = max{Sx — u (k) : k > n},

where (k) grows faster than O (k!/2€) for some € > 0.
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Additional Applications

o Example 2: Suppose that S, = A; + ... + A, is a mean-zero
multidimensional random walk

M, = max{Sx — u (k) : k > n},

where (k) grows faster than O (k!/2€) for some € > 0.

@ Relevant in perfect simulation: My is steady-state workload in a class
of stochastic networks.

@ Propp & Wilson 96, Kendall '98, ...

Blanchet (Columbia) 4 /40



Additional Applications

o Example 3: Stochastic Differential Equations, pick A, =277,

Xo (k1) An) = X (kAn) +b (Xa (kD)) (B ((k+1) Ay) — B (kA,)
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Additional Applications

e Example 3: Stochastic Differential Equations, pick A, = 27",

Xo ((k+1)Ap) = Xo (kAn) + b (X (kAn)) (B((k+1) An) — B (kAn)
@ Let X, (-) be continuous piecewise linear interpolation.
o Given ¢, simulate N (&) such that with probability 1

sup HXN(E) () —X(t)H <e. (1)

0<t<1

o Note that N (¢) is NOT a stopping time adapted to
Fn=0(B (kD) :0< k<20 —1).

e Finding a piecewise linear (or constant) process that satisfies (1) is
Tolerance Enforced Simulation (TES).
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How is TES Related To Exact Estimation?

@ Suppose that Xp,,) () can be obtained for 0 < ¢, — 0.
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How is TES Related To Exact Estimation?

Suppose that Xy, () can be obtained for 0 < ¢, — 0.

Let F () be ANY sample path functional of X ().

Assume for simplicity that F (-) > 0 is Lipschitz in uniform norm.
Let T > 0 have density g () & independent of X (-) & Xy(e,) (*)

E(F (X)) = E/oo/ F(X) > t)dt

_ E/°°I X>t)g(t)dt
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How is TES Related To Unbiased Simulation?

@ Conclusion:

is unbiased estimator of E (F (X)).
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How is TES Related To Unbiased Simulation?

@ Conclusion:

is unbiased estimator of E (F (X)).

@ A lot sample / (F (X) > T) since this 1 or 0 variable (answer "YES"
or "NO").

o Continue increasing n «— n+ 1 until

F(XN(EH)) > T +xe, or

F <XN(€")> < T —xen,

where « is the Lipschitz constant of F ().
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Our General Principle

@ Introduce a sequence of "records breakers".
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Our General Principle

Introduce a sequence of "records breakers".

Records broken only finitely many times.

Locate Record Breakers: YES or NO question ("will there be a next
record?").

@ Relevant future information encoded on finitely many YES or NO
questions.
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Applications Treated in Several Papers

e B. & Chen (2012): TES for Brownian and RBM.
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Applications Treated in Several Papers

B. & Chen (2012): TES for Brownian and RBM.

B. & Wallwater (2014): Exact sampling of max of random walks.
B., Chen, & Dong (2014): TES for SDEs.

B., Fei, and Kella (2015): TES for SDEs driven by Levy.

@ Several other applications...

e Today: B., Dieker, Liu, Mikosch (2015): Exact sampling and
TES for Max-stable Processes.
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Literature Review on Simulation of Max-stable Processes

e Wang & Stoev (2011) Conditional sampling for spectrally discrete
max-stable random fields.
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Literature Review on Simulation of Max-stable Processes

e Wang & Stoev (2011) Conditional sampling for spectrally discrete
max-stable random fields.

e Dombry, Minko & Ribatet (2012) Conditional simulations of
max-stable processes.

@ Oesting, Ribatet & Dombry (2014) Simulation of max-stable
processes.

o Dieker & Mikosch (2014) Exact simulation of Brown Resnick random
fields.
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On Exact Simulation of Brown-Resnick Fields

@ Dieker & Mikosch (2014): IF Z, (-) stationary increments and
Eexp(Z,(t)) =1

M(t,‘)

e = sup

n>1

{ d exp (Z, (ti — T»)) } |

A Y9 exp(Z, (t — Th))

where {T,}, - is i.i.d. uniform on {t1, ..., tg} <- locations in
advance.
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@ Dieker & Mikosch (2014): IF Z, (-) stationary increments and
Eexp(Z,(t)) =1

M(t,‘)

e = sup

n>1

{d' exp (Zo (t: = T)) }
A Yi_1exp(Zy (tk = To)) |

where {T,}, - is i.i.d. uniform on {t1, ..., tg} <- locations in
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On Exact Simulation of Brown-Resnick Fields

@ Dieker & Mikosch (2014): IF Z, (-) stationary increments and
Eexp(Z,(t)) =1

M(t,‘)

e = sup

n>1

{ d exp (Z, (ti — T»)) } |

A Y9 exp(Z, (t — Th))

where {T,}, - is i.i.d. uniform on {t1, ..., tg} <- locations in
advance.

@ Representation implies an exact sampler.

e Complexity O (d) points of Y, (-) for each t;.

e Complexity O (d x C(d)) where C (d) = Complexity of
sampling (Y, (t1),..., Y (tq)).
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Intrinsic Complexity of Exact Sampling on Compact

Domains

Is sampling M (t1),..., M (ty) basically as "easy" as sampling
4l (1.'1) 4 (l’d)?

Answer: Yes! This is what we mean by optimality (total complexity

0(C(d)))

Our goal next is to explain how & use it for density estimation...
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Tolerance Enforced Simulation

e TES = Tolerance Enforced Simulation or ¢-Strong simulation

Blanchet (Columbia) 13 / 40



Tolerance Enforced Simulation

e TES = Tolerance Enforced Simulation or ¢-Strong simulation
@ Given ¢ > 0 (deterministic & user defined) & K any given set

sup |M, (t) — M ()| < e

tek

with probability one (note that K can be uncountable).
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Tolerance Enforced Simulation

e TES = Tolerance Enforced Simulation or ¢-Strong simulation
@ Given ¢ > 0 (deterministic & user defined) & K any given set

sup |M, (t) — M ()| < e

tek

with probability one (note that K can be uncountable).
o Concept introduced in B. & Chen (2012).

@ See also: e-strong simulation G. Roberts, Beskos, Peluchetti, Murray,
Pollock, Johansen...
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Example of TES: Brownian Motion

@ Consider Brownian Motion
Zy(t) =Y AmAm () Wn (n).
m=0

where W,, (n)'s are i.i.d. N(0,1) and A,, = 2-0U*+1/2 assuming
m=2"14+k>1 k=0,1,...,2 1 —1and Ag = 1.
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Example of TES: Brownian Motion

@ Consider Brownian Motion
Zy(t) =Y AmAm () Wn (n).
m=0

where W,, (n)'s are i.i.d. N(0,1) and A,, = 2-0U*+1/2 assuming
m=2"14+k>1 k=0,1,...,2 1 —1and Ag = 1.
e Also, Ag (t) =t

A (t)=(1/2—|t—1/2|)I(t €[0,1]),

and A, (t) are translations and dilations of A; (t) along dyadic
points...
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Wavelet Decomposition
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Wavelet Decomposition
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Wavelet Decomposition
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Tolerance Enforced Simulation: B. and Chen (2012)

e Pick r (j) = py/log(j + 3) for some p > 4.
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Tolerance Enforced Simulation: B. and Chen (2012)

e Pick r (j) = py/log(j + 3) for some p > 4.

By Borel-Cantelli P(|W;| > r(j) i.0. ) = 0.

Record breakers: Ry, = min{j > Rp—1: |W;| > r(j)}; Ro = —1
Get N = max{ Rk : Ry < o0} <-— last record breaker.

m(e) =2/ > N+1/¢e? > 1/e? <— after last record breaker.

pURENCITVEEES v eNCHD

n=m(e)
0o 21

= Y r()2 U Y A (1)
Jj=J k=0

p(j+3)1227UT/2 < 5pe, flog (1/¢).

Il
e

.
Il
o
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Wavelet Approach to TES for Brownian Motion: Summary

e SIMULATE W;'s jointly with times
Rm = min{n > Rn_1: |W;| > r(j)}; Ro = —1 (PENDING)
o Get N = max{Ry : Rx < oo} (last record breaker).

We obtain 5pe+/log (1/¢€) guaranteed uniform error with
O(E (N+1/€?)) = O (1/€*) complexity (optimal).

Blanchet (Columbia) 19 / 40



Simulation of the Crucial Quantities

o Consider Ry = min{n>1:|W;| > r(j)} and let p; = P (R; = o0).
How to sample Ber (p1)?

m
p1 < P(R1>m:: P|W|<r ))
=1

n

pp = U(m)- H P(IW;| < r(j))

n=m+1
D (m) = U (m) x (1—(m+1)17F"/2)

v
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pp = U(m)- H P(IW;| < r(j))
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Simulation of the Crucial Quantities

o Consider Ry = min{n>1:|W;| > r(j)} and let p; = P (R; = o0).
How to sample Ber (p1)?

m
p1 < P(R1>m:: P|W|<r ))
=1

n

pp = U(m)- H P(IW;| < r(j))

n=m+1
> D(m)=U(m)x (1— (m+1)¢/)

o Let V ~ U (0,1) and decide V < p; using "loop" m «— m+ 1:
Eventually finish when

V>U(m)>p or V<D(m)<p

@ Since
P(Ri=m)=U(m—-1)—U(m),
if V> U(m)and D(m) <V < U(m—1), then Ry = m.
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Locating Record Breaker IF IT Ever Happens

Aol
;
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Locating Record Breaker IF IT Ever Happens

| | . | |
0o D@ b2 U(2) 1
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Locating Record Breaker IF IT Ever Happens

N L .| | |
o D@DB) p UG UQ 1
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Locating Record Breaker IF IT Ever Happens

R,=4

| I I B | |

0o DR)DGBPM@Mp  UB) UR) 1
U4)
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Summary: TES for Brownian Motion

Algorithm: Output m (¢) jointly with W,'s

Step 0: Set, e, p =4, G=2[e?], R =].

Step 1: Set U =1, D = 0. Simulate V ~ U(0,1).

Step 2: While U > V > D, set G +— G +1,

U— P(|Wi| < py/log G) % U and D — (1 — G1F*/2)U.

Step 3: If V< D, R = [R, G| and return to Step 1.

Step4: If V>Um(e) =G, R=[R,G]

Step 5: If j € S, Wj has law (W | |[W| > py/log (n)) (else given

(W[ < py/log (n)).

Theorem (B. & Chen '12)

The algorithm outputs a wavelet approximation with guaranteed € error
(with probability one) in uniform norm with complexity O (8_2 Iog(l/s)).
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Comments

@ Technique generally applicable to
Z(t)= ) Ya(t)
n=1
if Yy, (+) are independent, fully simulatable, and

P (max Y2 (0] > r () io.) =
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Comments

@ Technique generally applicable to

Z(t)=)_ Ya(t)
n=1
if Yy, (+) are independent, fully simulatable, and

P (max Y2 (0] > r () io.) =

@ Levy processes, fractional Brownian motion, ...
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Another Application of Record-Breaker Technique

@ Consider random walk, say T; > 0, are i.i.d.

S, = T1+..+7T,— nv,
S = 0 & E(S,,)<0.
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Another Application of Record-Breaker Technique

@ Consider random walk, say T; > 0, are i.i.d.

S, = T1+..+7T,— nv,
S = 0 & E(S,,)<0.
@ Goal: Sample
M, = max{Sx : k > n}.
@ Record breakers = ascending ladder heights.
@ Top:=0andfor k >1

R, =

inf{n > Ty: S5, — STk > 0},
T, =

inf{n > Rk_1 : Sp — Sg,_, < 0}.

Blanchet (Columbia)

27 / 40



Locating Record Breaker IF IT Ever Happens

@ Suppose that Cramer root exists 6° > 0

Eexp(6*S,) = 1.
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Locating Record Breaker IF IT Ever Happens

@ Suppose that Cramer root exists 6° > 0
Eexp(6*S,) = 1.
@ Standard change of measure trick:

P(Ri <o) = Epexp(—0"Sg,)
= Py (V <exp(—0"Sg,)),

where V' is U (0,1) independent of Sg, > 0.
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Locating Record Breaker IF IT Ever Happens

@ Suppose that Cramer root exists 6° > 0
Eexp(6*S,) = 1.
@ Standard change of measure trick:

P(Ri <o) = Epexp(—0"Sg,)
= Py (V <exp(—0"Sg,)),

where V' is U (0,1) independent of Sg, > 0.

@ Conclusion: We CAN answer YES or NO to "will there be a
record breaker?" (Keep in mind that Ey-S, > 0).
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Locating Record Breaker IF IT Ever Happens

@ Moreover, for each f () bounded

E(f(R1,S1,...5g,) |R1 < o0)
Eg (f (R1, S1,.... Sr,) exp (=67 Sg,))
P(Rl < OO)
Ey- (f(Rl. S1,..0Sr) (V< exp(—G*SRl)))
P(V <exp(—0"Sg,)) :
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Locating Record Breaker IF IT Ever Happens

@ Moreover, for each f () bounded

E(f(R1,S1,...5g,) |R1 < o0)

Eg (f (R1, S1,.... Sr,) exp (=67 Sg,))
P(Rl < OO)

Eg- (f (R1,S1,....Sr,) I (V < exp(—07Sg,)))
P(V <exp(—0"Sg,)) '

@ So, IF V < exp(—0"Sg,) (i.e. R < oo => YES there is Record
Breaker) AND S, ..., Sg, from Py_follows the law of S, ..., Sg,
given R; < oo,
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Another Application of Record Breakers

In both examples, answer to "Will there be a Record Breaker?" also
gives the actual location of the Record Breaker (two birds with one
stone!)

Blanchet (Columbia)



Application to Max-Stable Processes

@ Split in two independent pieces: For any kK > 1

max(—tog (1) = 1og (n) + 2, (1))

IN

max{~log (i) } + max{—log (n) + Zy ()}
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Application to Max-Stable Processes

@ Split in two independent pieces: For any kK > 1
max{— log (22 ) — log (n) + Z, (£)}
— — ) = n n )
et OB\ T ) T8
< max{—log (7)) + max{~ log (n) + Z, (1)}
< mal-tog (7)) + mapd—log () + 20 (1))

e Contribution of A, easily handled (B. & Sigman (2011)).
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Application to Max-Stable Processes

@ Split in two independent pieces: For any kK > 1
max{— log (22 ) — log (n) + Z, (£)}
el log (%) ~loB (m) + 20 (9}
< max{~log (27 )} + max{ ~log (n) + Z, (1)}
< mad-toa (7)) el tew(m) 2, (1)
e Contribution of A, easily handled (B. & Sigman (2011)).

e Contribution of Z, (-) can be done using two approaches: TES &
direct record breaking analysis.
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Application to Max-Stable Processes

e Exact simulation (& TES) for
max{—log (n) + Z, (t)} V max{—log (n) + Z ()}

can be done as we now explain.
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Application to Max-Stable Processes

e Exact simulation (& TES) for

max{—log (n) + Zy (t)} V max{—log (n) + Z\ (1)}

can be done as we now explain.
e CRUCIAL: For compact C

sup max{ log (n) + Z, (t)} = O (—log (k)) — —oo.

teC n=k
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Application to Max-Stable Processes

o Recall that Z, (t) = Ym—g AmAm (t) Wy, (n)
ZP(|W |>p|0g1/2(m+1)+p|og1/2(n+1)>

2
(Iogl/2 (m+1) +log?? (n+ 1))
2
CY exp|—p 5

IN

IN

CZexp( 2 (log (m+1)) )Zexp( % (log (n +1))).
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o Recall that Z, (t) = Ym—g AmAm (t) Wy, (n)
ZP(|W |>p|0g1/2(m+1)+p|og1/2(n+1)>

2
(Iog;l/2 (m+1) +log?? (n+ 1))
2

< C Z exp
m,n

< CZexp( 2 (log (m+1)) )Zexp( % (log (n +1))).

@ Thus a pair (m, n) such that
| Wi (n)| > plog!/? (m +1) + plog!/? (n+1)

is valid record breaker & finitely many of them.
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Application to Max-Stable Processes

o Recall that Z, (t) = Ym—g AmAm (t) Wy, (n)
ZP(|W |>p|0g1/2(m+1)+p|og1/2(n+1)>

2
(Iog;l/2 (m+1) +log?? (n+ 1))
< CY exp | —p? 5

< CZexp( 2 (log (m+1)) )Zexp( % (log (n +1))).

@ Thus a pair (m, n) such that
| Wi (n)| > plog!/? (m +1) + plog!/? (n+1)

is valid record breaker & finitely many of them.

@ Use any convenient linear order of (m, n) (say lexicographic) to find
them.
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Application to Max-Stable Processes

e We conclude if (m, n) is last record breaker

Zo(O] < Y AmAn (£) W ()

m>m
<) Amplogt?(m) +log'2 (n) Y Amp.
m>m, m>m,
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Application to Max-Stable Processes

e We conclude if (m, n) is last record breaker

Zo(O] < Y AmAn (£) W ()

m>m
<) Amplogt?(m) +log'2 (n) Y Amp.
m>my m>my

@ Simply choose n large enough so that

log/? (n) i Amp < —log (n).

m>my
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Application to Max-Stable Processes

Theorem (B., Dieker, Liu, Mikosch '15)

Algorithm outputs a wavelet approximation with guaranteed € error (with
probability one) in uniform norm with complexity O (¢~2 log(1/¢)).

@ Applicable to fractional Brownian sheet (Dzhaparidze & van Zanten
'05).
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Application to Max-Stable Processes

Theorem (B., Dieker, Liu, Mikosch '15)

Algorithm outputs a wavelet approximation with guaranteed € error (with
probability one) in uniform norm with complexity O (¢~2 log(1/¢)).

@ Applicable to fractional Brownian sheet (Dzhaparidze & van Zanten
'05).

@ But what if we don't have the wavelet expansion?
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Application to Max-Stable Processes

Theorem (B., Dieker, Liu, Mikosch '15)

Suppose the following:

1) Sampling Z, (t1) , ..., Z, (tq) with cost C (d).
2) Z, () is Holder continuous.
3) Can sample Z, (t1), ..., Zy (ty—1) | Z, (ts) = z with cost C (d).
4) {t1,....,tq} C C compact.
Then, can sample
M (tl) M (td)

with complexity O <C (d)HE) for any € > 0.
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Application to Max-Stable Processes

o Key ideas in proof of previous theorem are as follows.
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Application to Max-Stable Processes

o Key ideas in proof of previous theorem are as follows.

@ Define a record breaker at n if

{maxZ, (&) > log (n)}.
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Application to Max-Stable Processes

o Key ideas in proof of previous theorem are as follows.

@ Define a record breaker at n if
{max Z, (1;) > log (n)}.
@ Use algorithm by Adler, B., and Liu (2012) to optimally estimate
P(max{Z, (t1),..... Z, (tq)} > log (n))
and sample
{max(Z, (t1),..... Zy (t4)) > log (n)}

uniformly in d and n.
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Combining with Malliavin Calculus for Max-Stable
Processes

Theorem (B., Dieker, Liu, Mikosch '15)

Let N be the last record breaker for the Gaussian processes, then the
density of M := (M (t1), ..., M (t4)) evaluated at y = (y1,...yq) satisfies

p (1, ¥d)

d N

= E (Z Gi(y—M)), C,.,—lz,,> :
i=1 n=1

where C is the covariance matrix of Z, := (Z, (t1) , ..., Z, (t4)) and

Zn (t,') =2, (t,') —E (Zn (t,')), and

5%
dl
%11

G,' (X1, ...,Xd) = K4

for an explicit constant .

V.
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Conclusions

@ Presented general techniques for exact simulation which are broadly
applicable (e.g. perfect simulation, maxima of multidimensional
random walks, SDEs, Levy processes, etc.)
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Conclusions

@ Presented general techniques for exact simulation which are broadly
applicable (e.g. perfect simulation, maxima of multidimensional
random walks, SDEs, Levy processes, etc.)

@ Presented Optimal Exact Simulation & Tolerance Enforced
Simulation (i.e. € error in path space with probability 100% certainty)
for max-stable fields.

@ Presented unbiased Malliavin estimator for joint densities of
max-stable processes.

o Key idea: define a sequence of finitely many record breakers & locate
them with 0 - 1 questions (Bernoulli sampling).
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Picture of a Max-Stable Gaussian Process

Blanchet (Columbia) 40 / 40



	What is this Talk About?
	Simulation of Max-stable Processes: Review
	Intrinsic Complexity of Max-stable Processes
	Applications of Record Breaking to Tolerance Enforced Simulation
	Applications of Record Breaking to Exact Simulation of Infinite Maxima
	Application to Max-Stable Processes
	Conclusions

