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The plan

We will discuss differential privacy and its extensions. After the basics, we
will look at four big ideas

» Composition: if we use many private mechanisms, how do we lose
privacy?
» Amplification: how can we improve privacy by simple methods?

» Advanced privacy mechanisms: stability, robustness, matrix
mechanisms

» Optimality and lower bounds
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Notation and setting

» Data X; of individuals i =1,2,...,n
> Data represented as P, = 1 3" | 1y,
» P, € P,, the space of empirical distributions

> Wish to compute
0(P,) € ©

(e.g., mean, minimizer of loss)

» A mechanism M is a randomized mapping M : P,, - ©
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The definition of privacy

Definition (Dwork et al. [5, 4])
A randomized mechanism M is (e, d)-differentially private if

P(M(P,) € A) <eP(M(P.) e A)+§
for all neighboring P, and P, € P,

Observation (Bayesian perspective)

Cannot update a prior very much based on M (P,)
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A hypothesis testing perspective

> Adversary tests Hy : P, against H; : P,

» Define errors

ap = P(reject(M(P,))) and oy =P(accept(M(P})))

Lemma (Wasserman and Zhou [8])
M is (e, d)-differentially private if and only if

ap+ea;>1—-6 and o;+eag>1—6
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Local differential privacy

» when curator of data may be untrustworthy

Definition (Local differential privacy)
A mechanism M : X — Z is e-locally differentially private if

P(M(z) € A) < EP(M(z)) € A)

Example (Randomized response, Warner [7])

Wish to release a sensitive answer X € {0,1}.
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Basic mechanisms
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Global sensitivity

Definition
function f : P, — R has global sensitivity

GS(f) := sup {|f(Pn) = f(Py)| | dham(Pn, Py) < 1}

Examples:

» means with bounded data

» some optimization solutions
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Laplace mechanism
» Laplace random variable Z ~ Lap(1) has density
1
p(z) = 5 exp(~2])

» assume f has global sensitivity GS(f) < oo

Definition
The Laplace mechanism releases

> it is e-differentially private
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Laplace mechanism (d-dimensions)

Definition
A function f has £,-global sensitivity

GSy(f) = sup { | F(Pu) = S]], | dram (P P1) < 1}

Definition
The Laplace mechanism releases

where W € R? has W 19 Lap(1)
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Mean estimation with Laplace mechanisms

Example

Assume data X; € R? have || X;||, < r and wish to estimate

F(P) = Ep, [X] ZX

Laplace mechanism behavior on this?
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Gaussian mechanism

Definition (see ref. [1])

The Gaussian mechanism releases

M(P,) = f(Py) + GSa(f) - N (0,0%(e, 8)I)
where

o2(e,8) < O(1)\ %3

e2
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Privacy loss random variable

Definition

if Qo, Q1 are distributions of M (P,) and M(P)), privacy loss

on(z)

Ly(z) :=log 401 (2)

and privacy loss random variable

L dQo(Z)
Lar=log 45 (2)

for Z ~ Qg

Lemma (Dwork and Roth [3], Lemma 3.17 or Duchi [2], Lemma 8.2.10)
M is (e, 0)-differentially private if and only if P(|Lys| > €) < 0
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Privacy of Gaussian mechanism

» Control the privacy loss random variable
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Mean estimation with Gaussian mechanisms

Example
Assume data X; € R? have || X;||, < r and wish to estimate

F(Pa) = Ep,[X] = X, = - 3 X,

Gaussian mechanism behavior on this?
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Mean estimation with randomized response

Example
Assume data X; € R have X; € {0,1}. Randomized response:

7 - X w.p. /(14 €)
1= X wep. 1/(1+¢°)

Then for appropriate a, b, 0, = aZ, + b satisfies

E (@ - BIX])?| $ 5

1
~e2al nd
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What we want from a privacy definition

> Protection against side information

» No post-processing improvements

» Graceful privacy degradation after multiple releases
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Composition of privacy algorithms

» for mechanisms Mj : P, — ©1 and My : P,, X ©1 — O, their
composition

My o Ma(Py) := (M1 (Py), Ma(Pp, M1(Py)))
» k-fold adaptive composition
Ml o M2 O--+0 Mk(Pn) = (Ml(Pn), ey Mk(Pn, Mk:—la e ,Ml))

big question: if each mechanism is private, is My o --- o M}, private?
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Composition

Theorem
The k-fold adaptive composition of (e, ¢)-differentially private mechanisms
is (ke, kd)-differentially private and

1
(ke(eE — 1)+ O(1)4/ ke?log 5 0(1)k5> -differentially private
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Proof sketch of composition

» For g; = density of M;, define privacy loss

L; :=log —
qi(0; | P,,677")

> Apply Azuma-Hoeffding inequality

Gi(0; | Pn,0071)
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Alternative definitions

> “play better” with composition

P admit cleaner analyses in some cases
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Rényi-differential privacy

> Rényi a-divergence between P and @ is

1 dP\*“
Da(PIQ) = e [ (Gg) 0@

Definition (Mironov [6])
Mechanism M is («, e)-Rényi differentially private if induced measures
Q(- | P,) and Q(- | P)) satisfy

Da (QC | PAIQ | ) <&,
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Composition in Rényi privacy

Proposition (Mironov [6])
Let Zy = My(P,), Z1 = M1(Py, Zo) be (a,e0) and (a,e1)-RDP. Then
(Z(), Zl) is (Oé, g0 + 61)—RDP.
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From Rényi privacy to differential privacy
Proposition (Mironov [6])

1
If M is (,€)-RDP, then it is (¢ + <22 §)-DP.

a—1"

Lemma

For any event A, P(A) < (exp(Da (P|Q)) - Q(A))“% .

Part 2: case-by-case analysis of P(M € A) versus P(M' € A)
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Composition of Gaussian mechanisms

Corollary
Adaptively choose k functions f;(P,), each GS(f) < 1. Then

1
M; = f;(Po) + N(0,02) with 0% = "85 4 k is (22 5)-DP.
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