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These notes develop a formal model of knowledge. We use this model
to prove the “Agreement” and “No Trade” Theorems and to investigate the
reasoning requirements implicit in different solution concepts. The notes
follow Osborne and Rubinstein (1994, ch. 5). For an outstanding survey
that covers much the same material, see Samuelson (2004).

1 A Model of Knowledge

The basic model we consider works as follows. There are a set of states ),
one of which is true. For each state w € ), and a given agent, there is a
set of states h(w) that the agent considers possible when the actual state is
w. Finally, we will say that an agent knows E if E obtains at all the states
that the agent believes are possible. These basic definitions will provide a
language for talking about reasoning and the implications of reasoning.

States. The starting point is a set of states (2. We can vary our interpre-
tation of this set depending on the problem. In standard decision theory, a
state describes contingencies that are relevant for a particular decision. In
game theory, a state is sometimes viewed as a complete description of the
world, including not only an agent’s information and beliefs, but also his
behavior.

Information. We describe an agent’s knowledge in each state using an in-
formation function.

Definition 1 An information function for  is a function h that asso-
ciates with each state w € £ a nonempty subset h(w) of 2.

Thus h(w) is the set of states the agent believes to be possible at w.



Definition 2 An information function is partitional if there is some par-
tition of Q0 such that for any w € Q, h(w) is the element of the partition that
contains w.

It is straightforward to see that an information function is partitional if
and only if it satisfies the following two properties:

Pl w € h(w) for every w € Q.

P2 If ' € h(w), then h(w'") = h(w).

Given some state w, Property P1 says that the agent is not convinced that
the state is not w. Property P2 says that if w’ is also deemed possible, then

the set of states that would be deemed possible were the state actually w’
must be the same as those currently deemed possible at w.

Example 1 Suppose Q = {w1,ws,ws, w4} and that the agent’s partition is
{{w1, w2}, {ws}{wa}}. Then h(ws) = {ws}, while h(w1) = {w1,ws2}.

Example 2 Suppose @ = {wi,wa}, h(w1) = {wi} but h(ws) = {w1,wa}.
Here h is not partitional.

Knowledge. We refer to a set of states E C Q as an event. If h(w) C E,
then in state w, the agent views —F as impossible. Hence we say that the
agent knows E. We define the agent’s knowledge function K by:

K(E)={weQ:h(w)C E}.
Thus, K(F) is the set of states at which the agent knows FE.

Example 1, cont. In our first example, suppose F = {ws}. Then K(F) =
{ws}. Similarly, K ({ws,wa}) = {ws, wa} and K({w1,ws}) = {ws}

Example 2, cont. In our second example, K({w1}) = {w1}, K({w2}) =10
and K({w1,ws2}) = {w1,wa}.

Now, notice that for every state w € €2, we have h(w) C Q. Therefore it
follows that:

K1 (Axiom of Awareness) K () = Q.



That is, regardless of the actual state, the agent knows that he is in some
state. Equivalently, the agent can identify (is aware of) the set of possible
states.

A second property of knowledge functions derived from information func-
tions is that:

K2 K(E)NK(F)=K(ENF).

Property K2 says that if the agent knows F and knows F', then he knows
ENF. An implication of this property is that

ECF= K(E)CK(F),

or in other words, if F' occurs whenever E occurs, then knowing F' means
knowing E as well. To see why this additional property holds, suppose
ECF. Then E=ENF,so K(F)=K(ENF). Applying K2 implies that
K(E) = K(FE)N K(F), from which the result follows.

If the information function satisfies P1, the knowledge function also sat-
isfies a third property:

K3 (Axiom of Knowledge) K(F) C E.

This says that if the agent knows FE, then E must have occurred — the
agent cannot know something that is false. This is a fairly strong property
if you stop to think about it.

Finally, if the information function is partitional (i.e. satisfies both P1
and P2), the knowledge function satisfies two further properties:

K4 (Axiom of Transparency) K(E) C K(K(E))

Property K4 says that if the agent knows FE, then he knows that he
knows E. To see this, note that if h is partitional, then K (F) is the union

of all partition elements that are subsets of . Moreover, if F'is any union
of partition elements K(F') = F (so actually K(E) = K(K(F))).

K5 (Axiom of Wisdom) Q\K(FE) C K(Q\K(E)).

Property Kb states the opposite: if the agent does not know FE, then he
knows that he does not know E. This brings home the strong assumption in
the model that the agent understands and is aware of all possible states and
can reason based on states that might have occurred, not just those that
actually do occur (see Geanakoplos, 1994 for discussion).



We started with a definition of knowledge functions based on informa-
tion functions, and derived K1-K5 as implications of the definition and the
properties of partitional information. As it happens, it is also possible to go
the other way because K1-K5 completely characterize knowledge functions.
That is, Bacharach (1985) has shown that if we start with a set of states {2
and a function K : Q — Q then if K satisfies K1-K5 it is possible to place
a partition on €2 to characterize the agent’s information.

2 Common Knowledge

Suppose there are I agents with partitional information functions A, ..., At
and associated knowledge functions K1, ...., Kj. We say that an event £ C {2
is mutual knowledge in state w if it is known to all agents, i.e. if w €
Ki(E)NKy(E)N...NK[(E) = KYE). An event E is common knowledge
in state w if it is know to everyone, everyone knows this, and so on.

Definition 3 An event E C () is common knowledge in state w if
we K EYNK'KYE)N.....

A definition of common knowledge also can be stated in terms of infor-
mation functions. Let us say that an event F' is self-evident if for all w € F
and i = 1,...,I, we have h;(w) C F.

Definition 4 An event E C Q is common knowledge in state w € € if
there is a self-evident event F' for which w € F C E.

Example 3 Suppose 2 = {w1,ws,ws,ws} and there are two individuals
with information partitions:

Hi = {{wl},{WQ,LU3},{W4}}
He = {{wlaw2}7{w3}a{w4}}

e Is the event ' = {wy,ws} ever common knowledge? Not according to
the second definition, since E does not contain any self-evident event.
Moreover, not according to the first either since, K1(E) = {w; } implies
that Ko K1(E) = (). Note, however, that K!(E) = {w;} so E is mutual
knowledge at wj.

o Is F = {wj,ws,ws} ever common knowledge? Apparently F' is com-
mon knowledge at any w € F since F' is self-evident. Moreover, since

Ky(F) = F and Ko(F) = F, it easy to check the first definition as
well.



Lemma 1 The following are equivalent: (i) K;(E) = E for all i, (ii) E is
self-evident, (i1i) E is a union of members of the partition induced by h; for
all 1.

Proof. To see (i) and (ii) are equivalent, note that F' is self-evident iff
F C K;(F) for all i. By K4, K;(F') C F always, so F is self-evident iff
K;(F) = F for all i. To see (i) implies (7ii), note that if E is self-evident,
then w € F implies hj(w) C E, so E = Uyeghi(w) for all 4. Finally (i)
implies (i) immediately. Q.E.D.

Proposition 1 The two definitions of common knowledge are equivalent.

Proof. Assume F is common knowledge at w according to the first def-
inition. Then F D KY(FE) D K'K'(E) D ... and w is a member of each
of these sets, which are thus non-empty. Since (2 is finite, there is some
set F' = K!... K}(E) for which K;(F) = F for all i. So this set F', with
w € F C F is self-evident and FE is ck by the second definition.

Assume F is common knowledge at w according to the second definition.
There is a self-evident event F' with w € F' C E. Then K;(F) = F for all
i. So KY(F) = F, and K!(F) is self-evident. Iterating this argument,
K!' - KYF) = F and each is self-evident. Now F' C E, so by K2, F' C

(E). Since w € F, E is ck by the first definition. Q.E.D.

3 The Agreement Theorem

Aumann (1976) posed the following question: could two individuals who
share the same prior ever agree to disagree? That is, if ¢ and j share a
common prior over states, could a state arise at which it was commonly
known that ¢ assigned probability 1, to some event, j assigned probability
n; to that same event and m; # 7n;. Aumann concluded that this sort of
disagreement is impossible.

Formally, let p be a probability measure on 2 — interpreted as the
agents’ prior belief. For any state w and event E, let p(E|h;(w)) denote i’s
posterior belief, so p(E|h;(w)) is obtained by Bayes’ rule. The event that “i
assigns probability n; to E” is {w € Q : p(E|hi(w) = n;}.

Proposition 2 Suppose two agents have the same prior belief over a finite
set of states ). If each agent’s infomation function is partitional and it is
common knowledge in some state w € § that agent 1 assigns probability n,
to some event E and agent 2 assigns probability ny to E, then ny = ny.



Proof. If the assumptions are satisfied, then there is some self-evident
event F' with w € F such that:

Fc{w € Q:p(Elh(w) =m}n{w € Q:p(Elha(w') = nq}

Moreover, F' is a union of members of i’s information partition. Since €2 is
finite, so is the number of sets in each union — let F' = U, Ay, = U Bj,. Now,
for any nonempty disjoint sets C, D with p(E|C) = n; and p(E|D) = n;, we
have p(E|C U D) = n,. Since for each k, p(E|A) = 1, then p(E|F) = n;
and similarly p(E|F) = p(E|By) = n,. Q.E.D.

4 The No-Trade Theorem

The agreement theorem underlies an important set of results that place
limits on the trades that can occur in differential information models under
the common prior assumption (cf. Kreps, 1977; Milgrom and Stokey, 1982;
Tirole, 1982; Osborne and Wolinsky, 1990). These “no-trade” theorems
state, in various ways, that rational risk-averse traders cannot take opposite
sides on a purely speculative bet. To see the basic idea, note that for some
agent 1 to make an even money bet that a coin will come up Heads, he must
believe that Pr(Heads) > 1/2. For some agent 2 to take the other side of
this bet, he must believe that Pr(Heads) < 1/2. Aumann’s theorem says
the bet cannot happen since these opposing beliefs would then be common
knowledge!

To formalize this idea, suppose there are two agents. Let {2 be a set
of states and X a set of consequences (trading outcomes). A contingent
contract is a function mapping €2 into X. Let A be the space of contracts.
Each agent has a utility function u; : X x Q@ — R. Let U;(a) = u;(a(w),w)
denote #’s utility from contract a — Uj;(a) is a random variable that depends
on the realization of w. Let E[U;(a)|H;] denote i’s expectation of Uj(a)
conditional on his information H;.

The following result is close cousin to the agreement theorem.

Proposition 3 Let ¢ be a random variable on ). If i and j have a common
prior on §2, it cannot be common knowledge between them that i’s expectation
of ¢ is strictly greater than j’s expectation of ¢.

Proof. This is on the problem set. Q.E.D.

Now, let us say that a contingent contract b is ex ante efficient if there
is no contract a such that, for both i, E[U;(a)] > E[U;(b)]. We now state
Milgrom and Stokey’s (1982) no trade theorem.



Proposition 4 If a contingent contract b is ex ante efficient, then it cannot
be common knowledge between the agents that every agent prefers contract
a to contract b.

The proof will follow the same lines as the proof of the Agreement The-
orem.

Proof. The claim is that there cannot be a state w, which occurs with
positive probability, at which the set

E = {w : B[Uj(a)|hi(w)] > B[U;(b)|hi(w)] for all i}

if common knowledge. Suppose to the contrary that there was such a state
w and hence a self-evident set F' such that w € F' C E. By the definition of
a self-evident set, for all w’ € F and all 4, h;(w’) € F. So for all ' € F and
all 4

E[U;(a) — U;(b)|h;(w')] > 0.

Now, using the fact that ¢’s information is partitional, we know that F' =
h(w!) Uh(w?) U ... Uh(w") for some set of states w?,...,w™ € F (in fact, we
can choose these states so that h(w*) N h(w!) = @). It follows that for all 4:

E[U;(a) — Ui (b)|F] > 0.

In other words, contract a strictly Pareto dominates contract b conditional
on the event F. But now we have a contradiction to the assumption that b
is ex ante efficient, because it is possible to construct a better contract ¢ by
defining ¢ to be equal to a for all states w € F' and equal to b for all states

wé¢F. Q.E.D.

This theorem has remarkable implications because it says that under
conditions that are quite standard in economic modelling — a common
prior, Bayesian rationality and common knowledge being reached of any
trades — there cannot be purely speculative transactions. Trades can only
occur when the allocation of resources is not Pareto optimal and they must
have an efficiency rationale.

This result seems nearly impossible to square with the enormous volume
of trade in real-world financial markets. This suggests weakening one or
more of the assumptions.

1. A route often followed in finance is to introduce “behavioral” or “lig-
uidity” traders who are not rational but trade anyway. This can do



two things. First, to the extent that these traders lose money, they
create gains from trade for rational traders. Second the presence of
such traders may mean that two rational traders can trade without
reaching common knowledge that they are trading — because one or
both may think her trading partner is non-rational.

2. A second route is to relax the rationality assumption more broadly,
for instance positing that agents use simple rules of thumb to process
information or are systematically optimistic or pessimistic in interpret-
ing information.

3. A third possibility is to weaken the common prior assumption so that
agents “agree to disagree”. In fact, Feinberg (2000) has shown that
the common prior assumption is equivalent to the no-trade theorem in
the sense that if it fails, agents can find some purely speculative bet
that they would all want to take. Morris (1994) characterizes the set
of trades that can occur with heteregenous priors.

5 Speculative Trade with Heterogeneous Priors

When agents have differing prior beliefs, the no-trade theorem fails. Here
we’ll cover an interesting case of trade with differing priors, taken from
Harrison and Kreps (1978). To do this, we’ll depart from the formal notation
and just look at a simple example with numbers.

Consider a market where a single asset is traded by two classes of in-
vestors with infinite wealth, and identical discount factor § = 3/4. In every
period t = 1,2, ..., the asset pays a dividend d; of either zero or one, and
then can be traded. Both types of investors perceive the stream of dividends
to be a stationary markov process with state space {0, 1}. But they disagree
over the transition probabilities. Specifically, investors of type i = 1,2 belive
the transition probabilies are (here the ij entry reflects the probability of
transiting from state i to state j):

1/2 1/2 10
Q1_1/2 1/2 @@=y -
The first type of investor believes the returns are independent over time;
the second type believes the returns are perfectly positively correlated over
time. Suppose we compute the value to each type of investor of holding the



asset for the entire future, as a function of today’s dividend:

v1(0) = 3/2 ulgt))— 3:/))2 ‘
v(l) =

Thus in periods when the dividend is low, the first type of investor, who
believes returns are iid, has a higher belief about the asset’s fundamental
value. But in periods when the dividend is high, the second investor, who
believes returns are persistent, believes the fundamental value is higher. This
suggests the asset will be traded back and forth depending on the current
period dividend. But at what price?

Harrison and Kreps show that for every state s, and time ¢, prices must
satisfy:

pi(st) = & o max D [disa(ser1) + pelse1)] Qu(se, se41)-

St+1

That is, given a common expectation about the price process p:(e), the
price in state s must equal the maximum expected return across investors
of buying the asset and holding it for a single period. (Why just a single
period? Think about the optimality principle of dynamic programming.)

Given the stationarity of our example, equilibrium asset prices will also
be stationary — that is, the price will be the same in every period the asset
returns zero and in every period it returns one. Combining this observation
with the Harrison and Kreps characterization of prices, we have:

p0) = 2 |2p(0) +5 (1 +p(1)
p(1) = S[+p(1)].

Solving these equations, we arrive at:

p(0) = 12/5 p(1) = 3.

In the high dividend state, type two investors buy the asset and are will-
ing to hold it forever, so the price equals their fundamental valuation. In the
low dividend, state, however, the price exceeds the fundamental valuation of
both types of investors. Why? Because the price is set by type one investors
who buy the asset for speculative purposes — that is, with the intention of
holding the asset only until a dividend is paid at which point they intend to
immediately unload the asset onto a type two investor.



This example seems quite special, but it can be generalized considerably
(see Harrison and Kreps, 1978 and Scheinkman and Xiong, 2003). Neverthe-
less, this line of research has languished until recently despite many interest-
ing questions one might ask. For instance, one might wonder how investor
learning affects speculative trade. Morris (1996) shows that there can still be
a speculative premium as learning occurs even if ultimately everyone agrees.
Fudenberg and Levine (2005) argue that for natural learning processes, the
end-result will be a situation where there is no trade (roughly they argue
that a no-trade result obtains for a particular form of self-confirming equi-
librium). Finally, you might notice that in the Harrison and Kreps model,
investors agree on the state-price density (i.e. the price process) despite
not agreeing on the transition probabilities over states. Mordecai Kurz has
written a series of papers, using a quite different formalization, that attempt
to relax this by allowing for heteregeneous beliefs directly about prices.

6 Epistemic Conditions for Equilibrium

Fix a game G = (I,{S;},{ui}). Let Q be a set of states. Each state is a
complete description of each player’s knowledge, action and belief. Formally,
each state w € (Q specifies for each 1,

e hi(w) C £, i’s knowledge in state w.
e s;(w) € 5;, i’s pure strategy in state w.

o 1;(w) € A(S_;), i’s belief about the actions of others (note that ¢ may
believe other players actions are correlated).

We assume that among the players, it is common knowledge that the
game being played is G. Thus, we assume each player knows his strategy
set and the strategy sets and payoffs of the other players. Nevertheless,
the model can be extended to games of incomplete information, where the
game (e.g. payoff functions) may be uncertain. We will also maintain the
assumption that each agent’s information function is partitional.

Our first result is that if, in some state, each player is rational, knows
the other players’ strategies, and has a belief consistent with his knowledge,
then the strategy profile chosen in that state is a Nash equilibrium of G.

Proposition 5 Suppose that in state w € , each player i:

(i) knows the others’ actions: hi(w) C {w' € Q:s_;(w') = s_;(w)}.
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(ii) has a belief consistent with this knowledge: supp(p;(w)) C {s—i(w’) €
S_;: W' e hz(w)}

(11i) is rational: s;(w) is a best response to p;(w),
Then s(w) is a pure strategy Nash equilibrium of G.

Proof. By (iii), s;(w) is a best response for i to his belief, which by (i) and
(i) assigns probability one to the profile s_;(w). Q.E.D.

Clearly the assumption that each player knows the strategy choices of
others is quite strong. What if we relax the assumption that players actually
know the strategy choices of others, and replace it with an assumption that
players know the beliefs of others and also that the others are rational? With
two players, these conditions imply a Nash equilibrium in beliefs.

Proposition 6 Suppose that I =2 and that in state w € €2, each player i:
(i) knows the other’s belief: hi(w) C {w’ € Q: p;(W') = p;(w)},
(7i) has a belief consistent with this knowledge,

(iii) knows that the other is rational: for any w' € hi(w), the action sj(w')
is a best response of j to p;(W') for j #i.

Then the profile o0 = (ug(w), py(w)) is a Nash equilibrium of G.

Proof. Let s; € S; be in the support of p;(w). By (ii) there is a state
W' € hj(w) such that s;(w') = s;. By (iii), s; must be a best response to
p;(w'), which by (i) is equal to p;(w). Q.E.D.

Interestingly, neither of these results requires that beliefs be derived from
a common prior on §2. Indeed, beliefs need only be consistent with a player’s
knowledge. It is also not crucial that the game be common knowledge. For
the first result, each player need only know his own preferences and strategy
set. For the second, the game needs to be mutual knowledge.

Aumann and Brandenburger (1995) show that with three or more play-
ers, stronger assumptions are needed to justify mixed strategy Nash equilib-
rium. The main issue is to ensure that players ¢ and j have the same beliefs
about k. To ensure this, Aumann and Brandenburger assume a common
prior, mutual knowledge of rationality and common knowledge of beliefs —
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common knowledge of beliefs and a common prior imply identical beliefs by
the Agreement Theorem.

Finally, we show that common knowledge of rationality implies rational-
izability as we earlier suggested.

Proposition 7 Suppose that in state w € ) it is common knowledge that
each player’s belief is consistent with his knowledge and that each player is
rational. Then the profile s(w) is rationalizable.

Proof (for I =2). Let F' 5 w be a self-evident event such that for every
w' € Fand each i, s;(w) is a best response to p;(w’) and p,;(w') is consistent
with i’s knowledge at w’. For each i, let B; = {s;(u') € S; : w' € F}.
If ' € F, then s;(w’) is a best response to p;(w’), whose support is a
subset of {s;(w”) € S; : W’ € hy(wW')}. Since F is self-evident, h;(w’) C F,
so {sj(w") € Sj : " € hi(w')} C Bj. Thus By x By is a best-reply set
containing s(w). Q.E.D.

It is also possible to provide an epistemic characterization of correlated
equilibrium. In contrast to the other characterizations, which are local in
nature (i.e. they refer to stategies, beliefs and knowledge at a particular
state), correlated equilibrium is justified by assuming that players have a
common prior and that at every state players are rational (this implies ck
of rationality at every state). To state the result, due to Aumann (1987),
let {H;} denote the partition induced by h; for each i.

Proposition 8 Suppose that for all w € Q, (i) all players are rational,
(ii) each player’s belief is derived from a common prior p on £ such that
p(hi(w)) > 0 for all i,w, (i) for alli, s; : Q@ — S; is measurable with respect
to i’s information, then (Q,{H;},p,s) is a correlated equilibrium.

Proof. Follows immediately from the definition of CE. Q.E.D.

Note that while we earlier motivated CE with an explicit communication
story, here the information structure is just there. Gul (1998) argues that
this leads to a conceptual problem — if the information structure is “just
there,” it’s hard to know what to make of the common prior assumption.

7 Comments

1. An idea we will return to throughout the term is that small departures
from common knowledge can have a dramatic effect on the set of equi-
libria. In particular, even if each player is quite certain about the game
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being player (i.e. the payoffs structure), even small uncertainty about
other’s information can eliminate equilibria that exist when payoffs are
common knowledge. For one striking example of this, see Rubinstein
(1989). Formally, the fact that small perturbations of the information
structure can eliminate Nash equilibria occurs because the Nash equi-
librium correspondence (mapping from the parameters of the game to
the set of equilibrium strategies) is not lower semi-continuous.

. Monderer and Samet (1989) define a version of “almost common knowl-
edge” that has proved useful in some applications. There basic idea
is that an event E is common p-belief if everyone assigns probability
at least p to F, everyone assigns probability at least p to everyone as-
signing probability at least p to E and so on. Belief with probability 1
is then very close to knowledge (though not strictly speaking the same
without some further assumptions), and common 1-belief the analogue
of common knowledge.

. Recent work has attempted to provide epistemic characterizations of
dynamic equilibrium concepts such as subgame perfection, sequential
equilibrium and so on. The difficulty is that rationality is a much more
subtle issue in the extensive form. For example, consider the centipede
game:

3,3

1,0 0,2 4,1

Centipede Game

Consider the following argument for why common knowledge of ratio-
nality should imply the backward induction solution that A play D
immediately:

If A isrational, A will play D at the last node; if B knows A is rational,
then B knows this; if B herself is rational, she must then play D at
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the second to last node; if A knows B is rational, and that B knows
that A is rational, then A knows that B will play D at the second to
last node; thus, if A is rational, A must play D immediately.

The question, however, is what will happen if A plays In? At that
point, how will B assess A’s rationality? This puzzle has inspired much
recent research (see Brandenburger, 2002, for a survey).

One interesting approach to these problems is Feinberg (2004), who
proposes to treat each agent at each information set as essentially a
separate individual (though all A’s have the same preferences), with
each individual having a frame of reference that assumes his node has
been reached. Then B might still be confident of A’s future rationality
even if A’s past rationality has been refuted. In Feinberg’s account,
common knowledge of rationality may actually contradict the logical
structure of the game (the centipede game is such a game).
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