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The plan

We will discuss differential privacy and its extensions. After the basics, we
will look at four big ideas

▶ Composition: if we use many private mechanisms, how do we lose
privacy?

▶ Amplification: how can we improve privacy by simple methods?

▶ Advanced privacy mechanisms: stability, robustness, matrix
mechanisms

▶ Optimality and lower bounds

2 / 25



Notation and setting

▶ Data Xi of individuals i = 1, 2, . . . , n

▶ Data represented as Pn = 1
n

∑n
i=1 1Xi

▶ Pn ∈ Pn, the space of empirical distributions

▶ Wish to compute
θ(Pn) ∈ Θ

(e.g., mean, minimizer of loss)

▶ A mechanism M is a randomized mapping M : Pn → Θ
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The definition of privacy

Definition (Dwork et al. [5, 4])

A randomized mechanism M is (ε, δ)-differentially private if

P(M(Pn) ∈ A) ≤ eεP(M(P ′
n) ∈ A) + δ

for all neighboring Pn and P ′
n ∈ Pn

Observation (Bayesian perspective)

Cannot update a prior very much based on M(Pn)
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A hypothesis testing perspective

▶ Adversary tests H0 : Pn against H1 : P
′
n

▶ Define errors

α0 = P
(
reject(M(Pn))

)
and α1 = P

(
accept(M(P ′

n))
)

Lemma (Wasserman and Zhou [8])

M is (ε, δ)-differentially private if and only if

α0 + eεα1 ≥ 1− δ and α1 + eεα0 ≥ 1− δ
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Local differential privacy

▶ when curator of data may be untrustworthy

Definition (Local differential privacy)

A mechanism M : X → Z is ε-locally differentially private if

P(M(x) ∈ A) ≤ eεP(M(x′) ∈ A)

Example (Randomized response, Warner [7])

Wish to release a sensitive answer X ∈ {0, 1}.
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Basic mechanisms
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Global sensitivity

Definition
function f : Pn → R has global sensitivity

GS(f) := sup
{∣∣f(Pn)− f(P ′

n)
∣∣ | dham(Pn, P

′
n) ≤ 1

}
.

Examples:

▶ means with bounded data

▶ some optimization solutions
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Laplace mechanism

▶ Laplace random variable Z ∼ Lap(1) has density

p(z) =
1

2
exp(−|z|)

▶ assume f has global sensitivity GS(f) < ∞

Definition
The Laplace mechanism releases

M(Pn) = f(Pn) +
GS(f)

ε
· Lap(1)

▶ it is ε-differentially private
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Laplace mechanism (d-dimensions)

Definition
A function f has ℓp-global sensitivity

GSp(f) := sup
{∥∥f(Pn)− f(P ′

n)
∥∥
p
| dham(Pn, P

′
n) ≤ 1

}
Definition
The Laplace mechanism releases

M(Pn) = f(Pn) +
GS1(f)

ε
·W

where W ∈ Rd has Wj
iid∼ Lap(1)
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Mean estimation with Laplace mechanisms

Example

Assume data Xi ∈ Rd have ∥Xi∥2 ≤ r and wish to estimate

f(Pn) := EPn [X] = Xn =
1

n

n∑
i=1

Xi.

Laplace mechanism behavior on this?
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Gaussian mechanism

Definition (see ref. [1])

The Gaussian mechanism releases

M(Pn) = f(Pn) + GS2(f) · N
(
0, σ2(ε, δ)I

)
where

σ2(ε, δ) ≤ O(1)
log 1

δ

ε2
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Privacy loss random variable

Definition
if Q0, Q1 are distributions of M(Pn) and M(P ′

n), privacy loss

LM (z) := log
dQ0(z)

dQ1(z)

and privacy loss random variable

LM := log
dQ0(Z)

dQ1(Z)
for Z ∼ Q0

Lemma (Dwork and Roth [3], Lemma 3.17 or Duchi [2], Lemma 8.2.10)

M is (ε, δ)-differentially private if and only if P(|LM | ≥ ε) ≤ δ
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Privacy of Gaussian mechanism

▶ Control the privacy loss random variable
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Mean estimation with Gaussian mechanisms

Example

Assume data Xi ∈ Rd have ∥Xi∥2 ≤ r and wish to estimate

f(Pn) := EPn [X] = Xn =
1

n

n∑
i=1

Xi.

Gaussian mechanism behavior on this?
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Mean estimation with randomized response

Example

Assume data Xi ∈ R have Xi ∈ {0, 1}. Randomized response:

Zi =

{
Xi w.p. eε/(1 + eε)

1−Xi w.p. 1/(1 + eε)

Then for appropriate a, b, θ̂n = aZn + b satisfies

E
[
(θ̂n − E[X])2

]
≲

1

ε2 ∧ 1
· 1
n
.
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What we want from a privacy definition

▶ Protection against side information

▶ No post-processing improvements

▶ Graceful privacy degradation after multiple releases
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Composition of privacy algorithms

▶ for mechanisms M1 : Pn → Θ1 and M2 : Pn ×Θ1 → Θ2, their
composition

M1 ◦M2(Pn) :=
(
M1(Pn),M2(Pn,M1(Pn))

)
▶ k-fold adaptive composition

M1 ◦M2 ◦ · · · ◦Mk(Pn) :=
(
M1(Pn), . . . ,Mk(Pn,Mk−1, . . . ,M1)

)
big question: if each mechanism is private, is M1 ◦ · · · ◦Mk private?
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Composition

Theorem
The k-fold adaptive composition of (ε, δ)-differentially private mechanisms
is (kε, kδ)-differentially private and(

kε(eε − 1) +O(1)

√
kε2 log

1

δ
,O(1)kδ

)
-differentially private
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Proof sketch of composition

▶ For qi = density of Mi, define privacy loss

Li := log
qi(θi | Pn, θ

i−1
1 )

qi(θi | P ′
n, θ

i−1
1 )

▶ Apply Azuma-Hoeffding inequality

20 / 25



Alternative definitions

▶ “play better” with composition

▶ admit cleaner analyses in some cases
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Rényi-differential privacy

▶ Rényi α-divergence between P and Q is

Dα (P ||Q) :=
1

α− 1
log

∫ (
dP

dQ

)α

dQ

Definition (Mironov [6])

Mechanism M is (α, ε)-Rényi differentially private if induced measures
Q(· | Pn) and Q(· | P ′

n) satisfy

Dα

(
Q(· | Pn)||Q(· | P ′

n)
)
≤ ε.
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Composition in Rényi privacy

Proposition (Mironov [6])

Let Z0 = M0(Pn), Z1 = M1(Pn, Z0) be (α, ε0) and (α, ε1)-RDP. Then
(Z0, Z1) is (α, ε0 + ε1)-RDP.
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From Rényi privacy to differential privacy

Proposition (Mironov [6])

If M is (α, ε)-RDP, then it is (ε+
log 1

δ
α−1 , δ)-DP.

Lemma
For any event A, P (A) ≤ (exp(Dα (P ||Q)) ·Q(A))

α−1
α .

Part 2: case-by-case analysis of P (M ∈ A) versus P (M ′ ∈ A)
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Composition of Gaussian mechanisms

Corollary

Adaptively choose k functions fi(Pn), each GS(f) ≤ 1. Then

Mi = fi(Pn) + N(0, σ2) with σ2 =
k log 1

δ
ε2

+ k
ε is (2ε, δ)-DP.
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