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We now take up the problem of repeated games where players’ actions
may not be directly observable. This is a rich class of problems, with many
economic applications. Abreu, Pearce and Stacchetti (1990) and Fudenberg,
Levine and Maskin (1994) have developed a beautiful and powerful set of
techniques for these games.

1 A Few Examples

1. Cournot competition with noisy demand (Green and Porter, 1984).
Firms set outputs q1t, ...qIt, chosen privately. Demand conditions then
determine pt = P (q1t, ..., qIt, ε), which is observed publicly.

2. “Reputation” for quality. A single firm sets price pt and chooses an
effort et at some cost c(et). Product quality is “High” with probability
p(et) ∈ (0, 1), where p is increasing in et. Consumers are willing to
pay more for high quality.

3. Noisy prisoners’ dilemma. Players choose from {C,D}. But instead
of these actions being observed, some noisy signal of these actions is
observed instead (see below).

4. Team Production. Players choose efforts e1 ∈ {eL, eH}, as part of a
joint project that succeeds with probability p(e1 + e2). Only the joint
outcome is observed publicly.

5. Self-enforced agency contracts (Levin, 2003). Each period, the agent
privately observes a cost parameter θt, and produces output yt at cost
c(θt, yt). The output, but not the cost, is observed. Alternatively, the
agent chooses an effort et, and output is stochastic yt ∼ f(·|e).
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6. Consumption smoothing and insurance (Green, 1987). There are a
continuum of consumers, who each period get income shocks zit. They
then report their incomes and make transfers among themselves. Trans-
fers must be balanced.

2 The General Model

• Let A1, ..., AI be finite action sets.

• Let Y be a finite set of public outcomes.

• Let π(y|a) = Pr(y|a).

• Let ri(ai, y) be i’s payoff if she plays ai and the public outcome is y.

• Player i’s expected payoff is:

gi(a) =
X
y∈Y

π(y|a)ri(ai, y).

• A mixed strategy is αi ∈ ∆(Ai). Payoffs are defined in the obvious
way.

Example 1 In the Cournot game, ai is quantity, y is price (here, one might
want to have A, Y continuous rather than finite).

Example 2 In the PD game, ai is intended action, y is actual actions.

Example 3 In the agency problem, ai is a vector that specifies the agent’s
output y for each cost realization.

• The public information at the start of period t : ht = (y0, ..., yt−1).

• Player i’s private information is hti = (a0i , ..., at−1i ).

• A strategy for i is a sequence of maps σti taking (ht, hti)→ ∆(Ai)

Definition 1 A public strategy for player i is a sequence of maps σit :
ht → ∆(Ai).

We focus on public strategies because they are simple and lead to a nice
structure for the game. More on this later, however.
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• Player i’s average discounted payoff for the game if he gets a sequence
of payoffs {gti} is:

(1− δ)
∞X
t=0

δtgti

Definition 2 A profile (σ1, .., σI) is a perfect public equilibrium if

(i) σi is a public strategy for all i.

(ii) For each date t and history ht, the strategies are a Nash equilibrium
from that point on.

A crucial point about PPE is that after any history ht, a PPE induces
a PPE in the remaining game. However, note that like the set of subgame
perfect equilibrium payoffs in a repeated game model with perfect monitor-
ing, the set of PPE payoffs is stationary – i.e. it’s the same starting from
any period t. The first point is perhaps a little subtle. With imperfect mon-
itoring, there are often no proper subgames (i.e. a player may be uncertain
as to which of many information nodes he is at), so SPE might have no bite.
However, since opponents don’t base their strategies on private information,
all possible nodes have the same distribution over opponent play, so there’s
no need to distinguish. The perfection condition (ii) is well-defined because
the public history is commonly known.

Note that if the game happens to have perfect monitoring, so Y = A,
and π(y|a) puts probability 1 on a, then PPE coincides with SPE. More
generally, a PPE is a perfect bayesian equilibrium of the repeated game,
but not all perfect bayesian equilibria are PPEs. What do I mean by this?
In PPE, everyone uses a public strategy. Given that opponent’s are using
public strategies, it doesn’t help i to use a non-public strategy, since any
private information he might have is not payoff-relevant (since preferences
don’t depend on the private information). However, if j 6= i are using their
private information, i might want to use his. This non-public strategy case
is not nearly as well-understood.

Example 4 Green and Porter (1984) suggest the following type of “trigger
strategies” for the noisy Cournot model:

1. Play q1, ..., qI . If pt < p, go to phase 2.

2. Play qc1, ..., q
c
I (cournot) for T periods. Then return to phase I.
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GP verify that if the players are sufficiently patient, there is an equi-
librium of this form where q1, ..., qI are less than the static Cournot
levels (e.g. equal to qM/I where qM is the monopoly quantity) and p
and T are chosen appropriately. This equilibrium is a PPE. Strategies
are “public” and play is Nash from every time forward.

Note that a lower trigger price means less chance of punishment and more
incentive to deviate. A longer punishment periods mean less incentive
to deviate, but less efficiency. GP’s main result is that firms can’t
achieve the first-best monopoly profits as there will be “price wars” in
equilibrium.

3 Self-Generation

We now develop a set of powerful techniques for characterizing perfect public
equilibria. In contrast to the Green-Porter analysis, we will think not in
terms of strategies, but in terms of payoffs. The idea is that to “enforce”
certain actions at time t, we will attach continuation payoffs from time t+1
on to each time t outcome. You can think of this as analogous to a principal—
agent problem, where to motivate the agent, the principal promises certain
rewards or punishments. The subtlety here is that the promised rewards
and punishments must themselves correspond to payoffs in a PPE of the
continuation game (rather than being monetary payoffs specified in a court-
enforced contract).

Definition 3 The pair (α, v) is enforceable with respect to δ and W ⊂ RI

if there exists a function w : Y →W such that for all i,

(i) vi = (1− δ)gi(α) + δ
P

y π(y|a)wi(y)

(ii) αi ∈ argmaxα0i∈∆(Ai)(1− δ)gi(α
0
i, α−i) + δ

P
y π(y|α0i, α−i)wi(y)

Condition (i) says that the target payoff v can be decomposed into to-
day’s payoff gi(α) and the expected continuation payoff (macroeconomists
call this the “promised utility”). Condition (ii) is essentially an incentive
compatibility constraint. These conditions ought to remind you of Bellman’s
equation for dynamic programming.

Definition 4 Let B(δ,W ) be the set of payoffs v such that for some α,
(α, v) is enforced with respect to δ and W . Then B(δ,W ) is the payoff set
generated by δ,W .
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Definition 5 E(δ) is the set of PPE payoffs.

Proposition 1 E(δ) = B(δ, E(δ)).

Proof. (⊇) Fix v ∈ B(δ, E(δ)). Pick α, w : Y → E(δ) such that w enforces
(α, v). Now consider the following strategies. In period 0, play α. Then
starting in period 1, play the perfect public equilibrium that gives payoffs
w(y0). This is a PPE, so v ∈ E(δ).

(⊆) Fix v ∈ E(δ). There is some PPE that gives payoffs v. Suppose in
this PPE, play in period 0 is α, and continuation payoffs are w(y0) ∈ E(δ),
since continuation corresponds to PPE play. The fact that no one wants to
deviate means that (α, v) is enforced by w : Y → E(δ), so v ∈ B(δ, E(δ)).
Q.E.D.

Abreu, Pearce and Stacchetti (1986, 1990) call this factorization. The
idea is that for any PPE, the payoffs can be decomposed or factored into
today’s payoffs and continuation payoffs. In a PPE, all the continuation
payoffs have to themselves correspond to PPE profiles. So those can be
decomposed, and so on. So they have a recursive structure.

Definition 6 W is self-generating if W ⊂ B(δ,W ).

The interpretation is that it is possible to sustain average payoffs in
W by promising different continuation payoffs in W . Note that E(δ) is self-
generating. The set of static Nash equilibrium payoffs is also self-generating.

Proposition 2 If W is self-generating, then W ⊂ E(δ).

Proof. Fix v ∈ W . Then v ∈ B(δ,W ), so there is some w : Y → W and
some α such that (α, v) is enforced by w. We construct an equilibrium that
gives v. In period 0, play α, and for an outcome y0, set v1 = w(y0). Then
v1 ∈ W ⊂ B(δ,W ), so again there is some α1 and some w1 : Y → W such
that (α1, v1) is enforced by w1. Continue with this argument ad infinitum,
to obtain recommended strategies after each public history such that there
are no profitable deviations, and which by construction give payoff v from
time 0. Q.E.D.

Corollary 1 E(δ) is the largest self-generating set.

We’ll now go on to discuss some applications of these ideas.
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4 Examples of Self-Generation

Let’s try out self-generation in two variants of the prisoners’ dilemma.

4.1 Prisoners’ Dilemma

Consider the prisoner’s dilemma with perfect monitoring.

C D
C 1, 1 −1, 2
D 2,−1 0, 0

With perfect monitoring, Y = {(C,C) , (C,D) , (D,C) , (D,D)} .

Claim If δ ≥ 1/2, the set W = {(0, 0) , (1, 1)} is self-generating.

Proof. We want to show that (0, 0) ∈ B(δ,W ), and (1, 1) ∈ B(δ,W )
for δ ≥ 1/2. Consider (0, 0) first. It is easy to see that the strategy profile
(D,D), and payoff profile (0, 0) are enforced by any δ and the function
w(y) = (0, 0) since

0 = (1− δ)gi(D,D) + δwi(D,D)

and for all ai ∈ {C,D},

0 ≥ (1− δ)gi(ai,D) + δwi(ai,D) .

Now consider (1, 1). We show that the strategy profile (C,C) and payoff
profile (1, 1) are enforced by δ ≥ 1/2 and W . Let w(C,C) = (1, 1) and
w(y) = (0, 0) for all y 6= (C,C). Then

1 = (1− δ)gi(C,C) + δwi(C,C)

and for all ai ∈ {C,D}, if δ ≥ 1/2

1 ≥ (1− δ)gi(ai, C) + δwi(ai, C).

So W ⊂ B(δ,W ) for δ ≥ 1/2, meaning that W is self-generating. Q.E.D.

Exercise 1 Try showing that if δ = 1/2, then (3/2, 0) is also in B(δ,W ).
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4.2 Noisy Prisoners’ Dilemma

There are two players i = 1, 2 and Ai = {C,D}. The observed outcomes are
Y = {G,B} (good and bad) where

Pr (G | a) =

⎧⎨⎩
p if a = (C,C)
q if a = (C,D),(D,C)
r if a = (D,D)

,

with p > q > r. We assume that p− q > q − r. Payoffs are given by

ri(ai, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + 2−2p

p−q if (C,G)
1− 2p

p−q if (C,B)
2−2r
q−r if (D,G)
−2r
q−r if (D,B)

,

which means that expected payoffs gi(a) are given by the standard prisoners’
dilemma matrix above.

Claim If 1
(p−r)+(q−r) ≥ δ ≥ 1

(p−q)+(p−r) , the set W = { δr
1−δ(p−r) ,

1−δ+δr
1−δ(p−r)} is

self-generating.

Proof. Recall that to enforce a payoff v, we need a profile a and a map
w : Y →W from outcomes to continuation payoffs such that:

v = (1− δ)gi(a) + δE
£
wi(y) | a0i, a−i

¤
and for all a0i 6= ai

v ≥ (1− δ)gi(a
0
i, a−i) + δE

£
wi(y) | a0i, a−i

¤
.

Now, let v = δr
1−δ(p−r) , and v

0 = 1−δ+δr
1−δ(p−r) (the bad and good continuation

payoffs). To enforce v, use the profile (D,D) and

w(y) =

½
v0 if y = G
v if y = B

We need to check that:

v = (1− δ)(0) + δv + δr(v0 − v),

v ≥ (1− δ)(−1) + δv + δq(v0 − v)
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The first constraint is just algebra. The second constraint holds so long as:

δ(q − r)(v0 − v) ≥ 1− δ,

that is, if δ ≥ 1/(p+ q − 2r).
To enforce v0, use the profile (C,C) and the same w : Y →W . We need

to check

v0 = (1− δ)(1) + δv + δp(v0 − v)

v0 ≥ (1− δ)(2) + δv + δq(v0 − v)

The first condition is again just algebra, while the second holds so long as:

δ(p− q)(v0 − v) ≥ 1− δ

which requires that δ ≥ 1/(2p− q − r). Q.E.D.

4.3 Strongly Symmetric PPE

The examples above are illustrative but they don’t characterize the set of
PPE. In general models, this tends to be quite hard. A useful simplification
in symmetric games (introduced by Abreu, Pearce and Stacchetti, 1986) is
to focus on PPE that are strongly symmetric in the sense that each player
uses the same strategy after every history. In the two examples above, the
strategies were strongly symmetric.

More generally, if we allow for public randomization, the set of strongly
symmetric PPE payoffs will be an interval [v, v], where v is the lowest and
v the highest strongly symmetric PPE payoffs. Therefore, solving for the
equilibrium set boils down to finding the best and worst equilibrium payoffs.

u1

u2

v

v

Set of Symmetric PPE
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To actually characterize the highest and lowest payoffs, we need to solve
a fixed point problem. We can think about fixing future symmetric payoffs
to lie on some interval and finding maximal and minimal present payoffs
subject to incentive compatibility, promise-keeping and the constraint that
continuation payoffs are chosen from the allowable interval. If we start with
a very large interval, we will find a somewhat smaller interval; continuing
the process we will eventually converge to the equilibrium payoff set. Al-
ternatively, we can jump right to the fixed point by solving the following
problem:

v = max
a,a,v,v,w:Y→R

(1− δ)g(a) + δ
X
y

w(y)π(y|a)

s.t. v = (1− δ)g(a) + δ
X
y

w(y)π(y|a)

v = (1− δ)g(a) + δ
X
y

w(y)π(y|a)

v ≥ (1− δ)g(a, a) + δ
X
y

w(y)π(y|a, a) for all a ∈ A

v ≥ (1− δ)g(a, a) + δ
X
y

w(y)π(y|a, a) for all a ∈ A

v ≥ w(y) ≥ v for all y ∈ Y

Note that here we find maximixal and minimal payoffs in one step using the
fact that a lower minimum will automatically allow a higher minimum and
vice versa.

While this is simpler than solving for PPE in general, it’s still pretty com-
plicated. Abreu, Pearce and Stacchetti (1986) characterize strongly sym-
metric equilibria in the Green-Porter oligopoly game where players chooses
quantities and price is a noisy function of the aggregate quantity. Athey,
Bagwell and Sanchirico (2004) study strongly symmetric equilibria in a re-
peated Bertrand pricing game where firms have private cost information.

5 The Folk Theorem

So far, we’ve argued that strongly symmetric strategies lead to inefficient
outcomes (because of equilibrium “price wars”). Nevertheless, Fudenberg,
Levine and Maskin (1994) show that this inefficiency arises because GP ’84
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and APS ’86 limit the space of strategies, and go on to prove a version of
the Folk Theorem.

Fudenberg, Levine and Maskin’s result requires two “observability” or
“identification” conditions.

(I1) For all i, and a−i, the |Ai| vectors π(·|ai, a−i) are linearly independent.

(I2) For all i, j, there is some profile α such that the |Ai| + |Aj | vectors
π(·|ai, α−i) and π(·|aj |α−j) admit only one linear dependency.

The first condition requires that i’s actions can be statistically identified
– that is, they do not induce the same probability distribution on outcomes.
Note that for (I1) to hold, it must be the case that |Y | ≥ |Ai| – which is
arguably quite a strong requirement. The second condition says that if
everyone is playing α, then not only can i’s actions be distinguished, and
j’s actions being distinguished, but i’s actions can be distinguished from j’s
actions. If you’re a statistics/econometrics type, you can think of this just
like statistical identification. Here i’s action is the parameter. To identify
it, you need the probability distribution over observables to change when
it changes. The second condition is what you need to identify both ai and
aj at the same time – we only require this for some profile played by the
others, k 6= i, j.

Let V ∗ be the set of feasible and strictly individually rational payoff
vectors.

Proposition 3 Suppose dimV = I, and (I1), (I2) hold. Then for any
closed set W ⊂ int(V ∗), there exists some δ < 1 such that for all δ ≥ δ,
W ⊂ E(δ).

Proof. I’ll sketch the idea in class; you’ll have to read the paper for details!
Q.E.D.

The folk theorem applies to payoff vectors in the interior of V ∗. Gener-
ally you can’t get exact efficiency with imperfect monitoring. The argument
is simple and illustrative. Suppose that π(·|a) has a support that is indepen-
dent of a (as in APS). And suppose that v is extremal but not a static Nash
equilibrium payoff. Because v is extremal, the only sequence of payoffs that
gives average value vmust have payoffs v in every period. So if a PPE gives
v, the first period strategies must specify a profile awith g(a) = v, and for
any outcome y, the continuation payoffs must be w(y) = v. But then con-
tinuation payoffs are independent of today’s outcome, so unless ahappens
to be a static Nash equilibrium (which it isn’t by assumption), someone will
want to deviate.
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