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What is the Goal

Present techniques to simulate processes that involve information
from "infinite" future.

Application: Optimal Exact Simulation of Max-stable Fields & Density
Estimation
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Main Application of the Talk: Max-stable Fields

Example 1: M (·) can be represented as

M (t) = sup
n≥1
{− log (An) + Zn (t)},

where Zn (·) is Gaussian.

An = n-th arrival of Poisson process with rate 1 (independent of
Yn (·)).
Brown-Resnick, de Haan, Engelke, Kabluchko, Schlather, Smith,
Penrose...
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Additional Applications

Example 2: Suppose that Sn = ∆1 + ...+ ∆n is a mean-zero
multidimensional random walk

Mn = max{Sk − µ (k) : k ≥ n},

where µ (k) grows faster than O
(
k1/2+ε

)
for some ε > 0.

Relevant in perfect simulation: M0 is steady-state workload in a class
of stochastic networks.

Propp & Wilson ’96, Kendall ’98,...
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Additional Applications

Example 3: Stochastic Differential Equations, pick ∆n = 2−n,

Xn ((k + 1)∆n) = Xn (k∆n)+b (Xn (k∆n)) (B ((k + 1)∆n)− B (k∆n))

Let Xn (·) be continuous piecewise linear interpolation.
Given ε, simulate N (ε) such that with probability 1

sup
0≤t≤1

∥∥∥XN (ε) (t)− X (t)∥∥∥ ≤ ε. (1)

Note that N (ε) is NOT a stopping time adapted to
Fn = σ (B (k∆n) : 0 ≤ k ≤ 2n − 1).
Finding a piecewise linear (or constant) process that satisfies (1) is
Tolerance Enforced Simulation (TES).

Blanchet (Columbia) 5 / 40



Additional Applications

Example 3: Stochastic Differential Equations, pick ∆n = 2−n,

Xn ((k + 1)∆n) = Xn (k∆n)+b (Xn (k∆n)) (B ((k + 1)∆n)− B (k∆n))

Let Xn (·) be continuous piecewise linear interpolation.

Given ε, simulate N (ε) such that with probability 1

sup
0≤t≤1

∥∥∥XN (ε) (t)− X (t)∥∥∥ ≤ ε. (1)

Note that N (ε) is NOT a stopping time adapted to
Fn = σ (B (k∆n) : 0 ≤ k ≤ 2n − 1).
Finding a piecewise linear (or constant) process that satisfies (1) is
Tolerance Enforced Simulation (TES).

Blanchet (Columbia) 5 / 40



Additional Applications

Example 3: Stochastic Differential Equations, pick ∆n = 2−n,

Xn ((k + 1)∆n) = Xn (k∆n)+b (Xn (k∆n)) (B ((k + 1)∆n)− B (k∆n))

Let Xn (·) be continuous piecewise linear interpolation.
Given ε, simulate N (ε) such that with probability 1

sup
0≤t≤1

∥∥∥XN (ε) (t)− X (t)∥∥∥ ≤ ε. (1)

Note that N (ε) is NOT a stopping time adapted to
Fn = σ (B (k∆n) : 0 ≤ k ≤ 2n − 1).
Finding a piecewise linear (or constant) process that satisfies (1) is
Tolerance Enforced Simulation (TES).

Blanchet (Columbia) 5 / 40



Additional Applications

Example 3: Stochastic Differential Equations, pick ∆n = 2−n,

Xn ((k + 1)∆n) = Xn (k∆n)+b (Xn (k∆n)) (B ((k + 1)∆n)− B (k∆n))

Let Xn (·) be continuous piecewise linear interpolation.
Given ε, simulate N (ε) such that with probability 1

sup
0≤t≤1

∥∥∥XN (ε) (t)− X (t)∥∥∥ ≤ ε. (1)

Note that N (ε) is NOT a stopping time adapted to
Fn = σ (B (k∆n) : 0 ≤ k ≤ 2n − 1).

Finding a piecewise linear (or constant) process that satisfies (1) is
Tolerance Enforced Simulation (TES).

Blanchet (Columbia) 5 / 40



Additional Applications

Example 3: Stochastic Differential Equations, pick ∆n = 2−n,

Xn ((k + 1)∆n) = Xn (k∆n)+b (Xn (k∆n)) (B ((k + 1)∆n)− B (k∆n))

Let Xn (·) be continuous piecewise linear interpolation.
Given ε, simulate N (ε) such that with probability 1

sup
0≤t≤1

∥∥∥XN (ε) (t)− X (t)∥∥∥ ≤ ε. (1)

Note that N (ε) is NOT a stopping time adapted to
Fn = σ (B (k∆n) : 0 ≤ k ≤ 2n − 1).
Finding a piecewise linear (or constant) process that satisfies (1) is
Tolerance Enforced Simulation (TES).

Blanchet (Columbia) 5 / 40



How is TES Related To Exact Estimation?

Suppose that XN (εn) (·) can be obtained for 0 < εn → 0.

Let F (·) be ANY sample path functional of X (·).
Assume for simplicity that F (·) ≥ 0 is Lipschitz in uniform norm.

Let T > 0 have density g (·) & independent of X (·) & XN (εn) (·)

E (F (X )) = E
∫ ∞

0
I (F (X ) > t) dt

= E
∫ ∞

0

I (F (X ) > t)
g (t)

g (t) dt

= E
(
I (F (X ) > T )

g (T )

)
.
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How is TES Related To Unbiased Simulation?

Conclusion:
Z =

I (F (X ) > T )
g (T )

is unbiased estimator of E (F (X )).

A lot sample I (F (X ) > T ) since this 1 or 0 variable (answer "YES"
or "NO").

Continue increasing n←− n+ 1 until

F
(
XN (εn)

)
> T + κεn or

F
(
XN (εn)

)
< T − κεn,

where κ is the Lipschitz constant of F (·).
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Our General Principle

Introduce a sequence of "records breakers".

Records broken only finitely many times.

Locate Record Breakers: YES or NO question ("will there be a next
record?").

Relevant future information encoded on finitely many YES or NO
questions.
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Applications Treated in Several Papers

B. & Chen (2012): TES for Brownian and RBM.

B. & Wallwater (2014): Exact sampling of max of random walks.

B., Chen, & Dong (2014): TES for SDEs.

B., Fei, and Kella (2015): TES for SDEs driven by Levy.

Several other applications...

Today: B., Dieker, Liu, Mikosch (2015): Exact sampling and
TES for Max-stable Processes.
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Literature Review on Simulation of Max-stable Processes

Wang & Stoev (2011) Conditional sampling for spectrally discrete
max-stable random fields.

Dombry, Minko & Ribatet (2012) Conditional simulations of
max-stable processes.

Oesting, Ribatet & Dombry (2014) Simulation of max-stable
processes.

Dieker & Mikosch (2014) Exact simulation of Brown Resnick random
fields.
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On Exact Simulation of Brown-Resnick Fields

Dieker & Mikosch (2014): IF Zn (·) stationary increments and
E exp (Zn (t)) = 1

eM (ti ) = sup
n≥1

{
d
An
· exp (Zn (ti − Tn))

∑d
k=1 exp (Zn (tk − Tn))

}
,

where {Tn}n≥1 is i.i.d. uniform on {t1, ..., td} <— locations in
advance.

Representation implies an exact sampler.

Complexity O (d) points of Yn (·) for each ti .
Complexity O (d × C (d)) where C (d) = Complexity of
sampling (Yn (t1),...,Yn (td )).
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Intrinsic Complexity of Exact Sampling on Compact
Domains

Is sampling M (t1) , ...,M (td ) basically as "easy" as sampling
Z1 (t1) , ...,Z1 (td )?

Answer: Yes! This is what we mean by optimality (total complexity
O (C (d)))

Our goal next is to explain how & use it for density estimation...
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Tolerance Enforced Simulation

TES = Tolerance Enforced Simulation or ε-Strong simulation

Given ε > 0 (deterministic & user defined) & K any given set

sup
t∈K
|Mε (t)−M (t)| ≤ ε

with probability one (note that K can be uncountable).
Concept introduced in B. & Chen (2012).

See also: ε-strong simulation G. Roberts, Beskos, Peluchetti, Murray,
Pollock, Johansen...
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Example of TES: Brownian Motion

Consider Brownian Motion

Zn (t) =
∞

∑
m=0

λmΛm (t)Wm (n) .

where Wm (n)’s are i.i.d. N (0, 1) and λm = 2−(j+1)/2 assuming
m = 2j−1 + k ≥ 1, k = 0, 1, ..., 2j−1 − 1 and λ0 = 1.

Also, Λ0 (t) = t

Λ1 (t) = (1/2− |t − 1/2|) I (t ∈ [0, 1]) ,

and Λn (t) are translations and dilations of Λ1 (t) along dyadic
points...
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Wavelet Decomposition
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Tolerance Enforced Simulation: B. and Chen (2012)

Pick r (j) = ρ
√
log(j + 3) for some ρ ≥ 4.

By Borel-Cantelli P(|Wj | > r (j) i.o. ) = 0.

Record breakers: Rm = min{j > Rm−1 : |Wj | > r (j)}; R0 = −1
Get N = max{Rk : Rk < ∞} <— last record breaker.
m (ε) = 2J ≥ N + 1/ε2 ≥ 1/ε2 <— after last record breaker.

∞

∑
n=m(ε)

λjΛj (t) |Wj | ≤
∞

∑
n=m(ε)

λjΛj (t) r (j)

=
∞

∑
j=J

r (j) 2−(j+1)/2
2j−1
∑
k=0

Λ2j+k (t)

=
∞

∑
j=J

ρ (j + 3)1/2 2−(j+1)/2 ≤ 5ρε
√
log (1/ε).
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Pick r (j) = ρ
√
log(j + 3) for some ρ ≥ 4.

By Borel-Cantelli P(|Wj | > r (j) i.o. ) = 0.

Record breakers: Rm = min{j > Rm−1 : |Wj | > r (j)}; R0 = −1
Get N = max{Rk : Rk < ∞} <— last record breaker.
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Wavelet Approach to TES for Brownian Motion: Summary

SIMULATE Wj’s jointly with times
Rm = min{n > Rm−1 : |Wj | > r (j)}; R0 = −1 (PENDING)
Get N = max{Rk : Rk < ∞} (last record breaker).

We obtain 5ρε
√
log (1/ε) guaranteed uniform error with

O(E
(
N + 1/ε2

)
) = O

(
1/ε2

)
complexity (optimal).
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Simulation of the Crucial Quantities

Consider R1 = min{n ≥ 1 : |Wj | > r (j)} and let p1 = P (R1 = ∞).
How to sample Ber (p1)?

p1 ≤ P (R1 > m) := U (m) =
m

∏
n=1

P (|Wj | ≤ r (j))

p1 = U (m) ·
∞

∏
n=m+1

P(|Wj | ≤ r (j))

≥ D (m) = U (m)× (1− (m+ 1)1−ρ2/2)

Let V ∼ U (0, 1) and decide V < p1 using "loop" m←− m+ 1:
Eventually finish when

V > U (m) > p1 or V < D (m) < p1

Since
P (R1 = m) = U (m− 1)− U (m) ,

if V > U (m) and D (m) < V < U (m− 1), then R1 = m.
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Locating Record Breaker IF IT Ever Happens
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Summary: TES for Brownian Motion

Algorithm: Output m (ε) jointly with Wn’s
Step 0: Set, ε, ρ = 4, G = 2

⌈
ε−2
⌉
, R = [].

Step 1: Set U = 1, D = 0. Simulate V ∼ U(0, 1).
Step 2: While U > V > D, set G ← G + 1,
U ← P(|W1| ≤ ρ

√
logG ) ∗ U and D ← (1− G 1−ρ2/2)U.

Step 3: If V ≤ D, R = [R,G ] and return to Step 1.
Step 4: If V > U, m (ε) = G , R = [R,G ].
Step 5: If j ∈ S , Wj has law (W | |W | > ρ

√
log (n)) (else given

|W | ≤ ρ
√
log (n)).

Theorem (B. & Chen ’12)
The algorithm outputs a wavelet approximation with guaranteed ε error
(with probability one) in uniform norm with complexity O

(
ε−2 log(1/ε)

)
.

Blanchet (Columbia) 25 / 40



Comments

Technique generally applicable to

Z (t) =
∞

∑
n=1

Yn (t)

if Yn (·) are independent, fully simulatable, and

P
(
max
0≤t≤1

|Yn (t)| > r (n) i.o.
)
= 0.

Levy processes, fractional Brownian motion, ...
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Another Application of Record-Breaker Technique

Consider random walk, say τi > 0, are i.i.d.

Sn = τ1 + ...+ τn − nv ,
S0 = 0, & E (Sn) < 0.

Goal: Sample
Mn = max{Sk : k ≥ n}.

Record breakers = ascending ladder heights.

T0 := 0 and for k ≥ 1

Rk = inf{n ≥ Tk : Sn − STk > 0},
Tk = inf{n ≥ Rk−1 : Sn − SRk−1 ≤ 0}.
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Locating Record Breaker IF IT Ever Happens

Suppose that Cramer root exists θ∗ > 0

E exp (θ∗Sn) = 1.

Standard change of measure trick:

P (R1 < ∞) = Eθ∗ exp (−θ∗SR1)

= Pθ∗ (V < exp (−θ∗SR1)) ,

where V is U (0, 1) independent of SR1 > 0.

Conclusion: We CAN answer YES or NO to "will there be a
record breaker?" (Keep in mind that Eθ∗Sn > 0).
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Locating Record Breaker IF IT Ever Happens

Moreover, for each f (·) bounded

E (f (R1, S1, ...SR1) |R1 < ∞)

=
Eθ∗ (f (R1, S1, ...,SR1) exp (−θ∗SR1))

P (R1 < ∞)

=
Eθ∗ (f (R1, S1, ...,SR1) I (V ≤ exp (−θ∗SR1)))

P (V ≤ exp (−θ∗SR1))
.

So, IF V ≤ exp (−θ∗SR1) (i.e. R1 < ∞ =⇒ YES there is Record
Breaker) AND S1, ...,SR1 from Pθ∗ follows the law of S1, ...,SR1
given R1 < ∞.
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Another Application of Record Breakers

In both examples, answer to "Will there be a Record Breaker?" also
gives the actual location of the Record Breaker (two birds with one

stone!)
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Application to Max-Stable Processes

Split in two independent pieces: For any k ≥ 1

max
n≤k
{− log

(
An
n

)
− log (n) + Zn (t)}.

≤ max
n≤k
{− log

(
An
n

)
}+max

n≤k
{− log (n) + Zn (t)}.

Contribution of An easily handled (B. & Sigman (2011)).

Contribution of Zn (·) can be done using two approaches: TES &
direct record breaking analysis.
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Application to Max-Stable Processes

Exact simulation (& TES) for

max
n≤k
{− log (n) + Zn (t)} ∨max

n≥k
{− log (n) + Zn (t)}

can be done as we now explain.

CRUCIAL: For compact C

sup
t∈C

max
n≥k
{− log (n) + Zn (t)} = O (− log (k))→ −∞.
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Application to Max-Stable Processes

Recall that Zn (t) = ∑∞
m=0 λmΛm (t)Wm (n)

∑
m,n
P
(
|Wm (n)| > ρ log1/2 (m+ 1) + ρ log1/2 (n+ 1)

)

≤ C ∑
m,n
exp

−ρ2

(
log1/2 (m+ 1) + log1/2 (n+ 1)

)2
2


≤ C ∑

m
exp

(
−ρ2 (log (m+ 1))

)
∑
n
exp

(
−ρ2 (log (n+ 1))

)
.

Thus a pair (m, n) such that

|Wm (n)| > ρ log1/2 (m+ 1) + ρ log1/2 (n+ 1)

is valid record breaker & finitely many of them.
Use any convenient linear order of (m, n) (say lexicographic) to find
them.
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Application to Max-Stable Processes

We conclude if (m,n) is last record breaker

|Zn (t)| ≤
∞

∑
m>m

λmΛm (t) |Wm (n)|

≤
∞

∑
m>m∗

λmρ log1/2 (m) + log1/2 (n)
∞

∑
m>m∗

λmρ.

Simply choose n large enough so that

log1/2 (n)
∞

∑
m>m∗

λmρ < − log (n) .
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Application to Max-Stable Processes

Theorem (B., Dieker, Liu, Mikosch ’15)

Algorithm outputs a wavelet approximation with guaranteed ε error (with
probability one) in uniform norm with complexity O

(
ε−2 log(1/ε)

)
.

Applicable to fractional Brownian sheet (Dzhaparidze & van Zanten
’05).

But what if we don’t have the wavelet expansion?
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Application to Max-Stable Processes

Theorem (B., Dieker, Liu, Mikosch ’15)
Suppose the following:

1) Sampling Zn (t1) , ...,Zn (td ) with cost C (d).
2) Zn (·) is Hölder continuous.
3) Can sample Zn (t1) , ...,Zn (td−1) | Zn (td ) = z with cost C (d).
4) {t1, ..., td} ⊂ C compact.
Then, can sample

M (t1) , ...,M (td )

with complexity O
(
C (d)1+ε

)
for any ε > 0.
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Application to Max-Stable Processes

Key ideas in proof of previous theorem are as follows.

Define a record breaker at n if

{ d
max
i=1

Zn (ti ) > log (n)}.

Use algorithm by Adler, B., and Liu (2012) to optimally estimate

P(max{Zn (t1) , ....,Zn (td )} > log (n))

and sample

{max(Zn (t1) , ....,Zn (td )) > log (n)}

uniformly in d and n.
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Combining with Malliavin Calculus for Max-Stable
Processes

Theorem (B., Dieker, Liu, Mikosch ’15)
Let N be the last record breaker for the Gaussian processes, then the
density of M := (M (t1) , ...,M (td )) evaluated at y = (y1, ...yd ) satisfies

p (y1, ..., yd )

= E

(
d

∑
i=1
Gi (y −M)

N

∑
n=1

C−1i · Z̄n

)
,

where C is the covariance matrix of Zn := (Zn (t1) , ...,Zn (td )) and
Z̄n (ti ) = Zn (ti )− E (Zn (ti )), and

Gi (x1, ..., xd ) = κd
xi
‖x‖d2

,

for an explicit constant κd .

Remark: Density estimator implies unbiased estimator for conditional
densities — see Blanchet & Glynn (2015).
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Conclusions

Presented general techniques for exact simulation which are broadly
applicable (e.g. perfect simulation, maxima of multidimensional
random walks, SDEs, Levy processes, etc.)

Presented Optimal Exact Simulation & Tolerance Enforced
Simulation (i.e. ε error in path space with probability 100% certainty)
for max-stable fields.

Presented unbiased Malliavin estimator for joint densities of
max-stable processes.

Key idea: define a sequence of finitely many record breakers & locate
them with 0 - 1 questions (Bernoulli sampling).
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Picture of a Max-Stable Gaussian Process
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