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What is our Goal?

Our goal is to enable effi cient Monte Carlo of extreme events in
space...

Our focus here is on Max-stable Fields.
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Elements of Extreme Value Analysis

A little story... Gumbel.

Textbook Example: Given storm surges observed over the last 100
yrs in NYC, what’s the maximum height of a storm surge which gets
exceeded only about once in 1000 yrs?

Answer: One must extrapolate...
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Extreme Value Theory (EVT): The IID case

Theorem (Fisher-Tippet-Gnedenko)

Suppose X1, ...,Xn is an IID sequence and define Zn = max{X1, ...,Xn}. If
there exists {(an, bn)}n≥1 deterministic numbers such that

Zn
D≈ bnM + an,

then M must be a max-stable distribution.
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Max-stable Distributions

A max-stable r.v. M is characterized by the fact that if
M1,M2, ...,Mn are i.i.d. copies of M then

M
D
=

n
max
i=1

(Mi − an) /bn.

We also have that

P (M ≤ x) = exp
(
− (1+ γx)−1/γ

)
1+ γx > 0.

P (M ≤ x) = exp (− exp (−x)) ; γ = 0 (the Gumbel case).

In practice Zm = max{X(m−1)n+1, ...,Xmn}
D
= a+ bMm , apply MLE

to estimate a, b,γ & ready to extrapolate...

But in many cases it is important to account for spatial
dependence...
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What is a Catastrophe Bond?
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Diagram Illustrating Catastrophe Bonds Risk Calculation

Blanchet (Columbia) 7 / 41



Case Study: MetroCat Re Ltd

The MTA (New York & New Jersey authorities) obtained parametric
triggered storm surge.

Motivated by high insurance costs after Hurricane Sandy in 10/2012.

The parametric trigger is based on weighted average of maximum
water levels in several locations.
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Max-stable Random Fields

How does one define natural models of extremes in space?

Definition: M (·) is a max-stable field if

M (·) D= n
max
i=1

(Mi (·)− an (·)) /bn (·) ,

for i.i.d. M1 (·) , ...,Mn (·) of M (·) and some an (·) , bn (·).

How to construct max-stable fields?
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Characterizations of Max-stable Fields

A large class of max-stable fields can be represented as:

M (t) = sup
n≥1
{− log (An) + Xn (t)},

where Xn (·) is Gaussian.

An = n-th arrival of Poisson process with rate 1 (independent of
Xn (·)).

Brown-Resnick, de Haan, Smith, Schlather, Kabluchko,...
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This is How a Max-Stable Field Looks Like
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Computing Joint CDFs

P
(
eM (t1) ≤ ex1 , eM (t1) ≤ ex2

)
= P (Poisson r.v. = 0)

= exp (−E max {exp (Xn (t1)− x1) , exp (Xn (t2)− x2)})
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Max-Stable Fields: Computational Challenges

Joint densities for M (t1) , ...,M (td ) quickly become intractable
(d = 10 contains more than 105 terms).

Likelihood methods applicable in low dimensions only.

In the end we want to effi ciently evaluate quantities such as

P
(∫

T
w (t)M (t) dt > b

)
, <—CAT Bond Example

fM (t1),...,M (tk ) (x1, ..., xk ) ,

fM (t1),...,M (tk )|M (s1),...,M (sd ) (x1, ..., xk | z1, ..., zd ) .

Blanchet (Columbia) 13 / 41



Max-Stable Fields: Computational Challenges

Joint densities for M (t1) , ...,M (td ) quickly become intractable
(d = 10 contains more than 105 terms).

Likelihood methods applicable in low dimensions only.

In the end we want to effi ciently evaluate quantities such as

P
(∫

T
w (t)M (t) dt > b

)
, <—CAT Bond Example

fM (t1),...,M (tk ) (x1, ..., xk ) ,

fM (t1),...,M (tk )|M (s1),...,M (sd ) (x1, ..., xk | z1, ..., zd ) .

Blanchet (Columbia) 13 / 41



Max-Stable Fields: Computational Challenges

Joint densities for M (t1) , ...,M (td ) quickly become intractable
(d = 10 contains more than 105 terms).

Likelihood methods applicable in low dimensions only.

In the end we want to effi ciently evaluate quantities such as

P
(∫

T
w (t)M (t) dt > b

)
, <—CAT Bond Example

fM (t1),...,M (tk ) (x1, ..., xk ) ,

fM (t1),...,M (tk )|M (s1),...,M (sd ) (x1, ..., xk | z1, ..., zd ) .

Blanchet (Columbia) 13 / 41



Our Contributions

Theorem 1 (B., Dieker, Liu, Mikosch ’16): Algorithm for sampling
M (t1) , ...,M (td ) with virtually the same asymptotic complexity as

sampling X1 (t1) , ...,X1 (td ) as d → ∞.

In other words, M (t1) , ...,M (td ) is basically as "easy" as
X1 (t1) , ...,X1 (td )...
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Our Contributions

Theorem 2 (B. and Liu ’16): Construction of a finite variance
W (y1, ..., yd ) such that

fM (t1),...,M (td ) (y1, ..., yd ) = E (W (y1, ..., yd )) .

The estimator takes O
(
ε−2 log2 (1/ε)

)
samples to achieve ε error.

Theorem 3 (B. and Liu ’16): Construction of W (y1, ..., yk , z1, ..., zd )
such that

fM (t1),...,M (tk )|M (s1),...,M (sd ) (y1, ..., yk | z1, ..., zd )
= E (W (y1, ..., yk , z1, ..., zd )) ,

similar complexity as Theorem 2.
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A Quick Review of Current Methodology

State-of-the-art: Exact sampling algorithms due to Dieker and
Mikosch (2015), and Dombry, Engelke, Oesting (2016).

Summary of computational complexity (BDML = Our method):

Dieker & Mikosch = BDML ×d × log (d) .
DEO = BDML ×d .

For example if Xn (·) is Brownian motion our method takes O (d)
complexity to sample M (t1) , ...,M (td ). Both DM and DEO take at
least O

(
d2
)
complexity.
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Comparison vs Dieker & Mikosch

Log-log plot: Grid points vs time in seconds
RED = Our Method vs BLUE = Alternative method.
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Optimal Simulation of Max-stable Processes

Find two crucial quantities:

1 NX such that for n ≥ NX :
d
max
i=1
|Xn (ti )| ≤

1
2
log (n+ 1) .

2 NA such that for n ≥ NA :

An >
n+ 1
2
.

Note that for m ≥ max (NA,NX )

max
n≥m
{Xn (ti )− log (An)} ≤ −

log (m+ 1)
2

+ log (2) .

Need to detect when

− log (m+ 1) /2+ log (2) ≤
d
min
i=1

X1 (ti )− log (A1) .
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Optimal Simulation of Max-stable Processes

If Xn (·) is continuous on the compact set T , then

max
t∈T
|Xn (t)| = Op

(
(log (n))1/2

)
.

By the LLNs
An/n→ 1.

So detection of NX and NA should take O (1) time as d → ∞.
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The Milestone / Record Breaking Events Technique

Used several times: B. & Sigman (2011), B. & Chen (2012), B. &
Dong (2013), B. & Wallwater (2014), B., Chen & Dong (2015).

Borrow intuition from rare event simulation.

Let us write Xn = {Xn (ti )}di=1 so ‖Xn‖∞ = max
d
i=1 |Xn (ti )|.

Let τ0 = n0 − 1 (n0 chosen later) and let

τk+1 = inf{n > τk : ‖Xn‖∞ >
1
2
log (n+ 1)},

NX = sup{τk : τk < ∞}.

Can we sample Bernoulli with P (τ1 < ∞)? Can we simulate
X1 (·) , ...,Xτ1 (·) given τ1 < ∞?
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Borrow from Rare Event Simulation Intuition

Say n0 is large: How does the rare event

{τ1 < ∞} =
∞⋃

n=n0

{‖Xn‖∞ >
1
2
log (n+ 1)} occur?

Approximate the optimal importance sampling distribution

P (τ1 = n|τ1 < ∞) =
P
(
‖Xn‖∞ >

1
2 log (n+ 1) , τ1 > n− 1

)
P (τ1 < ∞)

≈
P
(
‖Xn‖∞ >

1
2 log (n+ 1)

)
P (τ1 < ∞)

≈ ∑d
i=1 P

(
|Xn (ti )| > 1

2 log (n+ 1)
)

P (τ1 < ∞)
.

This suggests a natural importance sampling strategy...
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Will the First Record Breaking Event Occur?

1 Sample K so that for K ≥ n0

Q (K = n) =
∑d
i=1 P

(
|Xn (ti )| > 1

2 log (n+ 1)
)

∑∞
k=n0 ∑d

i=1 P
(
|Xk (ti )| > 1

2 log (k + 1)
) .

2 Define h (n) = P (τ1 = n) /Q (K = n) then

P (τ1 < ∞) = EQ (h (K )) =
∞

∑
n=n0

P (τ1 = n) .

3 If h (k) ≤ 1 then I{τ1 < ∞} is Bernoulli(h(K )) with K sampled
under Q.
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Will the First Record Breaking Event Occur?

1 Choose n0 such that

h (n) =
∞

∑
k=n0

d

∑
i=1
P
(
|Xk (ti )| >

1
2
log (k + 1)

)
×P

(
‖Xk‖∞ ≤

1
2
log (1+ k) ∀ n0 ≤ k < n

)
×

P
(
‖Xn‖∞ >

1
2 log (n+ 1)

)
∑d
i=1 P

(
|Xn (ti )| > 1

2 log (n+ 1)
) < 1.

2 Sample a Bernoulli with parameter:

P
(
‖Xn‖∞ >

1
2 log (n+ 1)

)
∑d
i=1 P

(
|Xn (ti )| > 1

2 log (n+ 1)
) .
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log (1+ k) ∀ n0 ≤ k < n

)
×

P
(
‖Xn‖∞ >

1
2 log (n+ 1)

)
∑d
i=1 P

(
|Xn (ti )| > 1

2 log (n+ 1)
) < 1.

2 Sample a Bernoulli with parameter:

P
(
‖Xn‖∞ >

1
2 log (n+ 1)

)
∑d
i=1 P

(
|Xn (ti )| > 1

2 log (n+ 1)
) .
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A Related Acceptance / Rejection Question

Sampling from P
(
· | ‖Xn‖∞ >

1
2 log (n+ 1)

)
by acceptance /

rejection.

Proposal distribution Q (·) described next:
1 Sample J with probability

Q (J = j) =
P
(
|Xn (tj )| > 1

2 log (n+ 1)
)

∑d
i=1 P

(
|Xn (ti )| > 1

2 log (n+ 1)
) .

2 Given J = j , sample Xn = {Xn (ti )}di=1
Q (Xn (ti ) ∈ dxi , ...,Xn (td ) ∈ dxd | J = j)

= P
(
Xn (ti ) ∈ dxi , ...,Xn (td ) ∈ dxd | |Xn (tj )| >

1
2
log (n+ 1)

)
=

P (Xn (ti ) ∈ dxi , ...,Xn (td ) ∈ dxd ) · I
(
|xn (tj )| > 1

2 log (n+ 1)
)

P
(
|Xn (tj )| > 1

2 log (n+ 1)
) .
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Computing the Likelihood Ratio

Likelihood of Xn under Q

Q (Xn) = ∑
j
Q (Xn |J = j)Q (J = j)

= ∑
j
P (Xn)

I
(
|xn (tj )| > 1

2 log (n+ 1)
)

P
(
|Xn (tj )| > 1

2 log (n+ 1)
)Q (J = j)

= P (Xn)∑
j

(
I
(
|xn (tj )| > 1

2 log (n+ 1)
)

P
(
|Xn (tj )| > 1

2 log (n+ 1)
)

×
P
(
|Xn (tj )| > 1

2 log (n+ 1)
)

∑d
i=1 P

(
|Xn (ti )| > 1

2 log (n+ 1)
))

= P (Xn)
∑j I

(
|xn (tj )| > 1

2 log (n+ 1)
)

∑d
i=1 P

(
|Xn (ti )| > 1

2 log (n+ 1)
) .
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Acceptance / Rejection Execution

Likelihood of Xn under Q

dQ
dP

(Xn) =
∑d
j=1 I (|Xn (tj )| > log (n+ 1) /2)

∑d
i=1 P (|Xn (ti )| > log (n+ 1) /2)

.

We conclude

dP
(
Xn | ‖Xn‖∞ >

log(n+1)
2

)
dQ

=
I
(
‖Xn‖∞ >

log(n+1)
2

)
P
(
‖Xn‖∞ >

log(n+1)
2

) dP
dQ
≤

∑d
i=1 P

(
|Xn (ti )| > log(n+1)

2

)
P
(
‖Xn‖∞ >

log(n+1)
2

) .

By general acceptance / rejection theory we have:

Probability of accepting =
P (‖Xn‖∞ > log (n+ 1) /2)

∑d
i=1 P (|Xn (ti )| > log (n+ 1) /2)

.
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Summary

We sampled B = Bernoulli (h (n)) = I (τ1 < ∞) with h (n):

h (n) =
∞

∑
k=n0

d

∑
i=1
P
(
|Xk (ti )| >

1
2
log (k + 1)

)
×P

(
‖Xk‖∞ ≤

1
2
log (1+ k) ∀ n0 ≤ k < n

)
×

P
(
‖Xn‖∞ >

1
2 log (n+ 1)

)
∑d
i=1 P

(
|Xn (ti )| > 1

2 log (n+ 1)
) < 1.

Also sampled Xn given ‖Xn‖∞ >
1
2 log (n+ 1) by acceptance

rejection:

Probability of accepting =
P (‖Xn‖∞ > log (n+ 1) /2)

∑d
i=1 P (|Xn (ti )| > log (n+ 1) /2)

.
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Exact Sampling Property

Also we actually obtain:

LawQ (X1, ...,XK ,K |B = 1) = LawP (X1, ...,Xτ1 , τ1|τ1 < ∞) .

Let’s check this identity:

Q(X1 ∈ dx1, ...,Xn ∈ dx ,K = n,B = 1)

= Q (K = n)
∞

∑
k=n0

d

∑
i=1
P
(
|Xk (ti )| >

1
2
log (k + 1)

)
×P (Xn0 ∈ dx , ...,Xn−1 ∈ dxn−1 | τ1 > n− 1)

×P
(
Xn ∈ dx | ‖Xn‖∞ >

log (n+ 1)
2

)
= P (τ1 = n)P (X1 ∈ dx1, ...,Xn ∈ dx | τ1 = n)

= P (X1 ∈ dx1, ...,Xn ∈ dx , τ1 = n, τ1 < ∞) .
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How to Continue? What Drives the Complexity?

Subsequently sample τ2, ..., τL−1 = NX until τL = ∞.

Note that Xn can be easily simulated even if n > NX .

{Xn : n ≥ NX + 1} are still independent but conditioned
on ‖Xn‖∞ ≤ log (n+ 1) /2) for n ≥ NX + 1

Total complexity turns out to be driven by n0 such that

∞

∑
k=n0

d

∑
i=1
P
(
|Xk (ti )| >

1
2
log (k + 1)

)
< 1

=⇒ n0 = exp
(
c
√
log (d)

)
= O (d ε) for any ε > 0.
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Milestone / Record Breaking for Random Walks

A similar technique used to sample the last time N such that

An <
1
2
n.

In this case it suffi ces to sample An jointly with

max
m≥n
{Am −m/2}

rare event simulation techniques can be applied (see B. &

Wallwater (2014)).
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Density Estimation

Want to design a finite variance estimator W (y1, ..., yd ) so that

E (W (y1, ..., yd )) = fM (y1, ..., yd ).
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An Illustration of the Density Pictures
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Some Pictures: 3-d Density
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Some Malliavin Calculus

Follow an idea from Malliavin & Thalmaier.

Consider Poisson’s equation

∆u = f

formally if G (·) is the Poisson kernel we have

u (x) =
∫
f (y)G (x − y) dy .

So, formally

∆u (x) =
∫
f (y)∆G (x − y) dy = f (x)

∆G (x − y) dy = δ (x − y) dy
fM (x1, ..., xd ) = E (∆G (x −M)) .
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Applying Malliavin Thalmaier Formula

For d ≥ 3 we have that

∆G (x − y) =
d

∑
i=1

∂2G (x)
∂x2i

(x − y) ,

Gi (x) =
∂G (x)

∂xi
= κd

xi
‖x‖d2

, G (x) = κ′d
1

‖x‖d−22

Higher order derivatives of G implies higher variability...

Two ways to fix this: Integration by parts & Randomized
Multilevel Monte Carlo.
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Improving Variance: Integration by Parts for Finite Maxima

We claim

∂Gi (x −Mn)

∂xi
= −∂Gi (x −Mn)

∂Mn (ti )
= −

n

∑
k=1

∂Gi (x −Mn)

∂Xk (ti )
.

Let’s check second equality:

Mn (ti ) = max
1≤k≤n

{Xk (ti )− ak}.
n

∑
k=1

∂Mn (ti )
∂Xk (ti )

=
n

∑
k=1

I (Mn (ti ) = Xk (ti )− ak ) = 1.

∂Gi (x −Mn)

∂Xk (ti )
=

∂Gi (x −Mn)

∂Mn (ti )
∂Mn (ti )
∂Xk (ti )

n

∑
k=1

∂Gi (x −Mn)

∂Xk (ti )
=

∂Gi (x −Mn)

∂Mn (ti )
.
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Improving Variance: Integration by Parts for Finite Maxima

Integration by parts yields (with Σ = cov (Xk ))

E
(

∂Gi (x −Mn)

∂Xk (ti )

)
= −E

(
Gi (x −Mn) · eTi Σ−1Xk

)

Therefore

E
(

∂Gi (x −Mn)

∂xi

)
= −

n

∑
k=1

E
(

∂Gi (x −Mn)

∂Xk (ti )

)

= E

(
Gi (x −Mn) · eTi Σ−1

n

∑
k=1

Xk

)

fMn (x1, ..., xd ) = E

(
n

∑
k=1

d

∑
i=1
Gi (x −Mn) eTi Σ−1Xk

)
.
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Improving Variance: Infinite Horizon Maxima

Let FN be the information generated by the exact sampling procedure
so that

MN = M,

then we have that for m ≥ 1

E (XN+m |FN ) = 0,

because given n > N, we have that Xn (ti ) has a symmetric
distribution.

Thus

lim
n→∞

fMn (x1, ..., xd ) = fMn (x1, ..., xd )

= E

(
N

∑
k=1

d

∑
i=1
Gi (x −M) eTi Σ−1Xk

)
.
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Continue Integrating by Parts

The estimator

W (x −M) =
N

∑
k=1

d

∑
i=1
Gi (x −M) eTi Σ−1Xk .

One can continue obtaining

quadratic weight ⇒ finite variance d ≤ 3
Cubic weight ⇒ finite variance d ≤ 5

...
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Applying Multilevel Monte Carlo

Out starting point is estimator

W (x) =
N

∑
k=1

d

∑
i=1
Gi (x −M) eTi Σ−1Xk .

Randomized Multilevel Monte Carlo, introducing the differences

∆n = G n+1i (x −M)− G ni (x −M) ;

G ni (x −M) = κd
xi −M (ti )

‖x −M‖d2 + ‖x −M‖2 / log(n+ 1)
.
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Conclusions

Max-stable fields are natural models for extremes, but present
computational challenges.
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