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“From the time of Adam Smith’s Wealth of Nations in 1776, one re-
current theme of economic analysis has been the remarkable degree of
coherence among the vast numbers of individual and seemingly sepa-
rate decisions about the buying and selling of commodities. In every-
day, normal experience, there is something of a balance between the
amounts of goods and services that some individuals want to supply
and the amounts that other, differerent individuals want to sell [sic].
Would-be buyers ordinarily count correctly on being able to carry out
their intentions, and would-be sellers do not ordinarily find themselves
producing great amounts of goods that they cannot sell. This expe-
rience of balance is indeed so widespread that it raises no intellectual
disquiet among laymen; they take it so much for granted that they are
not disposed to understand the mechanism by which it occurs.”

Kenneth Arrow (1973)

1 Introduction

General equilibrium analysis addresses precisely how these “vast numbers of indi-

vidual and seemingly separate decisions” referred to by Arrow aggregate in a way

that coordinates productive effort, balances supply and demand, and leads to an

efficient allocation of goods and services in the economy. The answer economists

have provided, beginning with Adam Smith and continuing through to Jevons and

∗Various sections of these notes draw heavily on lecture notes written by Felix Kubler; some
of the other sections draw on Mas-Colell, Whinston and Green.
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Walras is that it is the price system plays the crucial coordinating and equilibrating

role: the fact the everyone in the economy faces the same prices is what generates

the common information needed to coordinate disparate individual decisions.

You doubtless are familiar with the standard treatment of equilibrium in a

single market. Price plays the role of equilibrating demand and supply so that all

buyers who want to buy at the going price can, and do, and similarly all sellers

who want to sell at the going price also can and do, with no excess or shortages

on either side. The extension from this partial equilibrium in a single market to

general equilibrium reflects the idea that it may not be legitimate to speak of

equilibrium with respect to a single commodity when supply and demand in that

market depend on the prices of other goods. On this view, a coherent theory of

the price system and the coordination of economic activity has to consider the

simultaneous general equilibrium of all markets in the economy. This of course

raises the questions of (i) whether such a general equilibrium exists; and (ii) what

are its properties.

A recurring theme in general equilibrium analysis, and economic theory more

generally, has been the idea that the competitive price mechanism leads to out-

comes that are efficient in a way that outcomes under other systems such as planned

economies are not. The relevant notion of efficiency was formalized and tied to

competitive equilibrium by Vilfredo Pareto (1909) and Abram Bergson (1938).

This line of inquiry culminates in the Welfare Theorems of Arrow (1951) and De-

breu (1951). These theorems state that there is in essence an equivalence between

Pareto efficient outcomes and competitive price equilibria.

Our goal in the next few lectures is to do some small justice to the main ideas

of general equilibrium. We’ll start with the basic concepts and definitions, the

welfare theorems, and the efficiency properties of equilibrium. We’ll then provide

a proof that a general equilibrium exists under certain conditions. From there, we’ll

investigate a few important ideas about general equilibrium: whether equilibrium is

unique, how prices might adjust to their equilibrium levels and whether these levels

are stable, and the extent to which equilibria can be characterized and changes in

exogenous preferences or endowments will have predictable consequences. Finally

we’ll discuss how one can incorporate production into the model and then time
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and uncertainty, leading to a brief discussion of financial markets.

2 The Walrasian Model

We’re going to focus initially on a pure exchange economy. An exchange economy is

an economy without production. There are a finite number of agents and a finite

number of commodities. Each agent is endowed with a bundle of commodities.

Shortly the world will end and everyone will consume their commodities, but before

this happens there will be an opportunity for trade at some set prices. We want

to know whether there exist prices such that when everyone tries to trade their

desired amounts at these prices, demand will just equal supply, and also what the

resulting outcome will look like – whether it will be efficient in a well-defined

sense and how it will depend on preferences and endowments.

2.1 The Model

Consider an economy with I agents i ∈ I = {1, ..., I} and L commodities l ∈
L = {1, ..., L}. A bundle of commodities is a vector x ∈ RL

+. Each agent i has an

endowment ei ∈ RL
+ and a utility function ui : RL

+ → R. These endowments and
utilities are the primitives of the exchange economy, so we write E = ((ui, ei)i∈I).
Agents are assumed to take as given the market prices for the goods. We won’t

have much to say about where these prices come from, although we’ll say a bit

later on. The vector of market prices is p ∈ RL
+; all prices are nonnegative.

Each agent chooses consumption to maximize her utility given her budget con-

straint. Therefore, agent i solves:

max
x∈RL+

ui(x) s.t. p · x ≤ p · ei.

The budget constraint is slightly different than in standard price theory. Recall

that the familiar budget constraint is p · x ≤ w, where w is the consumer’s initial

wealth. Here the consumer’s “wealth” is p ·ei, the amount she could get if she sold
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her entire endowment. We can write the budget set as

Bi(p) = {x : p · x ≤ p · ei}.

We’ll occasionally use this notation below.

2.2 Walrasian Equilibrium

We now define a Walrasian equilibrium for the exchange economy. A Walrasian

equilibrium is a vector of prices, and a consumption bundle for each agent, such

that (i) every agent’s consumption maximizes her utility given prices, and (ii)

markets clear: the total demand for each commodity just equals the aggregate

endowment.

Definition 1 AWalrasian equilibrium for the economy E is a vector (p, (xi)i∈I)
such that:

1. Agents are maximizing their utilities: for all i ∈ I,

xi ∈ arg max
x∈Bi(p)

ui(x)

2. Markets clear: for all l ∈ L, X
i∈I

xil =
X
i∈I

eil.

2.3 Pareto Optimality

The second important idea is the notion of Pareto optimality, due to the Italian

economist Vilfredo Pareto. This notion doesn’t have anything to do with equi-

librium per se (although we’ll see the close connection soon). Rather it considers

the set of feasible allocations and identifies those allocations at which no consumer

could be made better off without another being made worse off.

Definition 2 An allocation (xi)i∈I ∈ RI·L
+ is feasible if for all l ∈ L:

P
i∈I x

i
l ≤P

i∈I e
i
l.
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Definition 3 Given an economy E , a feasible allocation x is Pareto optimal (or
Pareto efficient) if there is no other feasible allocation x̂ such that ui(x̂i) ≥ ui(xi)

for all i ∈ I with strict inequality for some i ∈ I.

You should note that Pareto efficiency, while it has significant content, says

essentially nothing about distributional justice or equity. For instance, it can be

Pareto efficient for one guy to have everything and everyone else have nothing.

Pareto efficiency just says that there aren’t any “win-win” changes around; it’s

quiet on how social trade-offs should be resolved.

2.4 Assumptions

As we go along, we’re going to repeatedly invoke a bunch of assumptions about

consumers’ preferences and endowments. We summarize the main ones here.

(A1) For all agents i ∈ I, ui is continuous.

(A2) For all agents i ∈ I, ui is increasing, i.e. ui(x0) > ui(x) whenever x0 À x.

(A3) For all agents i ∈ I, ui is concave.

(A4) For all agents i ∈ I, ei À 0.

The first three assumptions – continuity, monotonicity and concavity of the

utility function – should be familiar from consumer theory. Some of these are a bit

stronger than necessary (e.g. monotonicity can be weakened to local nonsatiation,

concavity to quasi-concavity), but we’re not aiming for maximum generality. The

last assumption, about endowments, is new and is a big one. It says that everyone

has a little bit of everything. This turns out to be important and you’ll see where

it comes into play later on.

3 A Graphical Example

General equilibrium theory can quickly get into the higher realms of mathemat-

ical economics. Nevertheless a lot of the big ideas can be expressed in a simple
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two-person two-good exchange economy. A useful graphical way to study such

economies is the Edgeworth box, after F. Edgeworth, a famous Cambridge (U.K.)

economist of the 19th century.1

Figure 1(a) presents an Edgeworth box. The bottom left corner is the origin for

agent 1. The bottom line is the x-axis for Agent 1 and the left side is the y-axis.

In the picture, agent 1’s endowment is e1 = (e11, e
1
2). For agent 2, the origin is the

top right corner and everything is flipped upside down and backward. Every point

in the box represents a (non-wasteful) allocation of the two goods.

x1
1

x2
1

Agent 1

Agent 2

e

e1
1

e2
2

e1
2

e2
1

0

0

Agent 1

Agent 2

e1
1

B1(p)

B2(p)

x1(p,p•e1)

x2
2

x1
2

e

Figures 1(a) and 1(b): The Edgeworth Box

Figure 1(b) adds prices into the picture. Given prices p1, p2 for the two goods,

the budget line for agent 1 is the line with slope p1/p2 through the endowment point

e. This is also the budget line for agent 2. So this line divides the Edgeworth box

into the two budget setsB1(p) andB2(p). Each agent will then choose consumption

to maximize utility given prices. In Figure 1(b), agent 1’s Marshallian demand

x1(p, p · e) is represented by the familiar tangency condition.
1Apparently the name is something of a misnomer, as it seems that Edgeworth boxes were

first drawn by Pareto – or so I read on the internet.
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As we change prices, the Marshallian demands of the two agents will also

change. Note that what matters, of course, is the relative prices of the two goods,

as these determine the slope of the budget line. Figure 2 traces out the Marshallian

demand of agent 1 as we vary the relative prices. The dotted line is called agent

1’s offer curve.

Agent 1

Agent 2

OC1

e

Figure 2: Offer Curve for Agent 1

Walrasian equilibrium requires that both agents consume their Marshallian

demands given prices and also that these demands are compatible. So what we

want to do is set relative prices, find the Marshallian demands of the two agents,

and see whether or not demand equals supply in the two markets. Figure 3(a)

represents a situation where prices do not simultaneously clear the two markets.

In this picture, at the given prices, agent 2 is willing to supply some amount of

good 2, but less than agent 1 wants to consume. So good 2 is in excess demand.

In contrast, agent 1 is willing to supply more of good 1 than agent 2 demands. So

good 2 is in excess supply.

In Figure 3(b), prices do clear the market and we have a Walrasian equilibrium

at the point x. In equilibrium, starting from the endowment point e, agent 1
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sells good 1 to buy good 2; agent 2 does the reverse. The crucial point is that both

markets clear. Note that the Walrasian equilibrium allocation is the intersection of

the two offer curves. That the point x lies on the offer curve of agent i means that

x it represents the Marshallian demand of that agent given prices p and endowment

e. That the point x is the intersection of the two offer curves means that at the

given prices, demands are compatible and markets clear. These are conditions (1)

and (2) in the definition of Walrasian equilibrium.

Agent 1

Agent 2

OC1

e

Agent 1

Agent 2

OC1

e

x1(p,p•e1)

x2(p,p•e2)
OC2

Figures 3(a) and 3(b): Dis-equilibrium and Equilibrium in the Edgeworth Box

Two natural questions to ask about Walrasian equilibrium are (i) is it unique?

and (ii) does it always exist? Both questions have negative answers. Figure 4(a)

presents an example with multiple Walrasian equilibria (we’re revisit this example

later). In the figure, given the endowment e, the offers curves of the two agents

intersect three times. So there are three Walrasian equilibria.
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Agent 1

Agent 2

e

Agent 1

Agent 2

OC1

OC2

e

Direction of increasing
preference for agent 2

Direction of increasing
preference for agent 1

Figures 4(a) and (b): Non-uniqueness and Non-existence of Equilibrium

Figure 4(b) presents a different example where Walrasian equilibrium does not

exist. In this example, Agent 2 starts with all of good 1 and this is the only good

she cares about. Agent 1 starts with all of good 2 and none of good 1. He cares

about both goods, but the slope of his indifference curve when he has none of

good 1 is infinite. That is, he has infinite marginal utility for his very first unit

of good 1. In this example, for any prices p, agent 2 will insist on consuming her

endowment – that is, all of good 1. Moreover, there are no prices p at which

agent 1 would not insist on buying at least a little bit of good 1. Therefore for any

prices p good 1 will always be in excess demand and there cannot be a Walrasian

equilibrium. Note that this example violates assumption (A4), which requires that

the endowment be an interior point in the Edgeworth box.

It is also possible to use the Edgeworth box to depict the idea of Pareto op-

timality. This is done in Figure 5. The Pareto set in this picture is the set of

all allocations such that to make one agent better off would require making the

other agent worse off. Figure 5 also shows the contract curve. This is the part of

the Pareto set that both agents prefer to the endowment e. It seems natural to

expect that if the agents were to start at their endowments and strike a mutually

agreeable bargain, they would reach a point on the contract curve assuming that
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bargaining does not leave mutual gains from trade on the table.

Agent 1

Agent 2

e

Pareto Set

Contract 
Curve

Figure 5: The Contract Curve

Figure 5 also provides some intuition for a key result in general equilibrium

theory: any Walrasian equilibrium is Pareto optimal (or lies on the Pareto set).

The reason is as follows. At a Walrasian equilibrium, the budget line will separate

the two “as good as” sets of the agents (as we saw in Figure 3(b)). Thus, there will

be no alternative to the Walrasian outcome that would make both agents better

off. Therefore any Walrasian equilibrium is Pareto optimal. The Pareto set, of

course, is the set of all Pareto optimal allocations, so an alternative statement is

that any Walrasian equilibrium allocation lies on the Pareto set. This result is

known as the first theorem of welfare economics.

4 The Welfare Theorems

We now turn to a more formal statement of the theorem suggested above – that

every Walrasian equilibrium allocation is a Pareto optimal allocation. We then

prove a converse result that if an initial allocation is Pareto optimal, there is a

Walrasian equilibrium at which no trade occurs.
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Theorem 1 (First Welfare Theorem) (Arrow, 1951; Debreu, 1951) Let (p, (xi)i∈I)
be a Walrasian equilibrium for the economy E. Then if (A2) holds, the allocation
(xi)i∈I is Pareto optimal.

Proof. By way of contradiction, suppose there is a feasible allocation (x̂i)i∈I such
that ui(x̂i) ≥ ui(xi) for all i ∈ I with strict inequality for some i0. By revealed
preference and (A2), p · x̂i ≥ p · xi for all i ∈ I, and also p · x̂i0 > p · xi0 (this is
Walras’ law). Therefore, because prices are non-negative, there must be at least

one good l for which
P

i x̂
i
l >

P
i x

i
l =

P
i e

i
l. Therefore x̂ is not feasible. Q.E.D.

This result provides formal support for Adam Smith’s claim that individuals

acting in their own interests end up behaving in a way that is efficient from a

societal standpoint. It is a powerful statement about the efficiency properties of

decentralized markets: despite the fact that there is no explicit social coordination

and agents simply maximize their utilities given prices, the resulting equilibrium

outcome is efficient from a social perspective.

Note that in a sense, the assumptions are quite weak. Given our model of the ex-

change economy, the only assumption on preferences that we require is monotonic-

ity (and local nonsatiation would suffice). Of course, it should be emphasized

that the model itself contains a large number of heroic implicit assumptions that

seem highly unlikely to be satisfied in any real economy. Among these are: (1) all

agents face precisely the same prices; (2) all agents are price takers – i.e. they

take prices as given and don’t believe that their purchasing decisions will move

prices; (3) markets exist for all goods and agents can freely participate. Moreover,

we have said nothing so far about how a group of agents might arrive at equili-

bium prices. So you’ll probably want to withhold judgment on the efficiency of

decentralized markets.

The first welfare theorem states that equilibrium outcomes are efficient. Our

next result states that efficient outcomes are Walrasian equilibria given the correct

prices and endowments.

Theorem 2 (Second Welfare Theorem) (Arrow, 1951; Debreu, 1951) Let E
be an economy that satisfies (A1)—(A4). If (ei)i∈I is Pareto optimal then there

exists a price vector p ∈ RL
+ such that (p, (e

i)i∈I) is a Walrasian equilibrium for E .
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Proof. To prove this we need a version of the separating hyperplane theorem.
Suppose you have an open convex set A ⊂ Rn and a point x /∈ A. Then there

exists a p 6= 0 such that p · a ≥ p · x for all a ∈ cl(A).

To prove the theorem, let’s define:

Ai = {a ∈ RL : ei + a ≥ 0 and ui(ei + a) > ui(ei)}.

Because ui is concave, Ai is a convex set. Therefore the set

A =
X
i∈I

Ai = {a ∈ RL : ∃a1 ∈ A1, ..., aI ∈ AI with a =
X
i∈I

ai}

is a convex set. Moreover, 0 /∈ A, because if it were there would exist some (ai)i∈I
with

P
i∈I a

i = 0 and ui(ei+ai) > ui(ei) for all i ∈ I, contradicting the assumption
that e is Pareto optimal.

The separating hyperplane theorem now implies that there is some price vector

p 6= 0 such that p · a ≥ 0 for all a ∈ cl(A). Furthermore, p ≥ 0 because if a À 0

then a ∈ A by monotonicity and if some pl < 0 we could take al arbitrarily big

and all the other al0 small but positive and get a contradiction. Because p 6= 0 and
p ≥ 0, this means that p > 0.
The claim is that this p will support the allocation e as a Walrasian equilibrium.

Obviously e satisfies the market clearing part of the definition of equilibrium.

Moreover, fixing prices p, consider a given agent i. Suppose xi ∈ RL
+ and ui(xi) >

ui(ei). We will show that xi is not in i’s budget set, thus proving the individual

optimization part of equilibrium. First, by definition of Ai and p, p · xi ≥ p · ei.
Moreover, by continuity, the fact that ui(xi) > ui(ei) implies that for λ just less

than 1, ui(λxi) > ui(ei). Therefore p · λxi ≥ p · ei. This can’t be the case if
p · xi = p · ei, so therefore p · xi > p · ei. Q.E.D.

Note that the second welfare theorem does not say that starting from a given

endowment, every Pareto optimal allocation is a Walrasian equilibrium. Rather it

says that if we were to start from a given endowment then for any Pareto optimal

allocation there is a way to re-distribute resources and a set of prices that makes

the allocation a Walrasian equilibrium outcome.
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In practice, this means that decentralizing a Pareto optimal allocation is not

simply a matter of identifying and specifying the correct prices (not that this would

necessarily be easy). Large-scale re-distribution may be required as well. This lim-

its the practical applicability of the theorem. Still, it is a useful result conceptually

and for modelling. For instance, in complicated macroeconomic dynamic models,

it can sometimes be hard to directly establish the existence of an equilibrium; in

some cases, one can proceed by identifying Pareto optimal allocations and then

showing a version of the second welfare theorem saying that the Pareto allocation

can be supported as a Walrasian equilibrium.

Finally, one technical point. Observe that unlike with the first welfare theorem,

convexity plays a crucial role in establishing the second welfare theorem. Indeed,

at a formal level, the theorem is a direct application of the separating hyperplane

theorem, where the equilibrium price vector separates the Pareto allocation e from

the set of allocations preferred to e by at least one agent.

5 Characterizing Equilibrium

In this section, which follows MWG, chapter 16, we make a bunch of assumptions

about utility functions being differentiable and concave and then use first order

conditions to characterize Pareto optimal allocations. The idea is to give some

intuition for what conditions must be satisfied on the margin at any Pareto optimal

allocation, and hence, by the first Welfare theorem, at any Walrasian equilibrium.

We also tie the set of Pareto optimal allocations to the set of allocations that

maximize linear Bergson-Samuelson social welfare functions.

One way to identify the set of Pareto optimal allocations x = (x1, ..., xI) is as

solutions to the following program:

maxx u1(x11, ..., x
1
L)

s.t. ui(xi1, ..., x
i
L) ≥ ui for i = 2, ..., IX

i

xil ≤
X
i

eil for l = 1, ..., L.
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The idea here is to maximize the utility of the first consumer subject to feasibility

and to the other consumers getting at least some pre-specified level of utility. By

varying the level of required utility for consumers 2, ..., I, we can recover the full

set of Pareto optimal allocations.

Under assumptions (A1)—(A3), all of the constraints must be binding at the

solution (if the utility constraint for i were slack we could reduce xi be ε in all

directions and increase x1 by the same amount; if the resource constraint were slack

we could increase either x1 or one of the xis). If was assume in addition that each

agent has a differentiable utility function, the problem satisfies the conditions of the

Kuhn-Tucker theorem, so we can use the Kuhn-Tucker conditions to characterize

the solution.

Let λi denote the Lagrange multiplier on agent i’s constraint and let μl denote

the constraint on commodity l. The Kuhn-Tucker conditions are then:

λi
∂ui

∂xil
− μl ≤ 0, xil ≥ 0,

µ
λi
∂ui

∂xil
− μl

¶
xil = 0, (1)

coupled with the requirement that each of the (I − 1) + L constraints is binding:

ui(xi1, ..., x
i
L) = ui for i = 2, ..., IX

i

xil =
X
i

eil for l = 1, ..., L.

In the first line, I’ve adopted the convention that λ1 = 1; you’ll see where this bit

of notation comes in useful later. Note that because each of the constraints binds

at the optimum, λi > 0 for i = 2, ..., I and μl > 0 for all l.

The Kuhn-Tucker conditions given in (1) are easy to interpret. Recall that λi

is precisely the marginal value, or shadow price, of consumer i’s income in terms

of consumer 1’s utility. That is, at the optimum taking a util away from agent

i would allow us to increase agent 1’s utility by λi. At the same time, μl is the

shadow price on commodity l (again in terms of agent 1’s utility). An extra unit

of commodity l would allow us to increase agent 1’s utility by μl while holding

everyone else’s utility constant.

Assuming that each consumer consumes a positive amount of each good at the
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optimum, so that xil > 0 for all i, l, we can easily derive that at any Pareto efficient

allocation, we have the following relationship:

MRSi
kl =

∂ui/∂xik
∂ui/∂xil

=
∂uj/∂xjk
∂uj/∂xjl

=MRSj
kl =

μk
μl
.

That is, at the optimum, the marginal rates of substitution of every agent for

every commodity pair k, l must be equal to each other and to the ratio of the

shadow prices μk and μl. This is precisely the tangency condition from our earlier

Edgeworth box picture.

Within this simple framework of differentiable concave utility functions, we

can link the Pareto optimal allocations to the set of Walrasian equilibria quite

easily. Suppose that x is a Pareto optimal allocation as characterized above. Let

ei = xi and define prices pl = μl. Given these prices and endowments, consider

the optimization problem facing consumer i :

max
x̃i

ui(x̃i)

s.t. p · x̃i ≤ p · ei

Again, we know the budget constraint will bind at the optimum given our as-

sumptions (that’s Walras’ Law). Moreover, we can use the Kuhn-Tucker conditions

to characterize the optimum. Letting ν1, ..., νI denote the Lagrange multipliers on

the budget constraints of agents 1, ..., I, the Kuhn-Tucker conditions state that

a necessary and sufficient condition for (x1, ..., xI ; ν1, ..., νI) to solve the I utility

maximization problems given prices p is that for all i, l:

∂ui

∂xil
− νi · pl ≤ 0 xil ≥ 0,

µ
∂ui

∂xil
− νi · pl

¶
· xil = 0, (2)

and in addition, each of the resource constraints bind.

It’s quite easy to see that if x is a Pareto optimal allocation, one solution is

for each agent i to consume xi = (xi1, ..., x
i
L) with Lagrange multipliers ν

i = 1/λi.

Why? Because given prices pl = μl and endowments e
i = xi, there is an exact

equivalence between the Kuhn-Tucker conditions of the I utility maximization
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problems and the Kuhn-Tucker conditions of the earlier Pareto problem.

Therefore it follows that if x is a Pareto optimal allocation, and μ1, ..., μL
the commodity shadow prices from the Pareto problem above, then (μ, x) is a

Walrasian equilibrium of the economy E = ((ui)i∈I , (xi)i∈I). This is precisely the
Second Welfare Theorem.

To obtain the First Welfare Theorem, we go the other way. Observe that if

endowments e and prices p are given and each agent maximizes utility, it must

be the case at the solution consumption bundles x1, ..., xI , (2) holds and each

consumer’s budget constraint is satisfied. Then consider the Pareto problem with

ui = ui(xi) for agents 2, ..., I. It is easy to check that (1) and each of the constraints

is satisfied at x1, ..., xI if we define μl = pl, λ
i = 1/νi, and ui = ui(xi). Therefore

any Walrasian equilibrium is Pareto optimal.

Finally, there is an alternative approach to characterizing Pareto efficient al-

locations that is sometimes useful. In this approach, one considers maximizing a

linear (Bergson-Samuelson) social welfare function of the form
P

i β
iui subject to

a resource constraint. The program is:

max
x1,...,xI

X
i

βiui(xi1, ..., x
i
L)

s.t.
X
i

xi ≤
X
i

ei

Given monotonicity of utility functions, the resource constraint will bind at the

optimum and the additional Kuhn-Tucker condition for optimality is that for all

agents i and commodities l:

βi
∂ui

∂xil
− δl ≤ 0 xil ≥ 0

µ
βi
∂ui

∂xil
− δl

¶
· xil = 0 (3)

Letting βi = λi and δl = μl we have an exact correspondence between (1) and

(3). Letting βi = 1/νi and δl = pl, we have an exact correspondence between

(2) and (3). So not only do Pareto optimal allocations coincide with Walrasian

equilibrium allocations coincide in the sense of the welfare theorems, they coincide
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with allocations that maximize a linear social welfare function.

6 Existence of Equilibrium

For nearly a hundred years after Walras wrote down his model of general equilib-

rium, it was an open question as to whether such an equilibrium actually existed.

Early approaches to proving existence results focused on a general equilbrium

model due to Cassel (1924), which took as its basic premises aggregate demand

for each commodity as a function of all commodity prices (so no individual utility

maximization), and a simple supply side model where each commodity could be

produced from a fixed resource input and each firm would produce at zero profits

(so very simple linear production functions). Equilibrium was defined as a set of

commodity prices and quantities such that demand just equaled supply for each

commodity.

Ignoring the supply side for a moment, and letting xi(p1, ..., pn) denote the

aggregate demand for good i as a function of prices, the basic problem was to

show the existence of a price vector p1, ..., pn satisfying:

xi(p1, ..., pn) = ei for all i = 1, ..., n.

The basic idea in the early literature was to count up equations and unknowns.

Unfortunately, this led to some confusion about what would happen if the solution

to the equations involved either negative prices or quantities.

In 1951, John Nash published his Princeton dissertation in which he used a fixed

point theorem to prove the existence of Nash equilibrium in games. Once this idea

was out, general equilibrium theorists realized how to provide general existence

proofs for Walrasian equilibrium. The big breakthrough came when Arrow and

Debreu (1954) teamed up to prove the following result.

Theorem 3 (Existence of Walrasian Equilibrium) (Arrow-Debreu, 1954) Given
an economy E satisfying (A1)—(A4), there exists a Walrasian equilibrium (p, x).

The proof is pretty involved and arguably not all that enlightening, but this

has been such a persistent question in modern economics that we’d be remiss not
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to attempt it. The general fixed point style of proof is also common in other

problems. What we’ll do here is start with a fairly simple and intuitive proof for

the case of two commodities, then give a more general proof using a fixed point

theorem.

6.1 Excess Demand Functions

As a starting point, we’re going to introduce the idea of an excess demand function.

Definition 4 The excess demand function of agent i is:

zi(p) = xi(p, p · ei)− ei

where xi(p, p · ei) is i’s Walrasian demand function. The aggregate excess de-
mand function is:

z(p) =
X
i

zi(p).

From the definition of the excess demand function, it should be clear that if

a price vector p ∈ RL
+ satisfies z(p) = 0, then (p, (xi)i∈I) will be a Walrasian

equilibrium if xi is defined to be i’s Marshallian demand given the price vector p.

Why? Because (p, (xi)i∈I) will then satisfy both the individual optimization part

of the definition of equilibrium (by definition of xi) and market clearing (by the

fact that z(p) = 0).

Thus, proving existence of equilibrium boils down to establishing that a solution

to z(p) = 0 exists given our assumptions (1)—(4). From the first part of this class on

consumer theory, we have the following properties of the excess demand function.

Proposition 4 Suppose (A1)—(A4) are satisfied. Then the aggregate excess de-
mand function z(p) satisfies:

(i) z is continuous;

(ii) z is homogenous of degree zero;

(iii) z(p) = 0 for all p (Walras’ Law);
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(iv) for some Z > 0, zl(p) > −Z for every l ∈ L and all p.

(v) if pn → p, where p 6= 0 and pl = 0 for some l, then max{z1(pn), ..., zL(pn)}→
∞.

Proof. Except for the last property, these all follow directly from properties of

the Marshallian demand function established in the first half of the class. The last

property isn’t complicated. As some, but not all, prices go to zero, there must

be some consumer whose wealth is not going to zero. Because he has strongly

monotone preferences, he must demand more and more of one of the goods whose

price is going to zero. Q.E.D.

In the next section, we use these properties to establish existence of equilibrium

for the two good case. The proof won’t be entirely general because we’re going

to treat z(·) as a function. In general, recall that agents might not have a unique
optimal bundle given a set of prices, so Marshallian demand, and hence z(·) should
really be treated as a correspondence. We’ll deal with that in the following section.

6.2 An Intuitive Argument

To gain some intuition, let’s consider the case where there are only two goods in

the economy, so we want to find a Walrasian equilibrium price vector p = (p1, p2)

with z(p) = 0. Because z(·) is homogenous of degree zero, we can safely normalize
the price of p2 = 1, meaning we can search only over price vectors p = (p1, p2 = 1).

Moreover, because of Walras’ Law, z(p) · p = 0 for any p, so to establish an

equilibrium, it suffices to find a price p1 such that z1(p1, 1) = 0. (If this holds, then

z2(p1, 1) = 0 by Walras’ Law.)

Figure 6 graphs z1(p1, 1) as a function of p1. There are three important points

to note in the picture that must hold. First, z1(·, 1) is continuous as we showed
above. Second, for very small values of p1, z1(p1, 1) is strictly positive. Third, for

very large values of p1, z1(p1, 1) is negative. There must be at least one value of

p1 for which z1(p1, 1) = 0 and the vector (p1, 1) is a Walrasian equilibrium price

vector.
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Figure 6: Existence of Walrasian Equilibrium with Two Goods

The only subtlety to this argument is establishing points 2 and 3, namely that

when one of the goods becomes infinitely cheap relative to the other good, there

will be excess demand for the cheaper good. Formally, this follows from conditions

(iv) and (v) in the above Proposition. For very small values of p1, condition (v)

implies that either z1 or z2 must be very large. It can’t be, however, that excess

demand for the relatively expensive good 2 is very large however, because then

p2 · z2 = z2 would be very large, and condition (iv) implies that p1 · z1 > −Z for

some fixed Z. Hence Walras’ law stating that p1 ·z1+p2 ·z2 = 0 would be violated.
A symmetric argument implies that for very large values of p1, z1(p1, 1) must be

negative.

6.3 Proof of Equilibrium Existence

At this point, we’re ready to take a shot at proving the existence theorem. As

suggested above, you’ll need some familiarity with correspondences (consult MWG

or the Useful Math notes if in doubt).

The proof is going to work a bit differently from the two-good case in the

following sense. Rather than look for a price vector p that solves z(p) = 0 (with
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the allocation being left implicit in the definition of z(·)) we’re going to define a
map Ψ that takes the set of price-aggregate demand pairs (p, x) into itself. The

map Ψ will be defined so that any fixed point of Ψ will be a Walrasian equilibrium.

Then we’ll establish that a fixed point exists.

The map Ψ is going to be defined as follows. Given a price-aggregate de-

mand pair (p, x), we define the new aggregate demand by letting agents optimize

given prices. That is, agents take prices as given and have a Marshallian demand

correspondence (function in the case of strict concavity but correspondence if indif-

ference curves are flat and many points on the budget line give the same utility).

We establish that aggregate demand is a non-empty, convex valued and upper

semi-continuous (usc) correspondences of prices.

To get a new set of prices, we apply a trick that was first introduced by Debreu.

We have an additional agent called the ‘price-player’. He takes the old aggregate

demand as given and sets prices in a clever way; his choice correspondence is

an usc, convex-valued and non-empty correspondence of aggregate demand. An

important property will be that if at the old prices, the agent’s demands just clear

the market, it will be optimal for the price player not to change prices.

With this set-up we put together all the choices into a correspondence Ψ that

maps a price vector and an aggregate demand into new prices (chosen by the

price player) and a new aggregate demand (chosen by the agents). As noted, Ψ

is a correspondence, not a function. We then apply Kakutani’s Theorem, which

asserts that under conditions we’ve established for Ψ, it must have a fixed point

(for this, we’ll need to state and maybe understand Kakutani’s theorem). We then

argue that a fixed point of our map corresponds exactly to aWalrasian equilibrium.

The whole thing sounds complicated, but hopefully it won’t be too bad.

6.4 Two Math Theorems

We’re going to need to appeal to two mathematical theorems during the proof.

The first is Kakutani’s fixed point theorem (it’s hard to prove).

Theorem 5 (Kakutani) Suppose A ⊂ IRn is a convex, closed and bounded set.

Suppose f : A⇒ A is a correspondence which is convex valued, non-empty valued
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for all x ∈ A and which is upper-hemi-continuous (uhc). Then there exists a x ∈ A

such that x ∈ f(x).

If you know Brouwer’s fixed point theorem for functions, this result is quite

similar. If you don’t know Brouwer’s fixed point theorem, I’ll try to give some

intuition for it in class. If this theorem just looks totally mysterious, just take it

as given and don’t worry too much about it.

The second theorem (not hard to prove) is called ‘maximum principle’ or some-

times Berge’s theorem (see M-W-G Theorem M.K.6)

Proposition 6 Suppose we have a continuous correspondence C : Q⇒ IRN , with

c(q) compact and non-empty for all q ∈ Q and a continuous function f : IRN → IR.

Consider a maximization problem max f(x)s.t.x ∈ c(q). The maximizer correspon-

dence will be upper-hemi-continuous. The value function will be continuous.

6.5 Proof of the Existence Theorem

We’ll prove the theorem is a series of steps.

STEP 1 (Normalize Prices):

Recall that what matters in the Walrasian model is relative prices, so we are

always free to normalize one of the prices. Rather than set p1 = 1, however, it’s

convenient to normalize the prices so that they all sum to 1. Define:

∆ =
©
p ∈ RL

+ : p1 + ...+ pL = 1
ª

to be the set of price vectors that sum to one (the price simplex).

STEP 2 (Aggregate Demand):

We first define individual Marshallian demands in such a way that they are

usc in prices. In order to agents’ demand correspondences are usc using Berge’s

Theorem, we face the slight problem that the budget correspondence Bi(p) isn’t

compact valued at prices on the boundary of ∆. Therefore we cleverly define the
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compact set

T = {x ∈ RL
+ : x ≤ 2

X
i∈I

ei}

and consider for each agent i ∈ I the correspondence

ψi(p) = arg max
c∈Bi(p)∩T

ui(c)

The correspondence ψi is non-empty valued and usc for each agent i. Moreover,

because ui(.) is concave, ψi is convex-valued. Note that our assumption ei À 0

is crucial here. If eil = 0 for some l ∈ L the budget correspondence will not be
continuous at pl = 0 (which one fails, usc or lsc ?), so we can’t apply Berge’s

Theorem.

Finally, we define the aggregate demand correspondence:

ΨD(p) =
X
i∈I

ψi(p) =

(
x : ∃x1 ∈ ψ1(p), ..., xI ∈ ψI(p) s.t. x =

X
i∈I

xi

)
.

It’s easy to check that Ψ : ∆→ T is a non-empty, convex-valued and usc in prices,

given what we know about ψ1, ..., ψI .

STEP 3 (The Price Player):

Now we introduce the price player, whose correspondence is defined as ΨP :

T ⇒ ∆, where

ΨP = arg max
p∈∆L−1

p · (x− e)

where e =
P

i∈I e
i is the aggregate endowment. That is, the price player chooses

new prices to maximize the value of the aggregate excess demand (at the old

prices). Note that ΨP is non-empty, convex-valued and usc.

STEP 4 (The Fixed Point):

Define Ψ : ∆× T ⇒ ∆× T by:

Ψ(p, x) = (ΨP (x),ΨD(p)).
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Because the product of non-empty and convex-valued usc correspondeces is it-

self non-empty, convex-valued and usc, we can apply Kakutani’s theorem. This

establishes a fixed point (p∗, x∗) ∈ Ψ(p∗, x∗).

STEP 5 (The Walrasian Equilibrium):

We now argue that from (p∗, x∗) we have a W.E., or more precisely that p∗ is

a Walrasian equilibrium when paired with the individual demands x1∗, ..., xI∗ that

make up x∗.

In particular, because x∗ ∈ ΨD(p), there exist x1∗, ..., xI∗ summing to x∗ with

the property that xi∗ ∈ argmaxc∈Bi(p∗)∩T ui(c). For the individual optimization
part of equilibrium, we need to verify that xi∗ ∈ argmaxc∈Bi(p∗) ui(c). For this,
note that p∗ ∈ ΨP (x∗) :

0 ≥ p∗ · (x∗ − e) ≥ p · (x∗ − e) for all p ∈ ∆.

The latter inequality implies that x∗ − e ≤ 0 and in particular xi∗ < 2e. Therefore
xi∗ ∈ argmaxc∈Bi(p̄) ui(c) because if there were a c ∈ Bi(p) with ui(c) > ui(xi∗)

then for small λ > 0, λc+ (1− λ)xi∗ ∈ Bi(p) ∩ T and by concavity of ui, ui(λc+
(1− λ)xi∗) > ui(xi∗), a contradiction.

It remains to show market clearing: i.e. that x∗ = e. By Walras Law, we have

p∗ ·x∗ = p∗ · e. Therefore if x∗l −el < 0 for some good l, we must have p∗l = 0 by the

price player’s optimization. But then we can simply replace x∗1l by x∗1l − (x∗l − el)

and get market clearing. Q.E.D.

7 Uniqueness, Stability and Comparative Statics

We now turn to a brief discussion of three important questions in general equilib-

rium theory. These are:

1. Is there a unique Walrasian equilibrium? If not, how many Walrasian equi-

libria are there?

2. Is the Walrasian equilibrium stable in the sense that reasonable dynamic

adjustment processes converge to equilibrium prices and allocations?
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3. Does Walrasian equilibrium impose meaningful restrictions on observable

data? For instance, what can we say about how a change in endowments will

change equilibrium prices?

As we’ve already suggested, the first two questions have essentially negative

answers. Generally speaking there can be a lot of Walrasian equilibria for a

given specification of preferences and endowments (though not an infinite num-

ber). There is also no particular reason, without strong assumptions on prefer-

nces, to believe that dynamic adjustment processes will converge to a Walrasian

equilibrium outcome. In contrast, the third question will have a positive answer.

If we observe data on endowments and prices for a fixed set of agents trading at

equilibrium prices, and then are asked to predict equilibrium prices and quantities

for these same agents after a change in endowments, we will generally be able to

say something (though maybe not all that much) about what the new equilibrium

prices and quantities will be.

7.1 Global Uniqueness

The Edgeworth box picture we drew above in Figure 4 suggests strongly that

there need not be a unique Walrasian equilibrium. The following simple numerical

example (from MWG) shows that the picture is not at all pathological.

Suppose there are two goods and two consumers with utility functions:

u1(x11, x
1
2) = x11 −

1

8
(x12)

−8 u2(x21, x
2
2) = −

1

8
(x21)

−8 + x22.

Both utility functions are quasi-linear, but with respect to different numeraires.

Assume the endowments are e1 = (2, r) and e2 = (r, 2), where r = 28/9− 21/9 (this
is just to make everything work out nice). The Marshallian demands at prices

p1, p2 are:

x1(p1, p2) =

Ã
2 + r

µ
p2
p1

¶
−
µ
p2
p1

¶8/9
,

µ
p2
p1

¶−1/9!

x2(p1, p2) =

Ãµ
p1
p2

¶−1/9
, 2 + r

µ
p1
p2

¶
−
µ
p1
p2

¶8/9!
.
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Normalizing the price of good 2 so that p2 = 1, we can write the aggregate

excess demand curve for good 1 as

z1(p1, 1) = x11(p1, 1) + x21(p1, 1)− (2 + r)

or

z1(p1, 1) = r

µ
1

p
− 1
¶
−
µ
1

p

¶8/9
+

µ
1

p

¶1/9
This is pictured in Figure 7 below. Note that the excess demand function

has three zeros: at p1 = 1/2, at p1 = 1 and at p1 = 2. All three correspond to

Walrasian equilibrium. Another way to see the multiplicity is to look at Figure 4

above, where this model is depicted in the Edgeworth box.

0

z1

p1

z1(p1,1)

21

Figure 7: Multiple Walrasian Equilibria

What should be clear from both figures is that multiple equilibria do not always

arise: for a given set of endowments and preferences, marshallian demands have to

change in the right way with prices to get multiplicity. On the other hand, neither

are multiple equilibria all that special – in the numerical example, we picked the
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numbers to come out nicely, but a small change in preferences or endowments

won’t upset the fact that there are three equilibria.

This being said, a good deal of effort has gone into identifying conditions on

preferences that rule out multiplicity and ensure uniquess. We will discuss one

such condition, the gross substitutes property, below.

7.2 Local uniqueness

Even if there are multiple Walrasian equilibria for a given set of preferences and

endowments, it may still be the case that each of these equilibria are all locally

unique in the sense that there is no other Walrasian equilibrium price vector within

a small enough range around the orginal equilibrium price vector.

It turns out that for “most” economies, the Walrasian equilibria are locally

unique. As a consequence the set of Walrasian equilibria is finite. To understand

this idea, it’s again useful to think about the two commodity case, where we can

normalize p2 = 1 and look for values of p1 that satisfy z1(p1, 1) = 0. In the

example above, shown in Figure 7, there are three Walrasian equilibria. Each of

the equilibria, however, is locally unique. An equilibrium is not locally unique

if its price vector p is the limit of a sequence of other equilibrium prices. An

example of local non-uniqueness would be if z1(p1, 1) was equal to zero over some

interval of prices [p∗1, p
∗∗
1 ]. This can happen, as is shown in Figure 8. The point to

realize from this figure, however, is that such an occurrence is extremely special.

Any small perturbation of z1(·, 1), such as would arise from a small change in the

endowments, will restore us to the case of having a finite number of locally unique

equilibria.2

2Note that the picture also suggests something more, which is that because z1(·, 1) starts
above zero and finishes below zero, “generically” there should be an odd number of equilibria.
This turns out to be correct and can be shown in the many commodity case as well.
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Figure 8: Local Non-uniqueness of equilibrium

This is roughly speaking the kind of argument one uses in the more general

many-commodity case to prove that the equilibria of “typical” economies are locally

unique. Heavier math comes into play, however, so we’ll skip the formal analysis.

This is often a topic covered in advanced general equilibrium classes.

7.3 Tatonnement Stability

So far we haven’t touched the question of where prices come from and whether it

is reasonable to expect to see Walrasian prices in a given economy — even if such

prices exist and are unique. It turns out that the theory of general equilibrium is

quite weak on the kinds of price formation processes that might lead to Walrasian

outcomes.

Walras himself suggested the following kind of price adjustment process that

he called “tatonnement” (french for “groping”). Imagine that the agents meet in a

public square and there is a “Walrasian auctioneer” who calls out prices. After he

does this, everyone calls out their demands at those prices. The auctioneer then

adjusts prices and calls out a new set. The process continues until a set of prices
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is called out for which demand just equals supply. At this point the auctioneer

stops, announces prices, and trade occurs.

A candidate price adjustment rule for the auctioneer is:

p(t+ 1) = p(t) + αz(p(t)) for small α > 0.

Clearly the only stationary points of this process are prices p at which z(p) = 0,

i.e. Walrasian equilibrium prices. Moreover, an equilibrium price vector p could

naturally be said to be locally stable if the price adjustment rule converges to p

from any “nearby” starting prices. If an equilibrium price vector p is stable a small

perturbation away from p will not have a long-run effect if the auctioneer begins

again to look for an equilibrium. Finally, an equilibrium price vector p is (globally)

stable if the price adjustment rule converges to p from any initial prices.

Walrasian tatonnement gives us a way to study how equilibrium prices might

be reached, but the model has obvious drawbacks. First, no trade actually takes

place at the non-equilibrium prices. Second, even if one were able to organize this

giant procedure, people might not want to announce their true demands. Finally

a third drawback, and the one that delivered a huge blow to this line of research is

that Walrasian tatonnement can cycle without converging to an equilibrium. This

was first shown in a famous paper by Scarf (1960), who provided examples where

both local and global stability failed. Prior to this paper, all that had been shown

were assumptions on preferences that did ensure stability of Walrasian equilibrium

prices (e.g. Arrow and Hurwicz, 1958).

7.4 Debreu-Sonnenschein-Mantel Theorem

Above we posed the questions of whether Walrasian equilibrium is unique and

whether it is stable under reasonable dynamic adjustment processes. The answer

to both turned on the structure of the aggregate excess demand function of the

economy: z(·). Walrasian equilibrium is unique if there is a unique solution to

z(p) = 0, and stable if the zero is a stable point of z(·).
This leads us to ask what exactly we know about the structure of aggregate ex-

cess demand. Above, we proved that z(·) is continuous, homogenous of degree zero
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in prices, satisfies Walras’ Law, and has certain boundary properties: in particular

as p→ 0, z(p)→∞.
In a famous paper, Hugo Sonnenschein (1973) asked whether there are any fur-

ther restrictions on z(·) that can be derived from the assumption of consumer max-
imization. Remarkably, Sonnenschein (1973), Debreu (1974) and Mantel (1974)

were able to show that the answer is “no”. This gives something of a negative

conclusion to our original questions as it implies that given an economy that has

an equilibrium at a certain price vector p, it is possible for that economy to have an

arbitrary number of equilibria with arbitrary stability properties in an arbitrarily

small neighborhood of prices around p.

Theorem 7 (Sonnenschein-Mantel-Debreu) Suppose we have an open and bounded
subset B ⊂ RL

++ and a continuous function f(p) : B → RL satisfying homogeneity

of degree zero and Walras’ Law. Then there exists an economy E with aggregate
excess demand function z(p) satisfying f(p) = z(p) on B.

Proof. We’ll skip it. You can look up the L = 2 case in MWG. Q.E.D.

A common interpretation of this theorem (as in MWG) is that “anything goes”

in general equilibrium theory. That is, that without very special assumptions (like

Cobb-Douglas preferences or something like that): (i) pretty much any comparative

statics result could be obtained in a general equilibrium model, and (ii) general

equilibrium theory has essentially no empirical content. We’ll see in the next

section that this is not quite right.

7.5 Brown-Matzkin Theorem

The Sonnenschein-Debreu-Mantel Theorem says that the aggregate excess demand

function has only minimal properties. An implication is that utility maximization

imposes no testable restrictions on equilibrium prices. This suggests that one

could not test the hypothesis that agents were or were not trading in a Walrasian

fashion by observing price data, unless one also made some assumptions about the

preferences of the agents who were trading.
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A striking result due to Brown and Matzkin (1996), however, says that if one is

able to observe endowments as well as prices, then the Walrasian model is testable.

That is, there are endowment and price pairs (p, (ei)i∈I) and (p̂, (êi)i∈I) such that

if p is a set of Walrasian prices given a fixed set of agents with endowments (ei)i∈I,

then if this same set of agents has endowments (êi)i∈I , p̂ could not possibly be a

Walrasian equilibrium price vector. The argument relies on revealed preference.

Theorem 8 (Brown-Matzkin, 1996) There exist prices and endowments (p, (ei)i∈I)
and (p̂, (êi)i∈I) such that it is impossible to find monotone preferences (ui)i∈I
with the property that p is a Walrasian equilibrium price vector for the economy

(ui, ei)i∈I and p̂ is a Walrasian equilibrium price vector for the economy (ui, êi)i∈I.

Proof. We use an Edgeworth box example to prove the Theorem for the case of

two consumers and two goods. Consider the two Edgeworth boxes in Figure 9.

Because p is an equilibrium given e, agent 1 must weakly prefer some bundle on

the line segment A to any bundle on the line segment B. By monotonicity, for

every point on the line segment Â, there is some point on B that agent 1 strictly

prefers. So there is some bundle on A that is preferred to every bundle on Â. Now,

if p̂ is an equilibrium given ê, we have an immediate contradiction because every

bundle on A is available, yet the agent chooses a bundle on Â. Q.E.D.
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Figure 9: Testable Restrictions of Equilibrium

8 Gross Substitutes

In this section, we consider one particular class of economies – those satisfying the

gross substitutes property – in which it is possible to get affirmative answers to the

uniquencess and stability questions posed above. We then show that economies

satisfying gross substitutes also have very nice comparative statics properties.

Two commodities are said to be gross substitutes if an increase in the price of

good k increases the demand for good l. More generally, a demand function satisfies

the gross substitutes property if an increase in the price of good k increases the

demand for every other good l.

Definition 5 A Marshallian demand function x(p) satisfies the gross substi-
tutes property if, whenever p and p0 are such that p0k > pk and p0l = pl for all

l 6= k, then xl(p
0) > xl(p) for all l 6= k.

Note that I have stated the condition as requiring a strict increase in the de-

mand for each good l. One can also work with the weak gross substitutes property
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which requires only a non-decrease in the demand for each good l. To keep things

simple, we’ll stick with the strict case.

We now have the following observation.

Remark 1 If each individual has a Marshallian demand function satisfying gross
substitutes, then both the individual and aggregate excess demand functions satisfy

gross substitutes.

If aggregate demand satisfies the gross substitutes property, then there is a

unique Walrasian equilibrium.

Proposition 9 If the aggregate excess demand function z(·) satisfies gross substi-
tutes, the economy has at most one Walrasian equilibrium, i.e. z(p) = 0 has at

most one (normalized) solution.

Proof. Suppose by way of contradiction that z(p) = z(p0) = 0 for two price

vectors p and p0 that are not collinear. By homogeneity of degree zero, we can

always normalize the price vectors in such a way that p0l ≥ pl for all l ∈ L and
p0k = pk for some good k. Then to move from p to p0, we can think about moving

in a series of n− 1 steps, increasing the prices of each of goods l 6= k in turn. At

each step where a component of price increases strictly (and there must be at least

one such step), the aggregate demand for good k must strictly increase, so that

zk(p
0) > zk(p) = 0, yielding a contradiction. Q.E.D.

It is also possible to show that under the gross substitutes property, Walrasian

tatonnement will converge to the unique equilibrium. One approach to showing

this is via the following Lemma.

Lemma 10 Suppose that the aggregate excess demand function z(·) satisfies gross
substitutes and that z(p∗) = 0. Then for any p not collinear with p∗, p∗ · z(p) > 0.

Proof. Let’s just consider the proof for the case of two commodities; there’s

probably an elegant short proof for the general case, but the only proof I could
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come up with is rather long. With two commodities, let’s normalize the price of

good 2, so that p∗2 = p2 = 1. Then:

p∗ · z(p) = (p∗ − p) · (z(p)− z(p∗))

= (p∗1 − p1) · (z1(p)− z1(p
∗)) > 0

The first equality uses Walras’ Law p·z(p) = 0 and the fact that p∗ is an equilibrium
so z(p∗) = 0. The second uses the price normalization. The final inequality follows

because by the gross substitute property, p1 > p∗1 implies z1(p) < z1(p
∗) and

similarly p1 < p∗1 implies z1(p) > z1(p
∗). Q.E.D.

This Lemma is similar to the weak axiom of revealed preference that we alluded

to in the first half of the class. Marshallian demand is said to satisfy the weak

axiom of revealed preference if for any two price vectors p and p0:

(p− p0) · (x(p)− x(p0)) ≤ 0. (4)

This is a pretty strong condition and isn’t implied by the gross substitutes property

(nor does it imply gross substitutes). Gross substitutes, however, does imply a

version of WARP. It implies that the weak axiom holds if one compares p∗, the

unique equilibrium price vector, to any other price vector p.

With this Lemma, we can prove the following result about stability.

Proposition 11 Suppose that the aggregate excess demand function z(·) satisfies
gross substitutes and that p is a Walrasian equilibrium price vector. Then the

tatonnement adjustment process dp/dy = αz(p(t)), with α > 0, converges to the

relative prices of p as t→∞ for any initial condition p(0).

Proof. To prove the result, we show that the “distance” between p(t) and p∗

decreases monotonically as time progresses. Let D(p) = 1
2

P
l(pl − p∗l )

2 denote the
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distance between p and p∗. Then:

dD(p(t))

dt
=

X
l

(pl(t)− p∗l )
dpl(t)

dt

= α
X
l

(pl(t)− p∗l )zl(p(t))

= −αp∗ · z(p) ≤ 0.

Note the use of Walras Law in deriving the third equality. The last inequality is

strict unless p is proportional to p∗. Now, because D(p(t)) is decreasing monotoni-

cally over time, it must converge, either to zero or to some positive number. In the

former case, p(t) → p∗. In the latter case, p(t) 9 p∗ but dD(p(t))/dt → 0. The

only way this can happen is if p(t) becomes nearly proportional to p∗ as t → ∞.
But this means that the relative prices of p(t) converge to those of p∗ as t → ∞.
Q.E.D.

Finally, economies with gross substitutes have nice comparative statics prop-

erties. In particular, any change that raises the excess demand for good k will

increase the equilibrium price of that good. As an example, suppose there are two

goods, and normalize p2 = 1. Suppose also that good 1 is a normal good for all

agents. Now consider an increase in the endowment of the numeraire good 2 for

some of the agents. For any price p1, this change will increase aggregate demand

for good 1 and hence increase aggregate excess demand. As shown in Figure 10,

this will shift up the excess demand curve z1(·, 1)– in the figure the original excess

demand curve is denoted by z1(·, 1;L); the new excess demand curve is z1(·, 1;H).
Because z1(·, 1;L) is continuous and crosses zero only once (remember equilibrium
is unique), the new equilibrium must have a higher price for good 1.
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0

z1

p1

z1(p1,1;H)

pHpL

z1(p1,1;L)

Figure 10: Comparative Statics with Gross Substitutes

This argument can be generalized to the many commodity case – you may see

something like this on a problem set.

9 Production in General Equilibrium

Everything we have done so far has been for the special case of an exchange

economy where goods simply come from nowhere as endowments. Fortunately,

it’s pretty easy to incorporate firms and production into our general equilibrium

model, so long as we assume: (1) no increasing returns to scale; and (2) perfectly

competitive price-taking firms.

In this section, we outline the more general Arrow-Debreu model with pro-

duction, revisit the welfare theorems and equilibrium existence, and then consider

some simple examples.

9.1 Adding Production to the Model

We retain the consumers i = 1, ..., I of the earlier model, with utility functions

u1, ..., uI . We add K firms k ∈ K with production sets Y k ∈ RN . Each Y k is a set
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of production plans: if y ∈ Y k, then yl < 0 means good l is being used as an input;

yl > 0 means good l is being produced as an output. The firms are owned by the

households. We let αki denote i’s share of firm k. A production economy is then:

E =
¡
(ui, ei, (αki)k∈K)i∈I , (Y

k)k∈K
¢
.

Firm k takes prices p ∈ RN as given and choose a production plan yk ∈ Y k to

solve:

max
y∈Y k

p · y.

Definition 6 AWalrasian equilibrium is a vector (p, (xi)i∈I , (yk)k∈K) such that

1. Firms maximize profits: for all k ∈ K,

yk ∈ argmax
y∈Y k

p · y

2. Consumers maximize utility: for all i ∈ I,

xi ∈ argmax
x

ui(x)

s.t. p · (x− ei)− p ·
X
k∈K

αkiyk ≤ 0

3. Markets clear: X
i∈I
(xi − ei)−

X
k∈K

yk = 0.

9.2 Assumptions about Production

We’ll want to make some assumptions on Y k to ensure that an equilibrium exists

with production. The simplest such assumption is that Y k is convex and com-

pact for all firms k, but it seems unreasonable to assume that a production set is

bounded. Instead, we assume:

(A5) For all firms k ∈ K, Y k is closed and convex.

37



(A6) For all firms k ∈ K, 0 ∈ Y k and RN
−− ⊂ Y k.

Note that these assumptions rule out increasing returns to scale. If y ∈ Y k,

then so is βY k for any 0 < β < 1. So it is always possible to “scale” down

production or break it up into arbitrarily small productive units.

We need one further assumption to ensure that firms cannot cooperate in a

clever way and produce an infinite amount of goods – i.e. to ensure that one firm

doesn’t produce 1 pound of iron into 1 pound of steel, while another firm produces

2 pounds of iron from that 1 pound of steel. Debreu (1959) makes an assumption

directly on the aggregate production possibilities:

(A7) If Y =
P

k∈K Y
k, then Y ∩ −Y = {0}.

Think about why this rules out the above story. With these assumptions in

place, our earlier welfare and existence results carry through.

9.3 Efficiency and Existence

The definition of feasibility and Pareto efficiency carry through immediately to the

case of production.

Definition 7 An allocation and production plan ((xi)i∈I , (yk)k∈K) is feasible ifP
i∈I(x

i − ei)−
P

k∈K y
k ≤ 0.

Definition 8 A feasible allocation and production plan ((xi)i∈I , (yk)k∈K) isPareto
efficient if there is no other feasible allocation and production plan ((x̂i)i∈I , (ŷk)k∈K)
satisfying ui(x̂i) ≥ ui(xi) for all i, with strict inequality for at least one i0.

We now state the two welfare theorems.

Theorem 12 (First Welfare Theorem) Assume E is a production economy that
satisfies (A2). If (p, (xi)i∈I , (yk)k∈K) is a Walrasian equilibrium for E, then ((xi)i∈I , (yk)k∈K)
is Pareto efficient.

The proof is virtually identical to the exchange case. Try to replicate it on your

own.
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Theorem 13 (Second Welfare Theorem) Assume utility functions and pro-
duction sets satisfy (A2)—(A5) and that ((xi)i∈I , (yk)k∈K) is a Pareto efficient allo-

cation. Suppose xi À 0 for all i ∈ I. Then there is a price vector p > 0, ownership
shares (αki)i∈I,k∈K, and endowments (ei)i∈I such that (p, (xi)i∈I , (yk)k∈K) is a Wal-

rasian equilibrium given these endowments and ownership shares.

The proof again relies on the Separating Hyperplane Theorem; you can check

it out in MWG. Note that the key assumption is convexity of the production

possibility sets. This is what enables us to find a separating hyperplane between

the set of feasible production plans and the aggregate “better than” set. One then

shows that the separating hyperplane is a supporting price vector.

What about equilibrium existence? If we impose all three of the Assumptions

above, we’re in good shape.

Theorem 14 (Existence of Equilibrium) Assume E is a production economy
satisfying (A1)—(A7). Then there exists a Walrasian equilibrium of E.

9.4 Linear Activity Analysis

If we are modeling production, we not only have to pick utility functions but also

production sets or production functions. A simple case is the so called ‘linear

activity model’ of production. In this model, all production sets are convex cones

spanned by finitely many rays. In particular, there is only one firm (this actually

won’t make any difference – see below). The firm has access toM linear activities

am ∈M ⊂ RL. It can operate each activity at some level γ ≥ 0. The production
set Y is the convex hull of these activities,

Y = {y ∈ RL : y =
MX

m=1

γmam for some γ ∈ RM
+ }.

Our assumption of free disposal is satisfied if the vectors

(−1, 0, . . . 0), (0,−1, 0, . . . 0), . . . (0, . . . , 0,−1)

are all inM.
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Figure 11 shows the special case of 4 activities and 2 goods. There are two

productive activities: activity 1 allows 2 units of good 2 to be converted into 1

unit of good 1. Activity 2 allows 3 units of good 1 to be converted into 1 unit of

good 2. Also there are two “free disposal activities”. Therefore:

M = {(1,−2), (−3, 1), (0,−1), (−1, 0)}.

x1

x2

0
Y

Figure 11: Activity Analysis Model

In the activity analysis model, given a price vector p, a profit maximizing

production plan exists if and only if p · am ≤ 0 for all m = 1, ...,M . If p · am > 0

for some m = 1, ...,M , the firm could choose γm → ∞ and make infinite profits.

Also, if p · am < 0 for some m it is clear that the optimal γm = 0.

This simple observation already tells us a lot about what kind of prices could

potentially be equilibrium prices. Indeed, in many cases the equilibrium prices

will just be determined by the zero-profit conditions, with utility maximization

and market clearing pinning down the levels at which the activities are operated.

An important thing to note is that if all production sets are of this simple

linear form, firms do not play a role at all. As there will never be any equilibrium
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profits, what matters is just the aggregate production set. Whether we interpret

each activity as a separate firm or we assume that one firm owns all the activities,

or even that several firms operate different sets of overlapping activities makes no

difference as long as we stay in our competitive paradigm.3 This constant returns

property is shared by the Cobb-Douglas production model that you have probably

seen a lot in macroeconomics.

9.5 An Example with Numbers

To make things really concrete, let’s consider an example with numbers. Suppose

there are two agents and three goods. The agents have identical utility functions:

ui(x) = log(x1) + log(x2) + log(x3)

Endowments are e1 = (1, 2, 3) and e2 = (2, 2, 2). Suppose that there are two

activities a1 = (2,−1, 0.5) and a2 = (0, 1,−1).
What does the Walrasian equilibrium look like? Let’s normalize p3 = 1. Now,

if activity 2 is used in equilibrium, it must be the case that (by zero profit) p2 = 1.

Similarly, if activity 1 is used in equilibrium, then p1 = 0.25. These prices are upper

bounds on the equilibrium prices if these activities are not used in equilibrium.

Let’s see if we can find an equilibrium where both activities are used. Given

prices p = (0.25, 1, 1), we solve the utiliy maximization problem for agent i. This

gives us:
1

p1xi1
=

1

p2xi2
=

1

p3xi3
and

X
l

plx
i
l =

X
l

ple
i
l

Plugging in our price vector and the endowments, we have:

4

xi1
=
1

xi2
=
1

xi3
and

1

4
xi1 + xi2 + xi3 = wi

3In fact, we can even assume that each agent performs an activity or two himself (household
production).
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where w1 = 5.25 and w2 = 4.5. Therefore:

x1 = (7, 1.75, 1.75) x2 = (6, 1.5, 1.5)

Therefore aggregate demand is (13, 3.25, 3.25). The aggregate endowments are

(3, 4, 5), so the only way we can have market clearing is if the aggregate production

is (10,−0.75,−1.75). This isn’t a problem. The firm will simply operate activity

1 at a level γ1 = 5 and operate activity 2 at a level γ2 = 4.25.

10 General Equilibrium with Uncertainty

Our goal in this last section is to introduce time and uncertainty into the basic

model. Introducing uncertainty allows a role for financial markets. We first discuss

the basic framework, then look at a model with financial markets and a single

consumption good. In the context of this simple model, we consider what it means

for there to be an absence of arbitrage possibilities. We also look at why the first

welfare theorem can fail if there are too few financial securities.

10.1 Modeling Uncertainty and Time

Among the many simplifications of the Arrow-Debreu model we have studied so

far is that it’s essentially a static model with no uncertainty at all. Ideally, we’d

like to include both time and uncertainty into our model of competitive trade.

Introducing time into the model isn’t too hard. A tomato in summer is a

different good than a tomato in winter. So perhaps we can just think about a

commodity as being identified not only by its physical characteristics but also by

its date.

Uncertainty seems more complicated, but a brilliant modelling innovation of

Arrow (1953) comes to the rescue. Arrow’s insight was to introduce “states of

the world” along the lines of Savage’s decision theory. A state of the world is a

complete description of a date-event. Unlike in Savage, however, we’re going to

assume that these states aren’t personal and subjective; instead everyone somehow

agrees on the possible states (there could be a lot). People don’t have to agree on

42



the probabilities of the states occurring, though that is often assumed.

We now think about the general model as having a finite number of time peri-

ods. In each period there is a set of possible states and there can be uncertainty

about what state will arise at date t + 1 – the probabilities can even depend on

what state was realized at date t.

With these ideas in mind, we can think about re-interpreting our Walrasian

model as follows. We model uncertainty as an event tree with S nodes, ξ ∈ Ξ.

We done a node’s predessor by ξ− and its set of successors by Υ(ξ). At each t we

summarize the nodes in this period in a set Nt. We denote the root node by 0.

This is pictured in Figure 12.

ξ-

ξ Υ(ξ)

N1

Date 0 Date 1 Date 2

Figure 12: An Event Tree

There are L commodities at every node so the total number of commodities is

SL. There are I agents. Each has an endowment ei ∈ RSL
++. Agent i’s consumption

set is RSL
+ and his utility function is ui : RSL

+ → R. The utility function may or
may not satisfy the von-Neumann Morgenstern axioms.

We define aWalrasian equilibrium exactly as before: a set of prices and resulting

allocation such that (i) all agents maximize utility given prices; and (ii) markets

43



clear. The idea here is that all trades take place at date zero and there is no re-

trading in later period. Under our earlier assumptions on preferences, a Walrasian

equilibrium exists, and the Welfare Theorems hold.

This is the model in chapter 7 of Debreu’s Theory of Value. As Debreu puts

it: “A contract for the transfer of commodities now specifies, in addition to its

physical properties, its location and date, an event on the occurrence of which the

transfer is conditional. This new definition of commodity allows one to obtain a

theory of uncertainty free from any probability concepts and formally identical to

the theory of certainty.”

This is quite elegant, but as Arrow originally pointed out, it seems unrealistic

that all these contingent trades would occur at date 0. Instead, what tends to

happen is that there are financial securities that are traded on exchanges and some

of these securities pay out contingent on certain events (e.g. hurricane insurance

pays out contingent on there being a hurricane; stocks pay dividends contingent

on company performance).

Arrow cleverly reformulated the model as follows. Assume at each node ξ

there are spot markets for the L commodities at that node. Assume that these

commodities have prices p(ξ). At node 0 there are now (S − 1) Arrow securities
(i.e. one for each future node), where an Arrow security ξ pays one unit of good

one at node ξ. An equilibrium is now defined as utility maximization and market

clearing at each node and in the S− 1 markets for Arrow securities at date 0. The
amazing result is that even though there are only S − 1 securities in the economy,
the Arrow-Debreu allocation obtains. The result isn’t even that hard to prove,

though we won’t do it now.

The next question that arose (in a paper by Radner, 1972) was the following:

what happens if there are securities that pay out in future contingencies (like

stock in different companies), but not a complete set of Arrow-Debreu securities.

This makes for arguably a more realistic model of actual securities markets. This

question has given rise to a large “incomplete markets” literature in economics

and finance. One of the interesting results from this literature is that without a

complete set of A-D securities, the first welfare theorem generally won’t hold. So

there is potentially room for government intervention and policy questions become
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interesting.

10.2 A Simple Finance Model

In this section we introduce and study what is just about the simplest general

equilibrium model with uncertainty. We assume there are two periods and in each

state of the world there is just one consumption good. We normalize the spot price

in each period to be equal to one.

We assume there are S + 1 states of the economy. At time t = 0 the economy

is in state s = 0; at time t = 1 the economy can be in one of S possible states. In

each state s = 0, ..., S there is a single perishable consumption good.

Each agent i ∈ I has an initial endowment ei = (ei0, ..., eiS) ∈ RS+1
++ and has a

utility function ui : RS+1
+ → R over consumption bundles ci = (ci0, ..., ciS) ∈ RS+1

+ .

We asume each agent’s utility function satisfies the standard assumptions – it’s

increasing, continuous and strictly concave. Also, let’s define x = (x1, ..., xS) as

the t = 1 part of the vector x = (x0, x1, ..., xS). The aggregate endowment is

e =
P

i∈I e
i.

There are J assets or securities. Each asset j pays dividends at date t = 1

which we denote by dj ∈ RS. The price of asset j at time t = 0 is qj. Without loss

of generality we assume that these assets are in zero net supply (if we wanted the

assets to be stock in some firm, there would be positive net supply, but then we

could put the dividends into agent’s endowments and be back to zero net supply).

We collect all assets’ dividends in the matrix:

A = (d1, ..., dJ) ∈ RS×J

At time t = 0, each agent i chooses a portfolio αi ∈ RJ , where αi
j is the amount

of asset j held by agent i. An agent’s portfolio uniquely defines his wealth at each

time one state, and hence his consumption (recall that prices are normalized to

one at each date one state): xi = ei + Aαi and xi0 = ei0 − αi · q. The net demand
of each agent xi − ei belongs to the span of the asset payoff matrix A :

hAi = {z ∈ RS : ∃α ∈ RJ s.t. z = Aα}.
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A finance economy is hence a triple: E = ((ui, ei)i∈I , A). Without loss of

generality, we can assume that rank(A) = J so there are no redundant assets.

With redundant assets, an arbitrage argument would imply that the price of some

assets would be uniquely determined by the price of other assets, regardless of

preferences. We say that markets are incomplete if J < S.

Asset prices are said to be arbitrage-free if it is not possible to achieve a positive

income stream in all states by trading at the going prices, i.e. if there is no position

α ∈ RJ with qα ≤ 0 and Aα ≥ 0 with one inequality being strict. Here qα is the
cost of portfolio α at date 0 and Aα is the vector of payoffs at different date one

staes. No arbitrage means you can’t guarantee positive future income tomorrow

without making a positive investment today.

If agents have strictly increasing utility functions, asset prices must preclude

arbitrage or there would be a real problem with utility maximization. The absence

of arbitrage is thus often seen the fundamental concept in finance (more so than

equilibrium). Many important concepts (such as Black-Scholes option pricing) rely

solely on arbitrage arguments.

Theorem 15 An asset price vector q ∈ RJ precludes arbitrage if and only if there

exists a state price vector π ∈ RS
++ such that q = π0 ·A.

Proof. Let M = {(−qα,Aα) : α ∈ RJ} be the marketed subspace of RS+1. That

is, (−x0, x) ∈ M means that by spending x0 at date 0, an agent can ensure the

vector of returns x at date one. There is no arbitrage if and only if RS+1
+ ∩M = {0}.

If (x0, x) ∈M and x0 ≥ 0, x ≥ 0 with a strict inequality (so (x0, x) ∈ RS+1
+ − {0},

it would be possible to start with zero wealth, consume x0 today and consume x

tomorrow – i.e. arbitrage would be possible.

For one direction of the proof, suppose there exists a strictly positive state price

vector π ∈ RS
++ such that q = π0A. We show that this means there is no arbitrage.

If there were also a vector x ∈ RS+1
+ ∩M with x 6= 0, then because x ∈ RS+1

+ and

π ∈ RS
++, we have (1, π) · x > 0. But by the fact that x ∈M and q = π0A, we also

have (1, π) · x = −qα + qα = 0, a contradiction. Hence, a strictly positive state

price vector implies no arbitrage.

For the converse direction, suppose no arbitrage: RS+1
+ ∩M = {0}. We use the

separating hyperplane to derive a supporting state price vector. Note that M and
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RS+1
+ are both convex sets whose intersection includes only the point {0}. The
SHT asserts the existence of a vector μ 6= 0 such that μ · x < μ · z for all x ∈ M

and all non-zero z ∈ RS+1
+ .4

Now, by the definition ofM , it must be the case that if x ∈M then −x ∈M ,so

we must have μ · x = 0 for all x ∈ M . Therefore μ · z > 0. The latter implies

that μ À 0 (if μl ≤ 0 for some l, we could find z ∈ RS+1
+ − {0} with zl > 0 and

zk = 0 leading to the contradiction μ ·z ≤ 0). Therefore −μ1q+(μ2, ..., μS+1)A = 0
and πs = μs+1/μ1 will give us a state price vector (note that to form π we just

normalize the prices – μ has the right relative prices). Q.E.D.

A lot of asset pricing theory has to do with finding the right state-price vector

π. Its existence is ensured by the absence of arbitrage, but often little can be said

about it in general models.5

Definition 9 A financial markets equilibrium for a finance economy E is a
collection of portfolios α∗ = (α1∗, ..., αI∗) ∈ RIJ , individual consumptions (xi)i∈I
and prices q∗ ∈ RJ such that:

1. Agents maximize utility:

(xi, αi∗) ∈ arg max
αi∈RJ ,ci∈RS+1+

ui(ci)

s.t. ci = ei +

µ
−q∗0
A

¶
αi

2. Markets clear: X
i∈I

αi∗ = 0

Clearly any equilibrium price vector must preclude arbitrage for the maximiza-

tion problem to have a well-defined solution. Indeed, we can infer state prices from

4This is a slightly different version of the SHT than we used to prove the Second Welfare
Theorem. There, we use the SHT to separate a convex set from a point outside that set. Here
we are separating two disjoint convex sets M and RS+1+ − {0}. The idea is the same (you can
check MWG’s math appendix for a statement of both results).

5In dynamic models the state-price vector is sometimes called the pricing kernel, or the equiv-
alent martingale measure (if normalized to add up to one).
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the agents’ first order conditions:

πs =
∂ui(xi)

∂xis

If J = S (remember the assets dividends are assumed to be linearly indepen-

dent), then a financial markets equilibrium is equivalent to aWalrasian equilibrium.

There will be a unique state-price vector π ∈ RS
++ such that q = π0A. This will be

an equilibrium price vector for a Walrasian economy; the resulting allocations are

the same in the two equilibria.

More interesting is the case where J < S so that markets are incomplete.

Under our assumptions, a financial markets equilibrium will still exist, but the

equilibrium allocation may not be efficient. To see why, let’s look at an example.

Suppose there are two states and there is a single bond that pays 1 in each

state: d = (1, 1)0. Suppose there are two agents with endowments:

e1 = (1, 2, 1)

e2 = (1, 1, 2)

and that both agents have identical utility:

ui(x0, x1, x2) = log x0 +
1

2
log x1 +

1

2
log x2

You can check as an exercise that the unique equilibrium will have no trade in the

bond so everyone will just consume there endowment. This allocation, however, is

Pareto dominated by the feasible allocation x1 = x2 = (1, 1.5, 1.5).

The first welfare theorem fails because the set of existing securities does not

allow the agents to suitably insure themselves against adverse states. There is still

as sense, however, in which equilibrium exhausts the gains from trade.

Definition 10 Given endowments (ei)i∈I and assets A, an allocation (xi)i∈I is
constrained efficient if

P
i∈I(x

i − ei) ≤ 0, xi − ei ∈ hAi for all i ∈ I and
there exists no alternative allocation (x̂i)i∈I that Pareto dominates (xi)i∈I and also

satisfies
P

i∈I(x̂
i − ei) ≤ 0 and x̂i − ei ∈ hAi for all i ∈ I.
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If you’re interested, you can try proving the following weaker welfare theorem:

Theorem 16 If utility functions are strictly increasing, a financial markets equi-
librium is constrained efficient.

References

[1] Arrow, Kenneth J. “An Extension of the Basic Theorems of Classical Welfare

Economics,” Proceedings of the Second Berkeley Symposium on Mathematical

Statistics and Probability, ed. J. Neyman, 1951.

[2] Arrow, Kenneth J. “The Role of Securities in the Optimal Allocation of Risk-

Bearing,”, Econometrie, 1953 (also Review of Economic Studies, 1963).

[3] Arrow, Kenneth J. “General Economic Equilibrium: Purpose, Analytic Tech-

niques, Collective Choice,” American Economic Review, 1973.

[4] Arrow, Kenneth J. and Gerard Debreu, “Existence of Equilibrium for a Com-

petitive Economy,” Econometrica, 1954.

[5] Arrow, Kenneth J. and Leonid Hurwicz, “On the Stability of the Competitive

Equilibrium, I,” Econometrica, 1958.

[6] Brown, Donald J. and Rosa Matzkin, “Testable Restrictions on the Equilib-

rium Manifold,” Econometrica, 1996.

[7] Cassel, G. The Theory of Social Economy, New York: Harcourt, Brace and

Company, 1924.

[8] Debreu, Gerard, “The Coefficient of Resource Utilization,” Econometrica,

1951.

[9] Debreu, Gerard, Theory of Value, 1959.

[10] Debreu, Gerard, “Excess Demand Functions,” J. Math. Econ., 1974.

49



[11] Mantel, R. “On the Characterization of Aggregate Excess Demand,” J. Econ.

Theory, 1974.

[12] Mas-Colell, A., M. Whinston, and J. Green, Microeconomic Theory, 1995.

[13] Radner, Roy, “Existence of Equilibrium of Plans, Prices and Price Expecta-

tions in a Sequence of Markets,” Econometrica, 1972.

[14] Scarf, Herbert, “Some Examples of Global Instability of the Competitive Equi-

librium,” International Economic Review, 1960.

[15] Sonnenschein, Hugo, “Do Walras’ Identity and Continuity Characterize the

Class of Community Excess Demand Functions?” J. Econ. Theory, 1973.

50


