Monte Carlo Methods for Spatial Extremes

Jose Blanchet (joint with Liu, Dieker, Mikosch).

Columbia Departments of IEOR and Statistics

Our goal is to enable efficient Monte Carlo of extreme events in space...

Our focus here is on Max-stable Fields.

• A little story... Gumbel.

3 / 41

- A little story... Gumbel.
- **Textbook Example:** Given storm surges observed over the last 100 yrs in NYC, what's the maximum height of a storm surge which gets exceeded only about once in 1000 yrs?

- A little story... Gumbel.
- **Textbook Example:** Given storm surges observed over the last 100 yrs in NYC, what's the maximum height of a storm surge which gets exceeded only about once in 1000 yrs?
- Answer: One must extrapolate...

Theorem (Fisher-Tippet-Gnedenko)

Suppose $X_1, ..., X_n$ is an IID sequence and define $Z_n = \max\{X_1, ..., X_n\}$. If there exists $\{(a_n, b_n)\}_{n>1}$ deterministic numbers such that

$$Z_n \stackrel{D}{\approx} b_n M + a_n,$$

then M must be a max-stable distribution.

• A max-stable r.v. *M* is characterized by the fact that if $M_1, M_2, ..., M_n$ are i.i.d. copies of *M* then

$$M \stackrel{D}{=} \max_{i=1}^{n} \left(M_i - a_n \right) / b_n$$

イロト イ理ト イヨト イヨトー

• A max-stable r.v. *M* is characterized by the fact that if $M_1, M_2, ..., M_n$ are i.i.d. copies of *M* then

$$M \stackrel{D}{=} \max_{i=1}^{n} \left(M_i - a_n \right) / b_n$$

We also have that

$$\begin{array}{lll} P\left(M \leq x\right) &=& \exp\left(-\left(1+\gamma x\right)^{-1/\gamma}\right) & 1+\gamma x > 0. \\ P\left(M \leq x\right) &=& \exp\left(-\exp\left(-x\right)\right); \ \gamma = 0 \ (\text{the Gumbel case}). \end{array}$$

通 ト イヨト イヨト

• A max-stable r.v. *M* is characterized by the fact that if $M_1, M_2, ..., M_n$ are i.i.d. copies of *M* then

$$M \stackrel{D}{=} \max_{i=1}^{n} \left(M_i - a_n \right) / b_n$$

We also have that

$$\begin{array}{lll} P\left(M \leq x\right) &=& \exp\left(-\left(1+\gamma x\right)^{-1/\gamma}\right) & 1+\gamma x > 0. \\ P\left(M \leq x\right) &=& \exp\left(-\exp\left(-x\right)\right); \ \gamma = 0 \ (\text{the Gumbel case}). \end{array}$$

In practice Z_m = max{X_{(m-1)n+1}, ..., X_{mn}} ^D= a + bM_m, apply MLE to estimate a, b, γ & ready to extrapolate...

(本間) (本語) (本語) (二語

• A max-stable r.v. *M* is characterized by the fact that if $M_1, M_2, ..., M_n$ are i.i.d. copies of *M* then

$$M \stackrel{D}{=} \max_{i=1}^{n} \left(M_i - a_n \right) / b_n$$

We also have that

$$\begin{array}{lll} P\left(M \leq x\right) &=& \exp\left(-\left(1+\gamma x\right)^{-1/\gamma}\right) & 1+\gamma x > 0. \\ P\left(M \leq x\right) &=& \exp\left(-\exp\left(-x\right)\right); \ \gamma = 0 \ (\text{the Gumbel case}). \end{array}$$

- In practice Z_m = max{X_{(m-1)n+1}, ..., X_{mn}} ^D= a + bM_m, apply MLE to estimate a, b, γ & ready to extrapolate...
- But in many cases it is important to account for spatial dependence...

Diagram Illustrating Catastrophe Bonds Risk Calculation

3

イロト イヨト イヨト イヨト

Case Study: MetroCat Re Ltd

• The MTA (New York & New Jersey authorities) obtained parametric triggered storm surge.

- E > - E >

Case Study: MetroCat Re Ltd

- The MTA (New York & New Jersey authorities) obtained parametric triggered storm surge.
- Motivated by high insurance costs after Hurricane Sandy in 10/2012.

Case Study: MetroCat Re Ltd

- The MTA (New York & New Jersey authorities) obtained parametric triggered storm surge.
- Motivated by high insurance costs after Hurricane Sandy in 10/2012.
- The parametric trigger is based on weighted average of maximum water levels in several locations.

• How does one define natural models of extremes in space?

• How does one define natural models of extremes in space?

• **Definition:** $M\left(\cdot\right)$ is a max-stable field if

$$M\left(\cdot\right)\stackrel{D}{=}\max_{i=1}^{n}\left(M_{i}\left(\cdot\right)-a_{n}\left(\cdot\right)\right)/b_{n}\left(\cdot\right),$$

for i.i.d. $M_{1}\left(\cdot\right)$, ..., $M_{n}\left(\cdot\right)$ of $M\left(\cdot\right)$ and some $a_{n}\left(\cdot\right)$, $b_{n}\left(\cdot\right)$.

イロト イポト イヨト イヨト

- How does one define natural models of extremes in space?
- **Definition:** $M\left(\cdot\right)$ is a max-stable field if

$$M\left(\cdot\right) \stackrel{D}{=} \max_{i=1}^{n} \left(M_{i}\left(\cdot\right) - a_{n}\left(\cdot\right)\right) / b_{n}\left(\cdot\right),$$

for i.i.d. $M_{1}\left(\cdot\right)$, ..., $M_{n}\left(\cdot\right)$ of $M\left(\cdot\right)$ and some $a_{n}\left(\cdot\right)$, $b_{n}\left(\cdot\right)$.

• How to construct max-stable fields?

イロト イポト イヨト イヨト

• A large class of max-stable fields can be represented as:

$$M(t) = \sup_{n \ge 1} \{ -\log(A_n) + X_n(t) \},\$$

where $X_n(\cdot)$ is Gaussian.

3 1 4 3 1

• A large class of max-stable fields can be represented as:

$$M(t) = \sup_{n \ge 1} \{ -\log(A_n) + X_n(t) \},\$$

where $X_n(\cdot)$ is Gaussian.

• $A_n = n$ -th arrival of Poisson process with rate 1 (independent of $X_n(\cdot)$).

注▶ ★ 至▶

• A large class of max-stable fields can be represented as:

$$M(t) = \sup_{n \ge 1} \{ -\log(A_n) + X_n(t) \},\$$

where $X_n(\cdot)$ is Gaussian.

- $A_n = n$ -th arrival of Poisson process with rate 1 (independent of $X_n(\cdot)$).
- Brown-Resnick, de Haan, Smith, Schlather, Kabluchko,...

This is How a Max-Stable Field Looks Like

Computing Joint CDFs

$$P\left(e^{M(t_{1})} \le e^{x_{1}}, e^{M(t_{1})} \le e^{x_{2}}\right) = P\left(\text{Poisson r.v.} = 0\right)$$

= $\exp\left(-E \max\left\{\exp\left(X_{n}(t_{1}) - x_{1}\right), \exp\left(X_{n}(t_{2}) - x_{2}\right)\right\}\right)$

12 / 41

Max-Stable Fields: Computational Challenges

• Joint densities for $M(t_1), ..., M(t_d)$ quickly become intractable $(d = 10 \text{ contains more than } 10^5 \text{ terms}).$

Max-Stable Fields: Computational Challenges

- Joint densities for $M(t_1), ..., M(t_d)$ quickly become intractable $(d = 10 \text{ contains more than } 10^5 \text{ terms}).$
- Likelihood methods applicable in low dimensions only.

Max-Stable Fields: Computational Challenges

- Joint densities for $M(t_1), ..., M(t_d)$ quickly become intractable $(d = 10 \text{ contains more than } 10^5 \text{ terms}).$
- Likelihood methods applicable in low dimensions only.
- In the end we want to efficiently evaluate quantities such as

$$P\left(\int_{T} w(t) M(t) dt > b\right), <-CAT \text{ Bond Example}$$

$$f_{M(t_{1}),...,M(t_{k})}(x_{1},...,x_{k}),$$

$$f_{M(t_{1}),...,M(t_{k})|M(s_{1}),...,M(s_{d})}(x_{1},...,x_{k} | z_{1},...,z_{d}).$$

Theorem 1 (B., Dieker, Liu, Mikosch '16): Algorithm for sampling $M(t_1)$, ..., $M(t_d)$ with virtually the same asymptotic complexity as sampling $X_1(t_1)$, ..., $X_1(t_d)$ as $d \to \infty$.

In other words, $M(t_1)$, ..., $M(t_d)$ is basically as "easy" as $X_1(t_1)$, ..., $X_1(t_d)$...

イロト イ団ト イヨト イヨト 二日

Our Contributions

• **Theorem 2** (B. and Liu '16): Construction of a finite variance $W(y_1, ..., y_d)$ such that

$$f_{M(t_1),...,M(t_d)}(y_1,...,y_d) = E(W(y_1,...,y_d)).$$

The estimator takes $O\left(\varepsilon^{-2}\log^2\left(1/\varepsilon\right)\right)$ samples to achieve ε error.

《曰》《聞》《臣》《臣》

• **Theorem 2** (B. and Liu '16): Construction of a finite variance $W(y_1, ..., y_d)$ such that

$$f_{M(t_1),...,M(t_d)}(y_1,...,y_d) = E(W(y_1,...,y_d)).$$

The estimator takes $O\left(\varepsilon^{-2}\log^2\left(1/\varepsilon\right)\right)$ samples to achieve ε error.

• **Theorem 3** (B. and Liu '16): Construction of *W* (*y*₁, ..., *y_k*, *z*₁, ..., *z_d*) such that

$$\begin{aligned} & f_{M(t_1),...,M(t_k)|M(s_1),...,M(s_d)} \left(y_1, ..., y_k \mid z_1, ..., z_d \right) \\ &= E \left(W \left(y_1, ..., y_k, z_1, ..., z_d \right) \right), \end{aligned}$$

similar complexity as Theorem 2.

イロト 不得下 イヨト イヨト 二日

A Quick Review of Current Methodology

• State-of-the-art: Exact sampling algorithms due to Dieker and Mikosch (2015), and Dombry, Engelke, Oesting (2016).

3 K K 3 K

- State-of-the-art: Exact sampling algorithms due to Dieker and Mikosch (2015), and Dombry, Engelke, Oesting (2016).
- Summary of computational complexity (BDML = Our method):

Dieker & Mikosch = BDML $\times d \times \log(d)$. DEO = BDML $\times d$.

- State-of-the-art: Exact sampling algorithms due to Dieker and Mikosch (2015), and Dombry, Engelke, Oesting (2016).
- Summary of computational complexity (BDML = Our method):

Dieker & Mikosch = BDML $\times d \times \log(d)$. DEO = BDML $\times d$.

For example if X_n(·) is Brownian motion our method takes O(d) complexity to sample M(t₁), ..., M(t_d). Both DM and DEO take at least O(d²) complexity.

Comparison vs Dieker & Mikosch

Log-log plot: Grid points vs time in seconds RED = Our Method vs BLUE = Alternative method.

Optimal Simulation of Max-stable Processes

• Find two crucial quantities:

18 / 41

Optimal Simulation of Max-stable Processes

• Find two crucial quantities:

• N_X such that for $n \ge N_X$:

$$\max_{i=1}^{d} |X_n(t_i)| \leq \frac{1}{2} \log (n+1).$$

.

Optimal Simulation of Max-stable Processes

- Find two crucial quantities:
 - $I N_X \text{ such that for } n \ge N_X:$

$$\max_{i=1}^{d} |X_n(t_i)| \leq \frac{1}{2} \log (n+1).$$

2 N_A such that for $n \ge N_A$:

$$A_n > \frac{n+1}{2}$$

Optimal Simulation of Max-stable Processes

- Find two crucial quantities:
 - $I N_X \text{ such that for } n \ge N_X:$

$$\max_{i=1}^{d} |X_n(t_i)| \leq \frac{1}{2} \log (n+1).$$

2 N_A such that for $n \ge N_A$:

$$A_n>\frac{n+1}{2}$$

• Note that for $m \ge \max(N_A, N_X)$

$$\max_{n\geq m} \{X_n(t_i) - \log(A_n)\} \leq -\frac{\log(m+1)}{2} + \log(2)$$

Optimal Simulation of Max-stable Processes

- Find two crucial quantities:
 - $I N_X \text{ such that for } n \ge N_X:$

$$\max_{i=1}^{d} |X_n(t_i)| \leq \frac{1}{2} \log (n+1).$$

2 N_A such that for $n \ge N_A$:

$$A_n > \frac{n+1}{2}$$

• Note that for $m \ge \max(N_A, N_X)$

$$\max_{n\geq m} \{X_n(t_i) - \log(A_n)\} \leq -\frac{\log(m+1)}{2} + \log(2).$$

Need to detect when

$$-\log\left(m+1\right)/2 + \log\left(2\right) \leq \min_{i=1}^{d} X_{1}\left(t_{i}\right) - \log\left(A_{1}\right).$$

3 1 4 3 1

• If $X_{n}(\cdot)$ is continuous on the compact set T, then

$$\max_{t\in T} |X_n(t)| = O_p\left(\left(\log\left(n\right)\right)^{1/2}\right).$$

• • = • • = •

• If $X_n(\cdot)$ is continuous on the compact set T, then

$$\max_{t\in T} |X_n(t)| = O_p\left((\log(n))^{1/2} \right).$$

• By the LLNs

$$A_n/n \rightarrow 1.$$

個 ト イヨト イヨト

• If $X_n(\cdot)$ is continuous on the compact set T, then

$$\max_{t\in T} |X_n(t)| = O_p\left(\left(\log\left(n\right)\right)^{1/2}\right).$$

By the LLNs

$$A_n/n \rightarrow 1.$$

• So detection of N_X and N_A should take O(1) time as $d \to \infty$.

Used several times: B. & Sigman (2011), B. & Chen (2012), B. & Dong (2013), B. & Wallwater (2014), B., Chen & Dong (2015).

- Used several times: B. & Sigman (2011), B. & Chen (2012), B. & Dong (2013), B. & Wallwater (2014), B., Chen & Dong (2015).
- Borrow intuition from rare event simulation.

- Used several times: B. & Sigman (2011), B. & Chen (2012), B. & Dong (2013), B. & Wallwater (2014), B., Chen & Dong (2015).
- Borrow intuition from rare event simulation.
- Let us write $X_n = \{X_n(t_i)\}_{i=1}^d$ so $\|X_n\|_{\infty} = \max_{i=1}^d |X_n(t_i)|$.

- Used several times: B. & Sigman (2011), B. & Chen (2012), B. & Dong (2013), B. & Wallwater (2014), B., Chen & Dong (2015).
- Borrow intuition from rare event simulation.
- Let us write $X_n = \{X_n(t_i)\}_{i=1}^d$ so $\|X_n\|_{\infty} = \max_{i=1}^d |X_n(t_i)|$.
- Let $au_0={\it n}_0-1~({\it n}_0$ chosen later) and let

$$\begin{aligned} \tau_{k+1} &= \inf\{n > \tau_k : \|X_n\|_{\infty} > \frac{1}{2}\log(n+1)\}, \\ N_X &= \sup\{\tau_k : \tau_k < \infty\}. \end{aligned}$$

Can we sample Bernoulli with $P(\tau_1 < \infty)$? Can we simulate $X_1(\cdot)$, ..., $X_{\tau_1}(\cdot)$ given $\tau_1 < \infty$?

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

• Say n_0 is large: How does the rare event

$$\{\tau_1 < \infty\} = \bigcup_{n=n_0}^{\infty} \{ \|X_n\|_{\infty} > \frac{1}{2} \log(n+1) \}$$
 occur?

• Say n₀ is large: How does the rare event

$$\{\tau_1 < \infty\} = \bigcup_{n=n_0}^{\infty} \{ \|X_n\|_{\infty} > \frac{1}{2} \log(n+1) \}$$
 occur?

• Approximate the optimal importance sampling distribution

$$P(\tau_{1} = n | \tau_{1} < \infty) = \frac{P(\|X_{n}\|_{\infty} > \frac{1}{2} \log(n+1), \tau_{1} > n-1)}{P(\tau_{1} < \infty)}$$

$$\approx \frac{P(\|X_{n}\|_{\infty} > \frac{1}{2} \log(n+1))}{P(\tau_{1} < \infty)} \approx \frac{\sum_{i=1}^{d} P(|X_{n}(t_{i})| > \frac{1}{2} \log(n+1))}{P(\tau_{1} < \infty)}$$

• • = • • = •

• Say n_0 is large: How does the rare event

$$\{\tau_1 < \infty\} = \bigcup_{n=n_0}^{\infty} \{ \|X_n\|_{\infty} > \frac{1}{2} \log(n+1) \}$$
 occur?

Approximate the optimal importance sampling distribution

$$P(\tau_{1} = n | \tau_{1} < \infty) = \frac{P(\|X_{n}\|_{\infty} > \frac{1}{2} \log(n+1), \tau_{1} > n-1)}{P(\tau_{1} < \infty)}$$

$$\approx \frac{P(\|X_{n}\|_{\infty} > \frac{1}{2} \log(n+1))}{P(\tau_{1} < \infty)} \approx \frac{\sum_{i=1}^{d} P(|X_{n}(t_{i})| > \frac{1}{2} \log(n+1))}{P(\tau_{1} < \infty)}$$

This suggests a natural importance sampling strategy...

通 ト イヨ ト イヨ ト

Will the First Record Breaking Event Occur?

• Sample K so that for $K \ge n_0$

$$Q\left(K=n\right) = \frac{\sum_{i=1}^{d} P\left(\left|X_{n}\left(t_{i}\right)\right| > \frac{1}{2}\log\left(n+1\right)\right)}{\sum_{k=n_{0}}^{\infty} \sum_{i=1}^{d} P\left(\left|X_{k}\left(t_{i}\right)\right| > \frac{1}{2}\log\left(k+1\right)\right)}.$$

イロト イポト イヨト イヨト

Will the First Record Breaking Event Occur?

• Sample K so that for $K \ge n_0$

$$Q(K = n) = \frac{\sum_{i=1}^{d} P(|X_n(t_i)| > \frac{1}{2}\log(n+1))}{\sum_{k=n_0}^{\infty} \sum_{i=1}^{d} P(|X_k(t_i)| > \frac{1}{2}\log(k+1))}.$$

2 Define $h(n) = P(\tau_1 = n) / Q(K = n)$ then

$$P(\tau_1 < \infty) = E^Q(h(K)) = \sum_{n=n_0}^{\infty} P(\tau_1 = n).$$

イロト イポト イヨト イヨト

• Sample K so that for $K \ge n_0$

$$Q\left(K=n\right) = \frac{\sum_{i=1}^{d} P\left(\left|X_{n}\left(t_{i}\right)\right| > \frac{1}{2}\log\left(n+1\right)\right)}{\sum_{k=n_{0}}^{\infty} \sum_{i=1}^{d} P\left(\left|X_{k}\left(t_{i}\right)\right| > \frac{1}{2}\log\left(k+1\right)\right)}.$$

② Define $h(n) = P(\tau_1 = n) / Q(K = n)$ then

$$P(\tau_1 < \infty) = E^Q(h(K)) = \sum_{n=n_0}^{\infty} P(\tau_1 = n).$$

If h(k) ≤ 1 then I{τ₁ < ∞} is Bernoulli(h(K)) with K sampled under Q.</p>

Will the First Record Breaking Event Occur?

• Choose n_0 such that

$$\begin{split} h\left(n\right) &= \sum_{k=n_{0}}^{\infty} \sum_{i=1}^{d} P\left(\left|X_{k}\left(t_{i}\right)\right| > \frac{1}{2}\log\left(k+1\right)\right) \\ &\times P\left(\left\|X_{k}\right\|_{\infty} \leq \frac{1}{2}\log\left(1+k\right) \ \forall \ n_{0} \leq k < n\right) \\ &\times \frac{P\left(\left\|X_{n}\right\|_{\infty} > \frac{1}{2}\log\left(n+1\right)\right)}{\sum_{i=1}^{d} P\left(\left|X_{n}\left(t_{i}\right)\right| > \frac{1}{2}\log\left(n+1\right)\right)} < 1. \end{split}$$

Image: Image:

- 4 3 6 4 3 6

Will the First Record Breaking Event Occur?

() Choose n_0 such that

$$\begin{split} h\left(n\right) &= \sum_{k=n_{0}}^{\infty} \sum_{i=1}^{d} P\left(\left|X_{k}\left(t_{i}\right)\right| > \frac{1}{2}\log\left(k+1\right)\right) \\ &\times P\left(\left\|X_{k}\right\|_{\infty} \leq \frac{1}{2}\log\left(1+k\right) \ \forall \ n_{0} \leq k < n\right) \\ &\times \frac{P\left(\left\|X_{n}\right\|_{\infty} > \frac{1}{2}\log\left(n+1\right)\right)}{\sum_{i=1}^{d} P\left(\left|X_{n}\left(t_{i}\right)\right| > \frac{1}{2}\log\left(n+1\right)\right)} < 1. \end{split}$$

2 Sample a Bernoulli with parameter:

$$\frac{P\left(\|X_n\|_{\infty} > \frac{1}{2}\log\left(n+1\right)\right)}{\sum_{i=1}^{d} P\left(|X_n\left(t_i\right)| > \frac{1}{2}\log\left(n+1\right)\right)}.$$

3 K K 3 K

• Sampling from $P\left(\cdot \mid \|X_n\|_{\infty} > \frac{1}{2}\log(n+1)\right)$ by acceptance / rejection.

24 / 41

- Sampling from $P\left(\cdot \mid \|X_n\|_{\infty} > \frac{1}{2}\log(n+1)\right)$ by acceptance / rejection.
- Proposal distribution $Q\left(\cdot
 ight)$ described next:

イロト イポト イヨト イヨト

- Sampling from $P\left(\cdot \mid \|X_n\|_{\infty} > \frac{1}{2}\log(n+1)\right)$ by acceptance / rejection.
- Proposal distribution $Q\left(\cdot
 ight)$ described next:
- Sample J with probability

$$Q(J=j) = \frac{P(|X_n(t_j)| > \frac{1}{2}\log(n+1))}{\sum_{i=1}^{d} P(|X_n(t_i)| > \frac{1}{2}\log(n+1))}.$$

イロト イポト イヨト イヨト

- Sampling from $P(\cdot | ||X_n||_{\infty} > \frac{1}{2} \log (n+1))$ by acceptance / rejection.
- Proposal distribution $Q\left(\cdot
 ight)$ described next:
- Sample J with probability

$$Q(J = j) = \frac{P(|X_n(t_j)| > \frac{1}{2}\log(n+1))}{\sum_{i=1}^d P(|X_n(t_i)| > \frac{1}{2}\log(n+1))}.$$

@ Given $J = j$, sample $X_n = \{X_n(t_i)\}_{i=1}^d$
 $Q(X_n(t_i) \in dx_i, ..., X_n(t_d) \in dx_d \mid J = j)$
 $= P\left(X_n(t_i) \in dx_i, ..., X_n(t_d) \in dx_d \mid |X_n(t_j)| > \frac{1}{2}\log(n+1)\right)$
 $= \frac{P(X_n(t_i) \in dx_i, ..., X_n(t_d) \in dx_d) \cdot I(|x_n(t_j)| > \frac{1}{2}\log(n+1))}{P(|X_n(t_j)| > \frac{1}{2}\log(n+1))}$

• Likelihood of X_n under Q

$$\begin{split} Q\left(X_{n}\right) &= \sum_{j} Q\left(X_{n}|J=j\right) Q\left(J=j\right) \\ &= \sum_{j} P\left(X_{n}\right) \frac{I\left(|x_{n}\left(t_{j}\right)| > \frac{1}{2}\log\left(n+1\right)\right)}{P\left(|X_{n}\left(t_{j}\right)| > \frac{1}{2}\log\left(n+1\right)\right)} Q\left(J=j\right) \\ &= P\left(X_{n}\right) \sum_{j} \left(\frac{I\left(|x_{n}\left(t_{j}\right)| > \frac{1}{2}\log\left(n+1\right)\right)}{P\left(|X_{n}\left(t_{j}\right)| > \frac{1}{2}\log\left(n+1\right)\right)} \\ &\times \frac{P\left(|X_{n}\left(t_{j}\right)| > \frac{1}{2}\log\left(n+1\right)\right)}{\sum_{i=1}^{d} P\left(|X_{n}\left(t_{i}\right)| > \frac{1}{2}\log\left(n+1\right)\right)} \right) \\ &= P\left(X_{n}\right) \frac{\sum_{j} I\left(|x_{n}\left(t_{j}\right)| > \frac{1}{2}\log\left(n+1\right)\right)}{\sum_{i=1}^{d} P\left(|X_{n}\left(t_{i}\right)| > \frac{1}{2}\log\left(n+1\right)\right)}. \end{split}$$

æ

イロト イヨト イヨト イヨト

Acceptance / Rejection Execution

• Likelihood of X_n under Q

$$\frac{dQ}{dP}(X_n) = \frac{\sum_{j=1}^{d} I(|X_n(t_j)| > \log(n+1)/2)}{\sum_{i=1}^{d} P(|X_n(t_i)| > \log(n+1)/2)}.$$

æ

イロト イヨト イヨト イヨト

Acceptance / Rejection Execution

• Likelihood of X_n under Q

$$\frac{dQ}{dP}(X_n) = \frac{\sum_{j=1}^{d} I(|X_n(t_j)| > \log(n+1)/2)}{\sum_{i=1}^{d} P(|X_n(t_i)| > \log(n+1)/2)}$$

• We conclude

$$= \frac{\frac{dP\left(X_{n} \mid ||X_{n}||_{\infty} > \frac{\log(n+1)}{2}\right)}{dQ}}{P\left(||X_{n}||_{\infty} > \frac{\log(n+1)}{2}\right)} \frac{dP}{dQ} \le \frac{\sum_{i=1}^{d} P\left(|X_{n}(t_{i})| > \frac{\log(n+1)}{2}\right)}{P\left(||X_{n}||_{\infty} > \frac{\log(n+1)}{2}\right)}.$$

æ

イロト イヨト イヨト イヨト

Acceptance / Rejection Execution

• Likelihood of X_n under Q

$$\frac{dQ}{dP}(X_n) = \frac{\sum_{j=1}^{d} I(|X_n(t_j)| > \log(n+1)/2)}{\sum_{i=1}^{d} P(|X_n(t_i)| > \log(n+1)/2)}.$$

We conclude

$$= \frac{\frac{dP\left(X_{n} \mid ||X_{n}||_{\infty} > \frac{\log(n+1)}{2}\right)}{dQ}}{P\left(||X_{n}||_{\infty} > \frac{\log(n+1)}{2}\right)} \frac{dP}{dQ} \le \frac{\sum_{i=1}^{d} P\left(|X_{n}(t_{i})| > \frac{\log(n+1)}{2}\right)}{P\left(||X_{n}||_{\infty} > \frac{\log(n+1)}{2}\right)}.$$

• By general acceptance / rejection theory we have:

Probability of accepting =
$$\frac{P\left(\|X_n\|_{\infty} > \log(n+1)/2\right)}{\sum_{i=1}^{d} P\left(|X_n(t_i)| > \log(n+1)/2\right)}.$$

イロト イ理ト イヨト イヨト

Summary

• We sampled $B = Bernoulli(h(n)) = I(\tau_1 < \infty)$ with h(n):

$$\begin{split} h\left(n\right) &= \sum_{k=n_{0}}^{\infty} \sum_{i=1}^{d} P\left(|X_{k}\left(t_{i}\right)| > \frac{1}{2}\log\left(k+1\right)\right) \\ &\times P\left(\|X_{k}\|_{\infty} \leq \frac{1}{2}\log\left(1+k\right) \ \forall \ n_{0} \leq k < n\right) \\ &\times \frac{P\left(\|X_{n}\|_{\infty} > \frac{1}{2}\log\left(n+1\right)\right)}{\sum_{i=1}^{d} P\left(|X_{n}\left(t_{i}\right)| > \frac{1}{2}\log\left(n+1\right)\right)} < 1. \end{split}$$

æ

イロト イ理ト イヨト イヨトー

Summary

• We sampled $B = Bernoulli(h(n)) = I(\tau_1 < \infty)$ with h(n):

$$\begin{split} h(n) &= \sum_{k=n_0}^{\infty} \sum_{i=1}^{d} P\left(|X_k(t_i)| > \frac{1}{2} \log{(k+1)} \right) \\ &\times P\left(\|X_k\|_{\infty} \le \frac{1}{2} \log{(1+k)} \ \forall \ n_0 \le k < n \right) \\ &\times \frac{P\left(\|X_n\|_{\infty} > \frac{1}{2} \log{(n+1)} \right)}{\sum_{i=1}^{d} P\left(|X_n(t_i)| > \frac{1}{2} \log{(n+1)} \right)} < 1. \end{split}$$

• Also sampled X_n given $||X_n||_{\infty} > \frac{1}{2} \log (n+1)$ by acceptance rejection:

Probability of accepting =
$$\frac{P\left(\|X_n\|_{\infty} > \log(n+1)/2\right)}{\sum_{i=1}^{d} P\left(|X_n(t_i)| > \log(n+1)/2\right)}.$$

æ

イロト 不得下 イヨト イヨト

Exact Sampling Property

• Also we actually obtain:

 \mathcal{L} aw_Q $(X_1, ..., X_K, K | B = 1) = \mathcal{L}$ aw_P $(X_1, ..., X_{\tau_1}, \tau_1 | \tau_1 < \infty)$.

2

<ロ> <四> <ヨ> <ヨ>

Exact Sampling Property

• Also we actually obtain:

$$\mathcal{L}$$
aw $_Q\left(X_1,...,X_K, K ig| B=1
ight) = \mathcal{L}$ aw $_P\left(X_1,...,X_{ au_1}, au_1ig| au_1 < \infty
ight)$.

• Let's check this identity:

$$Q(X_{1} \in dx_{1}, ..., X_{n} \in dx, K = n, B = 1)$$

$$= Q(K = n) \sum_{k=n_{0}}^{\infty} \sum_{i=1}^{d} P\left(|X_{k}(t_{i})| > \frac{1}{2}\log(k+1)\right)$$

$$\times P(X_{n_{0}} \in dx, ..., X_{n-1} \in dx_{n-1} \mid \tau_{1} > n-1)$$

$$\times P\left(X_{n} \in dx| ||X_{n}||_{\infty} > \frac{\log(n+1)}{2}\right)$$

$$= P(\tau_{1} = n) P(X_{1} \in dx_{1}, ..., X_{n} \in dx \mid \tau_{1} = n)$$

$$= P(X_{1} \in dx_{1}, ..., X_{n} \in dx, \tau_{1} = n, \tau_{1} < \infty).$$

∃ ► < ∃ ►</p>

How to Continue? What Drives the Complexity?

• Subsequently sample $\tau_2, ..., \tau_{L-1} = N_X$ until $\tau_L = \infty$.

29 / 41

How to Continue? What Drives the Complexity?

- Subsequently sample $\tau_2, ..., \tau_{L-1} = N_X$ until $\tau_L = \infty$.
- Note that X_n can be easily simulated even if $n > N_X$.

$$\begin{aligned} \{X_n &: n \geq N_X + 1\} \text{ are still independent but conditioned} \\ & \text{ on } \|X_n\|_\infty \leq \log\left(n+1\right)/2) \ \text{ for } n \geq N_X + 1 \end{aligned}$$

< ロト < 同ト < ヨト < ヨト

How to Continue? What Drives the Complexity?

- Subsequently sample $\tau_2, ..., \tau_{L-1} = N_X$ until $\tau_L = \infty$.
- Note that X_n can be easily simulated even if $n > N_X$.

 $\begin{aligned} \{X_n &: n \geq N_X + 1\} \text{ are still independent but conditioned} \\ & \text{ on } \|X_n\|_\infty \leq \log\left(n+1\right)/2) \ \text{ for } n \geq N_X + 1 \end{aligned}$

• Total complexity turns out to be driven by n_0 such that

$$\sum_{k=n_0}^{\infty} \sum_{i=1}^{d} P\left(|X_k(t_i)| > \frac{1}{2}\log(k+1)\right) < 1$$
$$\implies n_0 = \exp\left(c\sqrt{\log(d)}\right) = O\left(d^{\varepsilon}\right) \text{ for any } \varepsilon > 0.$$

Milestone / Record Breaking for Random Walks

• A similar technique used to sample the last time N such that

$$A_n < \frac{1}{2}n.$$

- E > - E >

• A similar technique used to sample the last time N such that

$$A_n < \frac{1}{2}n.$$

• In this case it suffices to sample A_n jointly with

$$\max_{m\geq n} \{A_m - m/2\}$$

rare event simulation techniques can be applied (see B. & Wallwater (2014)).

Want to design a finite variance estimator $W(y_1, ..., y_d)$ so that

$$E(W(y_1,...,y_d)) = f_M(y_1,...,y_d).$$

æ

イロト イ理ト イヨト イヨトー

An Illustration of the Density Pictures

2

э

Some Pictures: 3-d Density

э

Some Malliavin Calculus

• Follow an idea from Malliavin & Thalmaier.

34 / 41

Some Malliavin Calculus

- Follow an idea from Malliavin & Thalmaier.
- Consider Poisson's equation

 $\Delta u = f$

formally if $G\left(\cdot
ight)$ is the Poisson kernel we have

$$u(x) = \int f(y) G(x-y) dy.$$

▶ 《혼▶ 《혼▶

Some Malliavin Calculus

- Follow an idea from Malliavin & Thalmaier.
- Consider Poisson's equation

$$\Delta u = f$$

formally if $G\left(\cdot\right)$ is the Poisson kernel we have

$$u(x) = \int f(y) G(x-y) dy.$$

So, formally

$$\Delta u(x) = \int f(y) \Delta G(x-y) dy = f(x)$$

$$\Delta G(x-y) dy = \delta(x-y) dy$$

$$f_{M}(x_{1},...,x_{d}) = E(\Delta G(x-M)).$$

- E - - E -

Applying Malliavin Thalmaier Formula

• For $d \ge 3$ we have that

$$\Delta G (x - y) = \sum_{i=1}^{d} \frac{\partial^2 G (x)}{\partial x_i^2} (x - y),$$

$$G_i (x) = \frac{\partial G (x)}{\partial x_i} = \kappa_d \frac{x_i}{\|x\|_2^d}, \quad G (x) = \kappa'_d \frac{1}{\|x\|_2^{d-2}}$$

2

イロト イ理ト イヨト イヨト

Applying Malliavin Thalmaier Formula

• For $d \ge 3$ we have that

$$\Delta G(x-y) = \sum_{i=1}^{d} \frac{\partial^2 G(x)}{\partial x_i^2} (x-y),$$

$$G_i(x) = \frac{\partial G(x)}{\partial x_i} = \kappa_d \frac{x_i}{\|x\|_2^d}, \quad G(x) = \kappa'_d \frac{1}{\|x\|_2^{d-2}}$$

• Higher order derivatives of G implies higher variability...

イロト イヨト イヨト イヨト

Applying Malliavin Thalmaier Formula

For *d* ≥ 3 we have that

$$\Delta G(x-y) = \sum_{i=1}^{d} \frac{\partial^2 G(x)}{\partial x_i^2} (x-y),$$

$$G_i(x) = \frac{\partial G(x)}{\partial x_i} = \kappa_d \frac{x_i}{\|x\|_2^d}, \quad G(x) = \kappa'_d \frac{1}{\|x\|_2^{d-2}}$$

- Higher order derivatives of G implies higher variability...
- Two ways to fix this: Integration by parts & Randomized Multilevel Monte Carlo.

- 4 同 6 4 日 6 4 日 6

• We claim

$$\frac{\partial G_i\left(x-M_n\right)}{\partial x_i} = -\frac{\partial G_i\left(x-M_n\right)}{\partial M_n\left(t_i\right)} = -\sum_{k=1}^n \frac{\partial G_i\left(x-M_n\right)}{\partial X_k\left(t_i\right)}$$

(日) (同) (三) (三)

• We claim

$$\frac{\partial G_{i}\left(x-M_{n}\right)}{\partial x_{i}}=-\frac{\partial G_{i}\left(x-M_{n}\right)}{\partial M_{n}\left(t_{i}\right)}=-\sum_{k=1}^{n}\frac{\partial G_{i}\left(x-M_{n}\right)}{\partial X_{k}\left(t_{i}\right)}$$

• Let's check second equality:

$$\begin{split} M_n\left(t_i\right) &= \max_{1\leq k\leq n} \{X_k\left(t_i\right) - a_k\}.\\ \sum_{k=1}^n \frac{\partial M_n\left(t_i\right)}{\partial X_k\left(t_i\right)} &= \sum_{k=1}^n I\left(M_n\left(t_i\right) = X_k\left(t_i\right) - a_k\right) = 1.\\ \frac{\partial G_i\left(x - M_n\right)}{\partial X_k\left(t_i\right)} &= \frac{\partial G_i\left(x - M_n\right)}{\partial M_n\left(t_i\right)} \frac{\partial M_n\left(t_i\right)}{\partial X_k\left(t_i\right)}\\ \frac{\partial G_i\left(x - M_n\right)}{\partial X_k\left(t_i\right)} &= \frac{\partial G_i\left(x - M_n\right)}{\partial M_n\left(t_i\right)}. \end{split}$$

• Integration by parts yields (with $\Sigma = cov(X_k)$)

$$E\left(\frac{\partial G_{i}\left(x-M_{n}\right)}{\partial X_{k}\left(t_{i}\right)}\right)=-E\left(G_{i}\left(x-M_{n}\right)\cdot e_{i}^{T}\Sigma^{-1}X_{k}\right)$$

< ロト < 同ト < ヨト < ヨト

• Integration by parts yields (with $\Sigma = cov(X_k)$)

$$E\left(\frac{\partial G_{i}\left(x-M_{n}\right)}{\partial X_{k}\left(t_{i}\right)}\right)=-E\left(G_{i}\left(x-M_{n}\right)\cdot e_{i}^{T}\Sigma^{-1}X_{k}\right)$$

Therefore

$$E\left(\frac{\partial G_{i}\left(x-M_{n}\right)}{\partial x_{i}}\right) = -\sum_{k=1}^{n} E\left(\frac{\partial G_{i}\left(x-M_{n}\right)}{\partial X_{k}\left(t_{i}\right)}\right)$$
$$= E\left(G_{i}\left(x-M_{n}\right) \cdot e_{i}^{T}\Sigma^{-1}\sum_{k=1}^{n}X_{k}\right)$$
$$f_{M_{n}}\left(x_{1},...,x_{d}\right) = E\left(\sum_{k=1}^{n}\sum_{i=1}^{d}G_{i}\left(x-M_{n}\right)e_{i}^{T}\Sigma^{-1}X_{k}\right)$$

.

· · · · · · · · ·

Improving Variance: Infinite Horizon Maxima

• Let \mathcal{F}_N be the information generated by the exact sampling procedure so that

$$M_N = M$$
,

then we have that for $m \geq 1$

$$E\left(X_{N+m}|\mathcal{F}_N
ight)=0$$
,

because given n > N, we have that $X_n(t_i)$ has a symmetric distribution.

Improving Variance: Infinite Horizon Maxima

• Let \mathcal{F}_N be the information generated by the exact sampling procedure so that

$$M_N = M$$
,

then we have that for $m \geq 1$

$$\mathsf{E}\left(X_{\mathsf{N}+m}|\mathcal{F}_{\mathsf{N}}
ight)=0$$
,

because given n > N, we have that $X_n(t_i)$ has a symmetric distribution.

Thus

$$\lim_{n \to \infty} f_{M_n}(x_1, ..., x_d) = f_{M_n}(x_1, ..., x_d)$$

= $E\left(\sum_{k=1}^N \sum_{i=1}^d G_i(x - M) e_i^T \Sigma^{-1} X_k\right)$

Continue Integrating by Parts

• The estimator

$$W(x-M) = \sum_{k=1}^{N} \sum_{i=1}^{d} G_i(x-M) e_i^T \Sigma^{-1} X_k.$$

æ

イロト イヨト イヨト イヨト

• The estimator

$$W(x-M) = \sum_{k=1}^{N} \sum_{i=1}^{d} G_i(x-M) e_i^T \Sigma^{-1} X_k.$$

- One can continue obtaining
 - $\begin{array}{rl} \mbox{quadratic weight} & \Rightarrow & \mbox{finite variance } d \leq 3 \\ \mbox{Cubic weight} & \Rightarrow & \mbox{finite variance } d \leq 5 \end{array}$

• • = • • = •

• Out starting point is estimator

$$W(x) = \sum_{k=1}^{N} \sum_{i=1}^{d} G_i (x - M) e_i^T \Sigma^{-1} X_k.$$

・ロト ・聞ト ・ ほト ・ ほト

• Out starting point is estimator

$$W(x) = \sum_{k=1}^{N} \sum_{i=1}^{d} G_i \left(x - M \right) e_i^T \Sigma^{-1} X_k.$$

• Randomized Multilevel Monte Carlo, introducing the differences

$$\Delta_n = G_i^{n+1} (x - M) - G_i^n (x - M);$$

$$G_i^n (x - M) = \kappa_d \frac{x_i - M(t_i)}{\|x - M\|_2^d + \|x - M\|_2 / \log(n+1)}.$$

• Max-stable fields are natural models for extremes, but present computational challenges.

▶ ▲ 돈 ▶ ▲ 돈 ▶

- Max-stable fields are natural models for extremes, but present computational challenges.
- First asymptotically optimal exact simulation algorithms for max-stable fields.

- E - - E -

- Max-stable fields are natural models for extremes, but present computational challenges.
- First asymptotically optimal exact simulation algorithms for max-stable fields.
- Ideas based on record-breaking events & rare-event simulation.

- Max-stable fields are natural models for extremes, but present computational challenges.
- First asymptotically optimal exact simulation algorithms for max-stable fields.
- Ideas based on record-breaking events & rare-event simulation.
- Malliavin calculus ideas for first efficient density estimators for max-stable fields.