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Goal:

Goal: Introduce optimal transport techniques
and applications in OR & Statistics

Optimal transport is useful tool in model robustness, equilibrium,
and machine learning!
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Introduction to Optimal Transport

Monge-Kantorovich Problem & Duality
(see e.g. C. Villani’s 2008 textbook)
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Monge Problem

What’s the cheapest way to transport a pile of sand to cover a
sinkhole?
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Monge Problem

What’s the cheapest way to transport a pile of sand to cover a
sinkhole?

min
T (·):T (X )∼v

Eµ {c (X ,T (X ))} ,

where c (x , y) ≥ 0 is the cost of transporting x to y .
T (X ) ∼ v means T (X ) follows distribution v (·).
Problem is highly non-linear, not much progress for about 160 yrs!
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Kantorovich Relaxation: Primal Problem

Let Π (µ, v) be the class of joint distributions π of random variables
(X ,Y ) such that

πX = marginal of X = µ, πY = marginal of Y = v .

Solve
min{Eπ [c (X ,Y )] : π ∈ Π (µ, v)}

Linear programming (infinite dimensional):

Dc (µ, v) : = min
π(dx ,dy )≥0

∫
X×Y

c (x , y)π (dx , dy)∫
Y

π (dx , dy) = µ (dx) ,
∫
X

π (dx , dy) = v (dy) .

If c (x , y) = dp (x , y) (d-metric) then D1/p
c (µ, v) is a p-Wasserstein

metric.

Blanchet (Columbia U. and Stanford U.) 7 / 60



Kantorovich Relaxation: Primal Problem

Let Π (µ, v) be the class of joint distributions π of random variables
(X ,Y ) such that

πX = marginal of X = µ, πY = marginal of Y = v .

Solve
min{Eπ [c (X ,Y )] : π ∈ Π (µ, v)}

Linear programming (infinite dimensional):

Dc (µ, v) : = min
π(dx ,dy )≥0

∫
X×Y

c (x , y)π (dx , dy)∫
Y

π (dx , dy) = µ (dx) ,
∫
X

π (dx , dy) = v (dy) .

If c (x , y) = dp (x , y) (d-metric) then D1/p
c (µ, v) is a p-Wasserstein

metric.

Blanchet (Columbia U. and Stanford U.) 7 / 60



Kantorovich Relaxation: Primal Problem

Let Π (µ, v) be the class of joint distributions π of random variables
(X ,Y ) such that

πX = marginal of X = µ, πY = marginal of Y = v .

Solve
min{Eπ [c (X ,Y )] : π ∈ Π (µ, v)}

Linear programming (infinite dimensional):

Dc (µ, v) : = min
π(dx ,dy )≥0

∫
X×Y

c (x , y)π (dx , dy)∫
Y

π (dx , dy) = µ (dx) ,
∫
X

π (dx , dy) = v (dy) .

If c (x , y) = dp (x , y) (d-metric) then D1/p
c (µ, v) is a p-Wasserstein

metric.

Blanchet (Columbia U. and Stanford U.) 7 / 60



Kantorovich Relaxation: Primal Problem

Let Π (µ, v) be the class of joint distributions π of random variables
(X ,Y ) such that

πX = marginal of X = µ, πY = marginal of Y = v .

Solve
min{Eπ [c (X ,Y )] : π ∈ Π (µ, v)}

Linear programming (infinite dimensional):

Dc (µ, v) : = min
π(dx ,dy )≥0

∫
X×Y

c (x , y)π (dx , dy)∫
Y

π (dx , dy) = µ (dx) ,
∫
X

π (dx , dy) = v (dy) .

If c (x , y) = dp (x , y) (d-metric) then D1/p
c (µ, v) is a p-Wasserstein

metric.

Blanchet (Columbia U. and Stanford U.) 7 / 60



Illustration of Optimal Transport Costs

Monge’s solution would take the form

π∗ (dx , dy) = δ{T (x )} (dy) µ (dx) .
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Kantorovich Relaxation: Dual Problem

Primal has always a solution for c (·) ≥ 0 lower semicontinuous.

Linear programming (Dual):

sup
α,β

∫
X

α (x) µ (dx) +
∫
Y

β (y) v (dy)

α (x) + β (y) ≤ c (x , y) ∀ (x , y) ∈ X ×Y .

Dual α and β can be taken over continuous functions.

Complementary slackness: Equality holds on the support of π∗

(primal optimizer).
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Kantorovich Relaxation: Primal Interpretation

John wants to remove of a pile of sand, µ (·).

Peter wants to cover a sinkhole, v (·).
Cost for John and Peter to transport the sand to cover the sinkhole is

Dc (µ, v) =
∫
X×Y

c (x , y)π∗ (dx , dy) .

Now comes Maria, who has a business...

Maria promises to transport on behalf of John and Peter the whole
amount.
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Kantorovich Relaxation: Primal Interpretation

Maria charges John α (x) per-unit of mass at x (similarly to Peter).

For Peter and John to agree we must have

α (x) + β (y) ≤ c (x , y) .

Maria wishes to maximize her profit∫
α (x) µ (dx) +

∫
β (y) v (dy) .

Kantorovich duality says primal and dual optimal values coincide and
(under mild regularity)

α∗ (x) = inf
y
{c (x , y)− β∗ (y)}

β∗ (y) = inf
x
{c (x , y)− α∗ (x)} .
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Proof Techniques

Suppose X and Y compact

sup
π≥0,

inf
α,β

{∫
X×Y

c (x , y)π (dx , dy)

−
∫
X×Y

α (x)π (dx , dy) +
∫
X

α (x) µ (dx)

−
∫
X×Y

β (y)π (dx , dy) +
∫
Y

β (y) v (dy)}

Swap sup and inf using Sion’s min-max theorem by a compactness
argument and conclude.

Significant amount of work needed to extend to general Polish spaces
and construct the dual optimizers (primal a bit easier).
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Optimal Transport Applications

Optimal Transport has gained popularity in many areas
including: image analysis, economics, statistics, machine learning...

The rest of the talk mostly concerns applications to OR and Statistics
but we’ll briefly touch upon others, including economics...
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Illustration of Optimal Transport in Image Analysis

Santambrogio (2010)’s illustration
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Application of Optimal Transport in Economics

Economic Interpretations
(see e.g. A. Galichon’s 2016 textbook & McCaan 2013 notes).
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Applications in Labor Markets

Worker with skill x & company with technology y have surplus
Ψ (x , y).

The population of workers is given by µ (x).

The population of companies is given by v (y).

The salary of worker x is α (x) & cost of technology y is β (y)

α (x) + β (y) ≥ Ψ (x , y) .

Companies want to minimize total production cost∫
α (x) µ (x) dx +

∫
β (y) v (y) dy
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Applications in Labor Markets

Letting a central planner organize the Labor market

The planner wishes to maximize total surplus∫
Ψ (x , y)π (dx , dy)

Over assignments π (·) which satisfy market clearing∫
Y

π (dx , dy) = µ (dx) ,
∫
X

π (dx , dy) = v (dy) .
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Solving for Optimal Transport Coupling

Suppose that Ψ (x , y) = xy , µ (x) = I (x ∈ [0, 1]),
v (y) = e−y I (y > 0).

Solve primal by sampling: Let {X ni }
n
i=1 and {Y ni }

n
i=1 both i.i.d. from

µ and v , respectively.

Fµn (x) =
1
n

n

∑
i=1
I (X ni ≤ x) , Fvn (y) =

1
n

n

∑
j=1
I
(
Y nj ≤ y

)
Consider

max
π(x ni ,x nj )≥0

∑
i ,j

Ψ
(
xni , y

n
j

)
π
(
xni , y

n
j

)
∑
j

π
(
xni , y

n
j

)
=
1
n
∀xi , ∑

i
π
(
xni , y

n
j

)
=
1
n
∀yj .

Clearly, simply sort and match is the solution!
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Solving for Optimal Transport Coupling

Think of Y nj = − log
(
1− Unj

)
for Unj s i.i.d. uniform(0, 1).

The j-th order statistic X n(j) is matched to Y
n
(j).

As n→ ∞, X n(nt) → t, so Y n(nt) → − log (1− t).
Thus, the optimal coupling as n→ ∞ is X = U and
Y = − log (1− U) (comonotonic coupling).
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Identities for Wasserstein Distances

Comonotonic coupling is the solution if ∂2x ,yΨ (x , y) ≥ 0 -
supermodularity.

Of for costs c (x , y) = −Ψ (x , y) if ∂2x ,y c (x , y) ≤ 0 (submodularity).
Corollary: Suppose c (x , y) = |x − y | then X = F−1µ (U) and
Y = F−1v (U) thus

Dc
(
Fµ,Fv

)
=
∫ 1

0

∣∣∣F−1µ (u)− F−1v (u)
∣∣∣ du.
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Interesting Insight on Salary Effects

In equilibrium, by the envelope theorem

β̇
∗
(y) =

d
dy
sup
x
[Ψ (x , y)− λ∗ (x)] =

∂

∂y
Ψ (xy , y) = xy .

We also know that y = − log (1− x), or x = 1− exp (−y)

β∗ (y) = y + exp (−y)− 1+ β∗ (0) .

α∗ (x) + β∗ (− log (1− x)) = xy .

What if Ψ (x , y)→ Ψ (x , y) + f (x)? (i.e. productivity grows).
Answer: salaries grows if f (·) is increasing.

Blanchet (Columbia U. and Stanford U.) 21 / 60



Interesting Insight on Salary Effects

In equilibrium, by the envelope theorem

β̇
∗
(y) =

d
dy
sup
x
[Ψ (x , y)− λ∗ (x)] =

∂

∂y
Ψ (xy , y) = xy .

We also know that y = − log (1− x), or x = 1− exp (−y)

β∗ (y) = y + exp (−y)− 1+ β∗ (0) .

α∗ (x) + β∗ (− log (1− x)) = xy .

What if Ψ (x , y)→ Ψ (x , y) + f (x)? (i.e. productivity grows).
Answer: salaries grows if f (·) is increasing.

Blanchet (Columbia U. and Stanford U.) 21 / 60



Interesting Insight on Salary Effects

In equilibrium, by the envelope theorem

β̇
∗
(y) =

d
dy
sup
x
[Ψ (x , y)− λ∗ (x)] =

∂

∂y
Ψ (xy , y) = xy .

We also know that y = − log (1− x), or x = 1− exp (−y)

β∗ (y) = y + exp (−y)− 1+ β∗ (0) .

α∗ (x) + β∗ (− log (1− x)) = xy .

What if Ψ (x , y)→ Ψ (x , y) + f (x)? (i.e. productivity grows).

Answer: salaries grows if f (·) is increasing.

Blanchet (Columbia U. and Stanford U.) 21 / 60



Interesting Insight on Salary Effects

In equilibrium, by the envelope theorem

β̇
∗
(y) =

d
dy
sup
x
[Ψ (x , y)− λ∗ (x)] =

∂

∂y
Ψ (xy , y) = xy .

We also know that y = − log (1− x), or x = 1− exp (−y)

β∗ (y) = y + exp (−y)− 1+ β∗ (0) .

α∗ (x) + β∗ (− log (1− x)) = xy .

What if Ψ (x , y)→ Ψ (x , y) + f (x)? (i.e. productivity grows).
Answer: salaries grows if f (·) is increasing.

Blanchet (Columbia U. and Stanford U.) 21 / 60



Applications of Optimal Transport in Stochastic OR

Application of Optimal Transport in Stochastic OR
Blanchet and Murthy (2016)

https://arxiv.org/abs/1604.01446.

Insight: Diffusion approximations and optimal transport
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A Distributionally Robust Performance Analysis

In Stochastic OR we are often interested in evaluating

EPtrue (f (X ))

for a complex model Ptrue

Moreover, we wish to control / optimize it

min
θ
EPtrue (h (X , θ)) .

Model Ptrue might be unknown or too diffi cult to work with.

So, we introduce a proxy P0 which provides a good trade-off between
tractability and model fidelity (e.g. Brownian motion for heavy-traffi c
approximations).
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A Distributionally Robust Performance Analysis

For f (·) upper semicontinuous with EP0 |f (X )| < ∞

supEP (f (Y ))

Dc (P,P0) ≤ δ ,

X takes values on a Polish space and c (·) is lower semi-continuous.

Also an infinite dimensional linear program

sup
∫
X×Y

f (y)π (dx , dy)

s.t.
∫
X×Y

c (x , y)π (dx , dy) ≤ δ∫
Y

π (dx , dy) = P0 (dx) .
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A Distributionally Robust Performance Analysis

Formal duality:

Dual = inf
λ≥0,α

{
λδ+

∫
α (x)P0 (dx)

}
λc (x , y) + α (x) ≥ f (y) .

B. & Murthy (2016) - No duality gap:

Dual = inf
λ≥0

[
λδ+ E0

(
sup
y
{f (y)− λc (X , y)}

)]
.

We refer to this as RoPA Duality in this talk.

Let us consider the important case f (y) = I (y ∈ A) & c (x , x) = 0.
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A Distributionally Robust Performance Analysis

So, if f (y) = I (y ∈ A) and cA (X ) = inf{y ∈ A : c (x , y)}, then

Dual = inf
λ≥0

[
λδ+ E0 (1− λcA (X ))

+
]
= P0 (cA (X ) ≤ 1/λ∗) .

If cA (X ) is continuous under P0 & E0 (cA (X )) ≥ δ, then

δ = E0 [cA (X ) I (cA (X ) ≤ 1/λ∗)] .
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Example: Model Uncertainty in Bankruptcy Calculations

R (t) = the reserve (perhaps multiple lines) at time t.

Bankruptcy probability (in finite time horizon T )

uT = Ptrue (R (t) ∈ B for some t ∈ [0,T ]) .

B is a set which models bankruptcy.

Problem: Model (Ptrue) may be complex, intractable or simply
unknown...
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A Distributionally Robust Risk Analysis Formulation

Our solution: Estimate uT by solving

sup
Dc (P0,P )≤δ

Ptrue (R (t) ∈ B for some t ∈ [0,T ]) ,

where P0 is a suitable model.

P0 = proxy for Ptrue .

P0 right trade-off between fidelity and tractability.

δ is the distributional uncertainty size.

Dc (·) is the distributional uncertainty region.
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Desirable Elements of Distributionally Robust Formulation

Would like Dc (·) to have wide flexibility (even non-parametric).

Want optimization to be tractable.

Want to preserve advantages of using P0.

Want a way to estimate δ.
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Connections to Distributionally Robust Optimization

Standard choices based on divergence (such as Kullback-Leibler) -
Hansen & Sargent (2016)

D (v ||µ) = Ev
(
log
(
dv
dµ

))
.

Robust Optimization: Ben-Tal, El Ghaoui, Nemirovski (2009).

Big problem: Absolute continuity may typically be violated...
Think of using Brownian motion as a proxy model for R (t)...

Optimal transport is a natural option!
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Application 1: Back to Classical Risk Problem

Suppose that

c (x , y) = dJ (x (·) , y (·)) = Skorokhod J1 metric.
= inf

φ(·) bijection
{ sup
t∈[0,1]

|x (t)− y (φ (t))| , sup
t∈[0,1]

|φ (t)− t|}.

If R (t) = b− Z (t), then ruin during time interval [0, 1] is

Bb = {R (·) : 0 ≥ inf
t∈[0,1]

R (t)} = {Z (·) : b ≤ sup
t∈[0,1]

Z (t)}.

Let P0 (·) be the Wiener measure want to compute

sup
Dc (P0,P )≤δ

P (Z ∈ Bb) .
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Application 1: Computing Distance to Bankruptcy

So: {cBb (Z ) ≤ 1/λ∗} = {supt∈[0,1] Z (t) ≥ b− 1/λ∗}, and

sup
Dc (P0,P )≤δ

P (Z ∈ Bb) = P0

(
sup
t∈[0,1]

Z (t) ≥ b− 1/λ∗
)
.
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Application 1: Computing Uncertainty Size

Note any coupling π so that πX = P0 and πY = P satisfies

Dc (P0,P) ≤ Eπ [c (X ,Y )] ≈ δ.

So use any coupling between evidence and P0 or expert knowledge.

We discuss choosing δ non-parametrically momentarily.
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Application 1: Illustration of Coupling

Given arrivals and claim sizes let Z (t) = m−1/2
2 ∑

N (t)
k=1 (Xk −m1)
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Application 1: Coupling in Action
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Application 1: Numerical Example

Assume Poisson arrivals.

Pareto claim sizes with index 2.2 —(P (V > t) = 1/(1+ t)2.2).
Cost c (x , y) = dJ (x , y)

2 <—note power of 2.

Used Algorithm 1 to calibrate (estimating means and variances from
data).

b P0(Ruin)
Ptrue (Ruin)

P ∗robust (Ruin)
Ptrue (Ruin)

100 1.07× 10−1 12.28
150 2.52× 10−4 10.65
200 5.35× 10−8 10.80
250 1.15× 10−12 10.98
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Additional Applications: Multidimensional Ruin Problems

https://arxiv.org/abs/1604.01446 contains more applications.

Control: minθ supP :D (P ,P0)≤δ E [L (θ,Z )] <—robust optimal
reinsurance.

Multidimensional risk processes (explicit evaluation of cB (x) for dJ
metric).
Key insight: Geometry of target set often remains largely the
same!
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Connections to Distributionally Robust Optimization

Based on:
Robust Wasserstein Profile Inference (B., Murthy & Kang ’16)

https://arxiv.org/abs/1610.05627

Highlight: Additional insights into why optimal transport...
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Distributionally Robust Optimization in Machine Learning

Consider estimating β∗ ∈ Rm in linear regression

Yi = βXi + ei ,

where {(Yi ,Xi )}ni=1 are data points.

Optimal Least Squares approach consists in estimating β∗ via

min
β
EPn

[(
Y − βTX

)2]
= min

β

1
n

n

∑
i=1

(
Yi − βTXi

)2
=

Apply the distributionally robust estimator based on optimal
transport.
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Connection to Sqrt-Lasso

Theorem (B., Kang, Murthy (2016)) Suppose that

c
(
(x , y) ,

(
x ′, y ′

))
=

{
‖x − x ′‖2q if y = y ′

∞ if y 6= y ′ .

Then, if 1/p + 1/q = 1

max
P :Dc (P ,Pn)≤δ

E 1/2
P

((
Y − βTX

)2)
= E 1/2

Pn

[(
Y − βTX

)2]
+
√

δ ‖β‖p .

Remark 1: This is sqrt-Lasso (Belloni et al. (2011)).
Remark 2: Uses RoPA duality theorem & "judicious choice of c (·) ”
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Connection to Regularized Logistic Regression

Theorem (B., Kang, Murthy (2016)) Suppose that

c
(
(x , y) ,

(
x ′, y ′

))
=

{
‖x − x ′‖q if y = y ′

∞ if y 6= y ′ .

Then,

sup
P : Dc (P ,Pn)≤δ

EP
[
log(1+ e−Y βTX )

]
= EPn

[
log(1+ e−Y βTX )

]
+ δ ‖β‖p .

Remark 1: Approximate connection studied in Esfahani and Kuhn (2015).
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Unification and Extensions of Regularized Estimators

Distributionally Robust Optimization using Optimal Transport
recovers many other estimators...

Support Vector Machines: B., Kang, Murthy (2016) -
https://arxiv.org/abs/1610.05627
Group Lasso: B., & Kang (2016):
https://arxiv.org/abs/1705.04241
Generalized adaptive ridge: B., Kang, Murthy, Zhang (2017):
https://arxiv.org/abs/1705.07152
Semisupervised learning: B., and Kang (2016):
https://arxiv.org/abs/1702.08848
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How Regularization and Dual Norms Arise?

Let us work out a simple example...

Recall RoPA Duality: Pick c ((x , y) , (x ′, y ′)) = ‖(x , y)− (x ′, y ′)‖2q

max
P :Dc (P ,Pn)≤δ

EP
(
((X ,Y ) · (β, 1))2

)
= min

λ≥0

{
λδ+ EPn sup

(x ′,y ′)

[((
x ′, y ′

)
· (β, 1)

)2 − λ
∥∥(X ,Y )− (x ′, y ′)∥∥2q]

}
.

Let’s focus on the inside EPn ...
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How Regularization and Dual Norms Arise?

Let ∆ = (X ,Y )− (x ′, y ′)

sup
(x ′,y ′)

[((
x ′, y ′

)
· (β, 1)

)2 − λ
∥∥(X ,Y )− (x ′, y ′)∥∥2q]

= sup
∆

[
((X ,Y ) · (β, 1)− ∆ · (β, 1))2 − λ ‖∆‖2q

]
= sup

‖∆‖q

[
(|(X ,Y ) · (β, 1)|+ ‖∆‖q ‖(β, 1)‖p)2 − λ ‖∆‖2q

]

Last equality uses z → z2 is symmetric around origin and
|a · b| ≤ ‖a‖p ‖b‖q .
Note problem is now one-dimensional (easily computable).
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On Role of Transport Cost...

https://arxiv.org/abs/1705.07152: Data-driven chose of c (·).

Suppose that ‖x − x ′‖2A = (x − x ′)A (x − x) with A positive definite
(Mahalanobis distance).

Then,

max
P :Dc (P ,Pn)≤δ

E 1/2
P

((
Y − βTX

)2)
= min

β
E 1/2
Pn

[(
Y − βTX

)2]
+
√

δ ‖β‖A−1 .

Intuition: Think of A diagonal, encoding inverse variability of Xi s...

High variability – > cheap transportation – > high impact in
risk estimation.
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On Role of Transport Cost...

https://arxiv.org/abs/1705.07152: Data-driven chose of c (·).

Suppose that ‖x − x ′‖2Λ = (x − x ′)Λ (x − x) with Λ positive
definite (Mahalanobis distance).

Then,
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On Role of Transport Cost...

Comparing L1 regularization vs data-driven cost regularization:
real data

BC BN QSAR Magic
3*LRL1 Train .185± .123 .080± .030 .614± .038 .548± .087

Test .428± .338 .340± .228 .755± .019 .610± .050
Accur .929± .023 .930± .042 .646± .036 .665± .045

3*DRO-NL Train .032± .015 .113± .035 .339± .044 .381± .084
Test .119± .044 .194± .067 .554± .032 .576± .049
Accur .955± .016 .931± .036 .736± .027 .730± .043

Num Predictors 30 4 30 10
Train Size 40 20 80 30
Test Size 329 752 475 9990

Table: Numerical results for real data sets.
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Connections to Statistical Analysis

Based on:
Robust Wasserstein Profile Inference (B., Murthy & Kang ’16)

https://arxiv.org/abs/1610.05627

Highlight: How to choose size of uncertainty?
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Towards an Optimal Choice of Uncertainty Size

How to choose uncertainty size in a data-driven way?

Once again, consider Lasso as example:

min
β

max
P :Dc (P ,Pn)≤δ

EP

((
Y − βTX

)2)
= min

β

{
E 1/2
Pn

[(
Y − βTX

)2]
+
√

δ ‖β‖p
}2
.

Use left hand side to define a statistical principle to choose δ.

Important: Optimizing δ is equivalent to optimizing regularization!
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Towards an Optimal Choice of Uncertainty Size

“Standard”way to pick δ (Esfahani and Kuhn (2015)).

Estimate D (Ptrue ,Pn) using concentration of measure results.

Not a good idea: rate of convergence of the form O
(
1/n1/d ) (d is

the data dimension).

Instead we seek an optimal approach.
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Towards an Optimal Choice of Uncertainty Size

Keep in mind linear regression problem

Yi = βT∗ Xi + εi .

The plausible model variations of Pn are given by the set

Uδ (n) = {P : Dc (P,Pn) ≤ δ}.

Given P ∈ Uδ (n), define β̄ (P) = argminEP
(
Y − βTX

)
.

It is natural to say that

Λδ (n) = {β̄ (P) : P ∈ Uδ (n)}

are plausible estimates of β∗.
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Optimal Choice of Uncertainty Size

Given a confidence level 1− α we advocate choosing δ via

min δ

s.t. P (β∗ ∈ Λδ (n)) ≥ 1− α .

Equivalently: Find smallest confidence region Λδ (n) at level 1− α.

In simple words: Find the smallest δ so that β∗ is plausible with
confidence level 1− α.
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The Robust Wasserstein Profile Function

The value β̄ (P) is characterized by

EP

(
∇β

(
Y − βTX

)2)
= 2EP

((
Y − βTX

)
X
)
= 0.

Define the Robust Wasserstein Profile (RWP) Function:

Rn (β) = min{Dc (P,Pn) : EP
((
Y − βTX

)
X
)
= 0}.

Note that

Rn (β∗) ≤ δ⇐⇒ β∗ ∈ Λδ (n) = {β̄ (P) : D (P,Pn) ≤ δ}.

So δ is 1− α quantile of Rn (β∗)!

Blanchet (Columbia U. and Stanford U.) 53 / 60



The Robust Wasserstein Profile Function

The value β̄ (P) is characterized by

EP

(
∇β

(
Y − βTX

)2)
= 2EP

((
Y − βTX

)
X
)
= 0.

Define the Robust Wasserstein Profile (RWP) Function:

Rn (β) = min{Dc (P,Pn) : EP
((
Y − βTX

)
X
)
= 0}.

Note that

Rn (β∗) ≤ δ⇐⇒ β∗ ∈ Λδ (n) = {β̄ (P) : D (P,Pn) ≤ δ}.

So δ is 1− α quantile of Rn (β∗)!
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The Robust Wasserstein Profile Function
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Computing Optimal Regularization Parameter

Theorem (B., Murthy, Kang (2016)) Suppose that {(Yi ,Xi )}ni=1 is an
i.i.d. sample with finite variance, with

c
(
(x , y) ,

(
x ′, y ′

))
=

{
‖x − x ′‖2q if y = y ′

∞ if y 6= y ′ ,

then
nRn(β∗)⇒ L1,

where L1 is explicitly and

L1
D
≤ L2 :=

E [e2]

E [e2]− (E |e|)2
‖N(0,Cov (X ))‖2q .

Remark: We recover same order of regularization (but L1 gives the
optimal constant!)

Blanchet (Columbia U. and Stanford U.) 55 / 60



Discussion on Optimal Uncertainty Size

Optimal δ is of order O (1/n) as opposed to O
(
1/n1/d ) as

advocated in the standard approach.

We characterize the asymptotic constant (not only order) in optimal
regularization:

P
(
L1 ≤ η1−α

)
= 1− α.

Rn (β∗) is inspired by Empirical Likelihood —Owen (1988).

Lam & Zhou (2015) use Empirical Likelihood in DRO, but focus on
divergence.
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A Toy Example Illustrating Proof Techniques

Consider
min

β
max

P :Dc (P ,Pn)≤δ
E
[
(Y − β)2

]
with c (y , y ′) = (y − y ′)ρ and define

Rn (β) = min
π(dy ,du)≥0

∫
(y − u)ρ π (dy , du) :∫

u∈R
π (dy , du) =

1
n

δ{Yi } (dy) ∀i ,

2
∫ ∫

(u − β)π (dy , du) = 0.
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A Toy Example Illustrating Proof Techniques

Dual linear programming problem: Plug in β = β∗

Rn (β∗) = sup
λ∈R

{
−1
n

n

∑
i=1
sup
u∈R

{
λ(u − β∗)− |Yi − u|

ρ }}

= sup
λ∈R

{
−λ
n ∑n

i=1(Yi − β∗)
− 1n ∑n

i=1 supu∈R

{
λ (u − Yi )− |Yi − u|ρ

} }
= sup

λ

{
−λ

n

n

∑
i=1
(Yi − β∗)− (ρ− 1)

∣∣∣∣λρ
∣∣∣∣

ρ
ρ−1
}

=

∣∣∣∣∣1n n

∑
i=1
(Yi − β∗)

∣∣∣∣∣
ρ

=
1
n1/2

∣∣N (0, σ2)∣∣ρ .
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Discussion: Some Open Problems

Extensions: Optimal Transport with constrains, Optimal Martingale
Transport.

Computational methods: Typical approach is entropic regularization
(new methods currently developed in the machine learning literature).
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Conclusions

Optimal transport (OT) is a powerful tool based on linear
programming.

OT costs are natural for computing model uncertainty.

OT can be used in path-space to quantify error in diffusion
approximations.

OT can be used for data-driven distributionally robust optimization.

Cost function in OT can be used to improve out-of-sample
performance.

OT can be used for statistical inference using RWP function.
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