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The plan

▶ subsampling

▶ stochastic gradient methods

▶ shuffling and local privacy
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Intuition

▶ algorithmic choices ought to improve privacy

▶ subsampling: only a small fraction of individuals?

▶ local privacy and shuffling
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The subsampling mechanism

▶ assume mechanisms M work on P1,P2, . . . ,Pn

▶ the subsampling mechanism

draw S ⊂ {1, . . . , n} with card(S) = m < n

uniformly at random, release

M sub(Pn) := M(PS), PS =
1

m

∑
i∈S

1Xi
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Privacy amplification of subsampling

Theorem (Ullman [12], Balle et al. [4])

Let q = m
n . If M is (ε, δ)-differentially private, then M sub is

(log(1 + q(eε − 1)), qδ) -DP.

Corollary

If ε ≤ 1, then M sub is (O(1)qε, qδ)-differentially private
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Proof of amplification I

▶ Let Pn, P
′
n differ on index i, q = m

n , write

P(M sub(Pn) ∈ A)

= (1− q)P(M(PS) ∈ A | i ̸∈ S) + qP(M(PS) ∈ A | i ∈ S)
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Proof of amplification II

▶ bound the terms

p0 = P(M(PS) ∈ A | i ̸∈ S),

p1 = P(M(PS) ∈ A | i ∈ S), p′1 = P(M(P ′
S) ∈ A | i ∈ S)
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A heuristic application: mean estimation

▶ assume data x1, . . . , xn ∈ [−1, 1],

▶ choose σ2
ε,δ = O(1)

log 1
δ

ε2
so xi + N(0, σ2

ε,δ) is (ε, δ)-private

▶ repeat k times: sample Sj ⊂ [n], m = card(Sj) = qn,

µ̂j =
1

m

∑
i∈Sj

xi + N

(
0,

σ2
ε,δ

m2

)
.

Proposition (Informal)

If q ≥ 1
n and k ≤ 1

q2
, then µ̂ = 1

k

∑k
j=1 µ̂j is (ε, δ)-private and

E
[(
µ̂− xn

)2] ≤ 1

kqn
+

σ2
ε,δ

km2
.
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Idea of argument
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Application of amplification: stochastic gradient

Problem: minimize

f(θ) :=
1

n

n∑
i=1

fi(θ)

where fi are convex, L0-Lipschitz, have L1-Lipschitz gradient

Example (Logistic regression)

For data (xi, yi) ∈ Rd × {−1, 1}, ∥xi∥2 ≤ L0, losses

fi(θ) = log(1 + exp(−yix
T
i θ))

are L0-Lipschitz and have L1 =
L0
4 .
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Application of amplification: stochastic gradient

Problem: minimize

f(θ) :=
1

n

n∑
i=1

fi(θ)

Algorithm: noisy SGD

▶ sample S ⊂ [n], card(S) = m, compute

gk =
1

m

∑
i∈S

∇fi(θk) + N(0, σ2I)

▶ update θk+1 = θk − ηkgk
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Convergence of private SGD

Theorem (Folklore, see [2], Thm. 1)

If Var(gk | θk) ≤ V 2, then stepsize η = 1
L1+γ

k∑
i=1

E[f(θi+1)− f(θ⋆)] ≤ ∥θ1 − θ⋆∥2

2η
+

k

2γ
V 2.

Corollary (Noisy SGD)

E[f(θk)− f(θ⋆)] ≤ (L1 + γ) ∥θ1 − θ⋆∥2

2k
+

1

2γ

(
σ2d+

L2
0

m

)
.
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Privacy analysis of noisy SGD

▶ sensitivity of g = 1
m

∑
i∈S ∇fi(θk):∥∥g − g′

∥∥
2
≤ 2L0

m

▶ to obtain (ε, δ)-DP per iteration via gk = g + N(0, σ2Id):

σ2 = O(1)
L2
0

m2
·
log 1

δ

ε2
.

▶ with subsampling q = m
n and ε ≤ 1, per-step privacy

εstep ≲ qε
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Privacy analysis of noisy SGD (continued)

▶ total privacy loss after k iterations:(
kε2step +O(1)

√
kε2step log

1

δ
, kε

)
-differentially private.

i.e.

εtotal ≲ kq2ε2 +

√
k(qε)2 log

1

δ

▶ convergence (with R2 = ∥θ1 − θ⋆∥22)

E[f(θk)− f(θ⋆)] ≲
L1R

2

k
+

γR2

k
+

1

γ

(
dL2

0 log
1
δ

m2ε2
+

L2
0

m

)
▶ find dominant terms
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Convergence of private (noisy) SGD

Theorem
Assume that (i) k ≫

√
n, (ii) m ≤ n√

k
, and (iii) 1 ≥ ε2 ≥ d

m log 1
δ . Then

DP-SGD achieves

E
[
f(θk)− f(θ⋆)

]
≲

L1R
2

k
+

L0R√
km

Corollary (Bassily et al. [5, 6], Feldman et al. [10])

With appropriate choices for m and k = n2

m2 ,

E
[
f(θ̂n)− f(θ⋆)

]
≲

L0R
√
d log 1

δ

nε
.
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Amplification by shuffling

▶ individual data x1, . . . , xn

▶ for differentially private Q, each reports

Zi ∼ Q(· | xi)

▶ permute (Z1, . . . , Zn) randomly
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Intuition

▶ heuristic idea: suppose x1, . . . , xn ∈ {0, 1}
▶ randomized response: for qε =

eε

1+eε ,

Zi =

{
xi w.p. qε

1− xi otherwise

▶ key intuition:
∑n

i=1 Zi is sufficient statistic for (Zπ(i))
n
i=1

▶ using

E[Zi] = qεxi + (1− qε)(1− xi) = (2qε − 1)xi − (1− qε)

Var(Zi) = qε(1− qε),

approximately

n∑
i=1

Zi
·∼ N

(
(2qε − 1)1Tx− (1− qε)n, nqε(1− qε)

)
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Intuition (continued)
▶ for x, x′ ∈ {0, 1}n with ∥x− x′∥1 ≤ 1,

n∑
i=1

Zi
·∼ N

(
(2qε − 1)1Tx− (1− qε)n, nqε(1− qε)

)
n∑

i=1

Z ′
i

·∼ N
(
(2qε − 1)1Tx′ − (1− qε)n, nqε(1− qε)

)
▶ normals N(µ, σ2) and N(0, σ2) are (ε, δ)-close if σ2 ≳ µ2 log

1
δ

ε2

▶ µ = (2qε − 1) = eε−1
eε+1 and σ2 = n eε

(1+eε)2

final privacy

ε2final =
(eε − 1)2 log 1

δ

neε
=

eε(1− e−ε)2 log 1
δ

n
.
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A more formal statement

Theorem (Feldman et al. [11])

Let Zi be ε0-locally differentially private views of Xi and π : [n] → [n] a
uniformly random permutation. Then (Zπ(1), . . . , Zπ(n)) is

ε = O(1)(1− e−ε0)

√
eε0 log 1

δ

n
differentially private
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Proof idea 1 (randomized response): releases as mixtures

Q(· | x) = p

2
Q(· | 0) + p

2
Q(· | 1) + (1− p)

[
x

1− x

]
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Proof idea 2: simulate outputs

Yi ∈ {0, 1, 2}, Yi
iid∼


0 w.p. p/2

1 w.p. p/2

2 w.p. 1− p

and when π(i) ̸= 1,

Zi =


Ber(q) if Yi = 0

Ber(1− q) if Yi = 1

xπ(i) if Yi = 2
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Proof idea 3: control Binomial deviations

Bound difference between (1 +N0, N −N0) and (N0, N −N0 + 1) for

N ∼ Bin(n− 1, p) and N0 | N ∼ Bin(N, 1/2).
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Other types of amplification and some references

▶ Binary case: Cheu et al. [7]

▶ RAPPOR system of Erlingsson et al. [8]

▶ Amplification by iteration, Feldman et al. [9] and Altschuler and
Talwar [3]

▶ “application” in deep learning: moments-accountant, Abadi et al. [1]
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A convergence analysis of stochastic gradient

minimize f(x)
subject to x ∈ X

where f has L1-Lipschitz gradient and stochastic gradients g satisfy

Var(g | x) = E[∥g −∇f(x)∥22] ≤ V 2

stochastic gradient iteration

xk+1 = argmin
x∈X

{
∇f(xk)

Tx+
1

2η
∥x− xk∥22

}
Theorem
If η−1 = L1 + γ, then

k∑
i=1

E[f(xi+1)− f(x⋆)] ≤ ∥x1 − x⋆∥2

2η
+

k

2γ
V 2.
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Proof: building blocks

Idea: analyze one-step progress

Lemma (smoothness properties)

f(xk+1)− f(x⋆) ≤ ⟨∇f(xk), xk+1 − x⋆⟩+ L1

2
∥xk − xk+1∥2 .

Lemma (intermediate minimizers)

for h convex, x minimizes h over X iff ⟨∇h(x), y − x⟩ ≥ 0, all y ∈ X
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Proof: one-step progress

Lemma
for noise error ξk = ∇f(xk)− gk,

f(xk+1)− f(x⋆) ≤ 1

2η

[
∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2 − ∥xk − xk+1∥2

]
+ ⟨ξk, xk+1 − x⋆⟩+ L1

2
∥xk − xk+1∥2
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Finalizing the analysis by telescoping
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