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What is our Goal?

Our goal is to enable efficient Monte Carlo of extreme events in
space...

Our focus here is on Max-stable Fields.
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Elements of Extreme Value Analysis

@ A little story... Gumbel.
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Elements of Extreme Value Analysis

@ A little story... Gumbel.

o Textbook Example: Given storm surges observed over the last 100
yrs in NYC, what's the maximum height of a storm surge which gets
exceeded only about once in 1000 yrs?

@ Answer: One must extrapolate...
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Extreme Value Theory (EVT): The IID case

Theorem (Fisher-Tippet-Gnedenko)

Suppose Xi, ..., X, is an 11D sequence and define Z, = max{Xi, ..., X, }. If
there exists {(a,, by)},-, deterministic numbers such that

D
Zy = bpM + ay,

then M must be a max-stable distribution.
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Max-stable Distributions

@ A max-stable r.v. M is characterized by the fact that if
My, My, ..., M, are i.i.d. copies of M then
D n

max (M; — a,) / by.

M
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Max-stable Distributions

@ A max-stable r.v. M is characterized by the fact that if
My, My, ..., M, are i.i.d. copies of M then
D n

max (M; — a,) / by.

M

o We also have that
P(M<x) = exp (— (1+'yx)_1/7> 1+ 9x>0.
P(M<x) = exp(—exp(—x)); v =0 (the Gumbel case).

Blanchet (Columbia) 5 /41



Max-stable Distributions

@ A max-stable r.v. M is characterized by the fact that if
My, My, ..., M, are i.i.d. copies of M then
D n

max (M; — a,) / by.

M

o We also have that
P(M<x) = exp (— (1+'yx)_1/7> 1+ 9x>0.
P(M<x) = exp(—exp(—x)); v =0 (the Gumbel case).

o In practice Zp = max{X(m_1)n1, - Xmn} = a+ bMpn, apply MLE
to estimate a, b, v & ready to extrapolate...

Blanchet (Columbia) 5 /41



Max-stable Distributions

@ A max-stable r.v. M is characterized by the fact that if
My, My, ..., M, are i.i.d. copies of M then

glx(/vl,-—a,,)/bn.

m 2

o We also have that
P(M<x) = exp (— (1+'yx)_1/7> 1+ 9x>0.
P(M<x) = exp(—exp(—x)); v =0 (the Gumbel case).

o In practice Zp = max{X(m_1)n1, - Xmn} = a+ bMpn, apply MLE
to estimate a, b, v & ready to extrapolate...

e But in many cases it is important to account for spatial
dependence...
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What is a Catastrophe Bond?

Blanchet (Columbia)
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Diagram lllustrating Catastrophe Bonds Risk Calculation
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Case Study: MetroCat Re Ltd

@ The MTA (New York & New Jersey authorities) obtained parametric
triggered storm surge.
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Case Study: MetroCat Re Ltd

@ The MTA (New York & New Jersey authorities) obtained parametric
triggered storm surge.

@ Motivated by high insurance costs after Hurricane Sandy in 10/2012.

@ The parametric trigger is based on weighted average of maximum
water levels in several locations.
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Max-stable Random Fields

@ How does one define natural models of extremes in space?
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Max-stable Random Fields

@ How does one define natural models of extremes in space?
o Definition: M (-) is a max-stable field if
D n
M (-) = max (M; (-) = an () /bn (),

for i.i.d. My (+),.... M, () of M (-) and some a, (-), by (+).
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Max-stable Random Fields

@ How does one define natural models of extremes in space?
o Definition: M (-) is a max-stable field if
M () = max (M () = an (-)) /ba ),
fori.i.d. My (+),..., M, () of M () and some a, (-), by (+).

@ How to construct max-stable fields?
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Characterizations of Max-stable Fields

@ A large class of max-stable fields can be represented as:
M (t )—Sup{ log (An) 4 Xa ()},

where X, (-) is Gaussian.
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Characterizations of Max-stable Fields

@ A large class of max-stable fields can be represented as:
M (t )—Sup{ log (An) 4 Xa ()},
where X, (-) is Gaussian.

e A, = n-th arrival of Poisson process with rate 1 (independent of
X (+)).

—~
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Characterizations of Max-stable Fields

@ A large class of max-stable fields can be represented as:

M(t) = ii‘f{_ log (An) + X, (t)},

e A, = n-th arrival of Poisson process with rate 1 (independent of
X (+)).

@ Brown-Resnick, de Haan, Smith, Schlather, Kabluchko,...

—~
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This is How a Max-Stable Field Looks Like

Surface plot of Brown—Resnick process for Brownian sheet
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Computing Joint CDFs

P (eM(tl) < e, M) < eXZ) = P (Poisson r.v. =0)

= exp(—Emax{exp (X, (t1) —x1) ., exp (Xy (£2) —x2)})

A, vs max{ exp(X,(t,)-x,), exp(X,(t,)-x,)}
max{ No points in upper R
exp(X,(t;)-x;), | Triangle = R
exp(X,(t2)x,)} | M(t,)< x, & M(t,)< x, -~
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Max-Stable Fields: Computational Challenges

e Joint densities for M (t1), ..., M (t4) quickly become intractable
(d = 10 contains more than 10° terms).
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Max-Stable Fields: Computational Challenges

e Joint densities for M (t1), ..., M (t4) quickly become intractable
(d = 10 contains more than 10° terms).

@ Likelihood methods applicable in low dimensions only.

@ In the end we want to efficiently evaluate quantities such as

P ( / w () M (t) dt > b) . <—CAT Bond Example
T
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Our Contributions

Theorem 1 (B., Dieker, Liu, Mikosch '16): Algorithm for sampling
M (t1),.... M (ty) with virtually the same asymptotic complexity as
sampling Xy (t1),..., X1 (tg) as d — oo.

In other words, M (t1), ..., M (tq) is basically as "easy" as
X1 (1.'1) —— <l (td)...
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Our Contributions

@ Theorem 2 (B. and Liu '16): Construction of a finite variance
W (y1, ... ¥q) such that

f(e),.M(ty) V1 yd) = E (W (y1,.o va)) -

The estimator takes O (¢2 log? (1/€)) samples to achieve ¢ error.
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Our Contributions

@ Theorem 2 (B. and Liu '16): Construction of a finite variance
W (y1, ... ¥q) such that

f(e),.M(ty) V1 yd) = E (W (y1,.o va)) -

The estimator takes O (¢2 log? (1/€)) samples to achieve ¢ error.

e Theorem 3 (B. and Liu '16): Construction of W (y1, ..., ¥k, 21, ..., Zd)
such that

(1), M(t0) M (s1)snaM(sg) (V0o Vi | 2000 Z4)
= EW0Or oYk 21, 24)),

similar complexity as Theorem 2.
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A Quick Review of Current Methodology

@ State-of-the-art: Exact sampling algorithms due to Dieker and
Mikosch (2015), and Dombry, Engelke, Oesting (2016).
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A Quick Review of Current Methodology

@ State-of-the-art: Exact sampling algorithms due to Dieker and
Mikosch (2015), and Dombry, Engelke, Oesting (2016).

e Summary of computational complexity (BDML = Our method):

Dieker & Mikosch = BDML ~ xd X log (d).
DEO = BDML xd.

@ For example if X, (-) is Brownian motion our method takes O (d)

complexity to sample M (t1),..., M (ty). Both DM and DEO take at
least O (d?) complexity.
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Comparison vs Dieker & Mikosch

Log-log plot: Grid points vs time in seconds
RED = Our Method Vs BLUE = Alternative method.
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Optimal Simulation of Max-stable Processes

@ Find two crucial quantities:
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1=
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Optimal Simulation of Max-stable Processes

@ Find two crucial quantities:
@ Ny such that for n > Ny:

1
m%fIXn ()] < 5 log (n+1).
1=

@ N4 such that for n > Ny:

n+1
Ap > >
o Note that for m > max (N4, Nx)
| 1
max{X, (t;) — log (Ar)} < —"g("z’“ +log (2).
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Optimal Simulation of Max-stable Processes

@ Find two crucial quantities:
@ Ny such that for n > Ny:

max|X,, (t) < = Iog(n—|— 1).

@ N4 such that for n > Ny:

A>T
o Note that for m > max (N4, Nx)
max{X, (1) ~ log (Ar)} < —E 1Y 1 j0g (2
o Need to detect when
d

—log (m+1) /24 1log (2) < min Xy (t;) — log (A1) .
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Optimal Simulation of Max-stable Processes

e If X, (-) is continuous on the compact set T, then

max | X, ()] = 0 ((log (n))*'?).
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Optimal Simulation of Max-stable Processes

e If X, (-) is continuous on the compact set T, then

max | X, ()] = 0 ((log (n))*'?).

@ By the LLNs
A,/n— 1.

@ So detection of Nx and N4 should take O (1) time as d — oo.
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The Milestone / Record Breaking Events Technique

@ Used several times: B. & Sigman (2011), B. & Chen (2012), B. &
Dong (2013), B. & Wallwater (2014), B., Chen & Dong (2015).
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The Milestone / Record Breaking Events Technique

Used several times: B. & Sigman (2011), B. & Chen (2012), B. &
Dong (2013), B. & Wallwater (2014), B., Chen & Dong (2015).

Borrow intuition from rare event simulation.
Let us write X, = {X, (t.“,-)},‘-j:1 so || Xnlle = max,‘.’:1 | X (t)].
Let 79 = np — 1 (ngp chosen later) and let

. 1
Thrr = inf{n > T | X]| o > S log (n+1)},

Nx = sup{Tk: Tk < o0}.

Can we sample Bernoulli with P (7; < o)? Can we simulate
X1 (), Xey (+) given 71 < 007

Blanchet (Columbia)
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Borrow from Rare Event Simulation Intuition

@ Say ng is large: How does the rare event

* 1
{r1 <oo} = |J {I Xl > > log (n+ 1)} occur?

n=nog
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Borrow from Rare Event Simulation Intuition

@ Say ng is large: How does the rare event

* 1
{r1 <oo} = |J {I Xl > > log (n+ 1)} occur?

n=nog
o Approximate the optimal importance sampling distribution
P (|[Xnlle > 2log (n+1), 71 >n—1)
P (T1 < 00)

P (IIXallw > 3log (n+1)) iy P (|Xn (t:)] > 5log (n+1))
P (11 < 00) - P (11 < 00)

P (t1 = n|t1 < 00) =
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Borrow from Rare Event Simulation Intuition

@ Say ng is large: How does the rare event
°° 1
{r1 <oo} = |J {I Xl > > log (n+ 1)} occur?
n=nog
o Approximate the optimal importance sampling distribution

P (|| X > 1 Dot >n-1
P (11 = n|T1 < 00) = (Xl > Slog (n+1), 71 > n—1)

P (11 < )
P (IIXallw > 3log (n+1)) iy P (|Xn (t:)] > 5log (n+1))
P (11 < 00) - P (11 < 00)

@ This suggests a natural importance sampling strategy...
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Will the First Record Breaking Event Occur?

@ Sample K so that for K > ng

Y P (|1 X (t)] > %log (n+1))
QK = = .
=) = o Y0 P (X (6)] > Slog (k+ 1)
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Will the First Record Breaking Event Occur?

@ Sample K so that for K > ng

Y P (|1 X (t)] > %log (n+1))
QK = = .
=) = o Y0 P (X (6)] > Slog (k+ 1)

@ Define h(n) = P(t1 =n) /Q (K = n) then

P (11 <) =E?(h(K)) = Z P(ty =n).
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Will the First Record Breaking Event Occur?

@ Sample K so that for K > ng

Y P (|1 X (t)] > %log (n+1))
Q(K=n)= .
=) = o Y0 P (X (6)] > Slog (k+ 1)
@ Define h(n) = P(t1 =n) /Q (K = n) then

P(ty <o) =E?(h(K))= Y P(t1=n).

n=ng

Q If h(k) <1 then /{7; < co} is Bernoulli(h(K)) with K sampled
under Q.
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Will the First Record Breaking Event Occur?

@ Choose ng such that

) d
h(n) = Z ZP<|Xk ti |>Iog(k+1))
k=ng i=1
XP(||Xk||oo§ 5|og(1+k) Vo <k< n)

P ([ Xnlloo > 5 log (n+1))
L1 P (|Xa ()] > Slog (n+1))
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Will the First Record Breaking Event Occur?

@ Choose ng such that
o d
h(n) = Y Y P <|Xk ti)| > Iog(k+1)>
k=ng i=1

x P (HXkHoo < Elog(l—l—k) Vo <k< n)

P ([ Xnlloo > 5 log (n+1))
L1 P (|Xa ()] > Slog (n+1))

@ Sample a Bernoulli with parameter:

P (1%l > Slog(n+1))
LiP(|Xa ()] > 2log (n+1))
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A Related Acceptance / Rejection Question

o Sampling from P (- | ||X,||, > 3log(n+1)) by acceptance /
rejection.
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A Related Acceptance / Rejection Question

o Sampling from P (- | ||X,||, > 3log(n+1)) by acceptance /
rejection.
@ Proposal distribution Q (-) described next:

© Sample J with probability

P (1Xn (t)| > 5log(n+1))
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A Related Acceptance / Rejection Question

o Sampling from P (- | ||X,||, > 3log(n+1)) by acceptance /
rejection.
@ Proposal distribution Q (-) described next:

© Sample J with probability
_ P(Xa(t)] > blog (n+1))
L1 P (1% ()] > ylog (n+1))
@ Given J = j, sample X, = {X, (t,-)},q:l
Q (Xn (i) € dxi, ..., Xn (tg) € dxq | J =)
~ P (xn (1) € di, . X (1) € db | [Xo (8)] > 3 log (n + 1)>

P (Xn (t;) € dxi, ..., X (tg) € dxq) - 1 (|xn (£)] > % log (n+ 1))
P (X (t)] > %Iog (n+1)) '

Q=)
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Computing the Likelihood Ratio

@ Likelihood of X, under Q
Q) = LAl =)QU=))
J

I (I ()] > Jlog (n+1))
P (1% ()] > Llog (n+ 1))

I (% ()] > S1og (n + 1))
- P(X”>Z(P(|xn<rj>|>;Iog<n+1>)

P (1Xn (t;)| > Llog (n+1)) >
Yy P (1% (t)] > % log (n+1))
B ! (xn (1)) > 3 log (n+1))
= PO B (1%, (8)] > Lo (n 1))

= LPX) QU=))
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Acceptance / Rejection Execution

@ Likelihood of X, under @

@( ) = Y511 (|Xa ()] > log (n+1) /2)
dP "y d P (X, ()] > log (n+1) /2)
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Acceptance / Rejection Execution

@ Likelihood of X, under @
9Q ) Tl (X (5)| > log (n+1) /2)
dP L1 P (1% (6)] > log (n+1) /2)
@ We conclude
dP (X | Xl > 255+
dQ
(1%l > #E52) gp T P (1% (8)] > =52)
P (11Xl > 22G) Q=" p (IXalle > 55t2)
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Acceptance / Rejection Execution

@ Likelihood of X, under @

@( ) = Y511 (|Xa ()] > log (n+1) /2)
ap " d P (|X,(t)] >log(n+1)/2)
@ We conclude

dP (X | 11Xl > 255+2)

dQ
(1%l > =52) gp £ P (1% ()] > 5522)
p (HX”HOO log( n+1 ) dQ p (HX”HOO S Iog(g+1))

@ By general acceptance / rejection theory we have:

P (|| Xn|lo > log (n+1) /2)
Y1 P (1Xa (5)] > log (n+1) /2)°

Probability of accepting =
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e We sampled B = Bernoulli (h(n)) = I (1 < o0) with h(n):

co d
h(n) = Y, ZP<|Xk t |>Iog(k+1)>

k:no i=1

x P <||Xk||oo < 5|og(1+k) Vo <k< n)

P ([ Xollow > 5 log (n+1))
L P (X ()] > Alog (n+ 1))

<1
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e We sampled B = Bernoulli (h(n)) = I (1 < o0) with h(n):

co d
h(n) = Y, ZP<|Xk t |>Iog(k+1)>

k:no i=1

x P <||Xk||oo < 5|og(1+k) Vo <k< n)

P ([ Xollow > 5 log (n+1))
L P (X ()] > Alog (n+ 1))

<1

e Also sampled X, given ||X,||,, > 3 log (n+ 1) by acceptance
rejection:

P (Xl > log (n+1) /2)

Probability of accepting = .
P (X ()] > log (n+1) /2)
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Exact Sampling Property

@ Also we actually obtain:

anQ (Xl, o XK, K|B = 1) = Lawp (Xl, ...,XTI,T1’T1 < 00)
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Exact Sampling Property

@ Also we actually obtain:

anQ (Xl, o XK, K|B = 1) = Lawp (Xl, ...,XTI,T1’T1 < 00)

@ Let's check this identity:
QX1 €dxy,... Xp €dx,K=nB=1)

oo d
= Qk=n ¥ P (Ix(n)]> Jlog(k+1))

K=ng i=1
XP (Xpy € dx, ... Xpo1 €dXp1 | T1 > n—1)
| 1
<P (X,, e dx| | Xl > cg(';“)

P(Tl = n) P(Xl € dxy, ..., X, € dx ’ T = n)
P(Xl €dxy,... X, €Edx, T1=n, 71 < OO)
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How to Continue? What Drives the Complexity?

@ Subsequently sample T2, ..., T;—1 = Nx until T, = oo.
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How to Continue? What Drives the Complexity?

@ Subsequently sample T2, ..., T;—1 = Nx until T, = oo.

o Note that X, can be easily simulated even if n > Nx.

{Xn : n> Nx+ 1} are still independent but conditioned
on || Xp|l <log(n+1)/2) forn> Nx +1
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How to Continue? What Drives the Complexity?

@ Subsequently sample T2, ..., T;—1 = Nx until T, = oo.

o Note that X, can be easily simulated even if n > Nx.

{Xn : n> Nx+ 1} are still independent but conditioned
on || Xp|l <log(n+1)/2) forn> Nx +1

o Total complexity turns out to be driven by ng such that

o d
Y 2P (|Xk t)| >3 |0g(k+1)><1

k:no i=1

= ng = exp (c log (d)) = O (d®) for any ¢ > 0.
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Milestone / Record Breaking for Random Walks

@ A similar technique used to sample the last time N such that

1
An < 5”.
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Milestone / Record Breaking for Random Walks

@ A similar technique used to sample the last time N such that

1
An < 5”.
@ In this case it suffices to sample A, jointly with
max{A, — m/2}
m>n

rare event simulation techniques can be applied (see B. &

Wallwater (2014)).
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Density Estimation

Want to design a finite variance estimator W (y1, ..., y4) so that

EW (y1, . yd)) = fm (V1. -, vd)-
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An lllustration of the Density Pictures

0.02 )
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Some Pictures: 3-d Density
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Some Malliavin Calculus

@ Follow an idea from Malliavin & Thalmaier.

Blanchet (Columbia) 34 /41



Some Malliavin Calculus

@ Follow an idea from Malliavin & Thalmaier.

@ Consider Poisson’s equation
Au=f

formally if G (+) is the Poisson kernel we have

u(x)= [F(y) 6 (x—y)dy.
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Some Malliavin Calculus

@ Follow an idea from Malliavin & Thalmaier.

@ Consider Poisson’s equation
Au=f

formally if G (+) is the Poisson kernel we have
Z/f(y) G (x—y)dy.

@ So, formally
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Applying Malliavin Thalmaier Formula

@ For d > 3 we have that

992G (x
AG(x—y) = ), axz)(X_Y)
i=1 i
_ B G(x) B X; o 1
G0 = T =g SN T
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Applying Malliavin Thalmaier Formula

@ For d > 3 we have that

992G (x
AG(x—y) = ), axz)(X_Y)
i=1 i
_ B G(x) B X; o 1
G0 = T =g SN T

@ Higher order derivatives of G implies higher variability...
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Applying Malliavin Thalmaier Formula

@ For d > 3 we have that

992G (x
AG(x—y) = ), axz)(X_Y)
i=1 i
_ B G(x) B X; o 1
G0 = T =g SN T

@ Higher order derivatives of G implies higher variability...

e Two ways to fix this: Integration by parts & Randomized
Multilevel Monte Carlo.
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Improving Variance: Integration by Parts for Finite Maxima

o We claim

G (x=M,) _ 3G (x=M,) (- 9Gi(x—M,)

= M) & % (o)

k=1
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Improving Variance: Integration by Parts for Finite Maxima

o We claim

9G; (x — M,) G (x — M,) Z": 9G; (x — M,)

aX,' - E)M,, (t,') - =1 an (t,')

@ Let's check second equality:

M (i) = max {X(t) — a}.

" oM, (t,'> . _ 3
k;axk(ti) = 2/ = Xk (t;)) — ax) = 1.
G (x —M,)  9G; (x — M,) OM, (t;)

X (i)  OMa(t) Ok (t)

ZM _ 9Gi(x—M,)
k=1 an(tl) M ( ) .
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Improving Variance: Integration by Parts for Finite Maxima

o Integration by parts yields (with £ = cov (X))
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Improving Variance: Integration by Parts for Finite Maxima

o Integration by parts yields (with £ = cov (X))

@ Therefore

<G: M) ey Xk)
k=1

d
Y Gi(x Yel 71X,
k=1i=1

= E

fm, (x1,...xq) = E
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Improving Variance: Infinite Horizon Maxima

@ Let Fp be the information generated by the exact sampling procedure

so that
My = M,

then we have that for m > 1
E (Xnym|Fn) =0,

because given n > N, we have that X, (t;) has a symmetric
distribution.

Blanchet (Columbia)
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Improving Variance: Infinite Horizon Maxima

@ Let Fp be the information generated by the exact sampling procedure
so that
My =M,

then we have that for m > 1
E (Xnym|Fn) =0,

because given n > N, we have that X, (t;) has a symmetric
distribution.

@ Thus

lim an(Xl,...,Xd) = an(Xl,...,Xd)

n—oo
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Continue Integrating by Parts

@ The estimator

N d
Wix—M)=Y Y G(x—M)e =X
k=1i=1
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Continue Integrating by Parts

@ The estimator

N d
Wix—M)=Y Y G(x—M)e =X
k=1i=1

@ One can continue obtaining

quadratic weight = finite variance d < 3
Cubic weight = finite variance d <5
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Applying Multilevel Monte Carlo

@ Out starting point is estimator
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Applying Multilevel Monte Carlo

@ Out starting point is estimator

@ Randomized Multilevel Monte Carlo, introducing the differences

Ay = G (x—M) =G (x—M);
xi— M (t,'>

[Ix = Mll3 + [[x = M|, / log(n + 1)
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Conclusions

@ Max-stable fields are natural models for extremes, but present
computational challenges.
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Conclusions

@ Max-stable fields are natural models for extremes, but present
computational challenges.

First asymptotically optimal exact simulation algorithms for
max-stable fields.

Ideas based on record-breaking events & rare-event simulation.

o Malliavin calculus ideas for first efficient density estimators for
max-stable fields.
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