

Big idea 2: privacy amplification

John Duchi
Stanford University

Frejus 2025

The plan

- ▶ subsampling
- ▶ stochastic gradient methods
- ▶ shuffling and local privacy

Intuition

- ▶ algorithmic choices ought to improve privacy
- ▶ subsampling: only a small fraction of individuals?

- ▶ local privacy and shuffling

The subsampling mechanism

- ▶ assume mechanisms M work on $\mathcal{P}_1, \mathcal{P}_2, \dots, \mathcal{P}_n$
- ▶ the *subsampling mechanism*

draw $S \subset \{1, \dots, n\}$ with $\text{card}(S) = m < n$

uniformly at random, release

$$M^{\text{sub}}(P_n) := M(P_S), \quad P_S = \frac{1}{m} \sum_{i \in S} \mathbf{1}_{X_i}$$

Privacy amplification of subsampling

Theorem (Ullman [12], Balle et al. [4])

Let $q = \frac{m}{n}$. If M is (ε, δ) -differentially private, then M^{sub} is

$$(\log(1 + q(e^\varepsilon - 1)), q\delta) \text{-DP.}$$

Corollary

If $\varepsilon \leq 1$, then M^{sub} is $(O(1)q\varepsilon, q\delta)$ -differentially private

Proof of amplification I

- ▶ Let P_n, P'_n differ on index i , $q = \frac{m}{n}$, write

$$\begin{aligned}\mathbb{P}(M^{\text{sub}}(P_n) \in A) \\ = (1 - q)\mathbb{P}(M(P_S) \in A \mid i \notin S) + q\mathbb{P}(M(P_S) \in A \mid i \in S)\end{aligned}$$

Proof of amplification II

- ▶ bound the terms

$$p_0 = \mathbb{P}(M(P_S) \in A \mid i \notin S),$$

$$p_1 = \mathbb{P}(M(P_S) \in A \mid i \in S), \quad p'_1 = \mathbb{P}(M(P'_S) \in A \mid i \in S)$$

A heuristic application: mean estimation

- ▶ assume data $x_1, \dots, x_n \in [-1, 1]$,
- ▶ choose $\sigma_{\varepsilon, \delta}^2 = O(1) \frac{\log \frac{1}{\delta}}{\varepsilon^2}$ so $x_i + \mathcal{N}(0, \sigma_{\varepsilon, \delta}^2)$ is (ε, δ) -private
- ▶ repeat k times: sample $S_j \subset [n]$, $m = \text{card}(S_j) = qn$,

$$\hat{\mu}_j = \frac{1}{m} \sum_{i \in S_j} x_i + \mathcal{N}\left(0, \frac{\sigma_{\varepsilon, \delta}^2}{m^2}\right).$$

Proposition (Informal)

If $q \geq \frac{1}{n}$ and $k \leq \frac{1}{q^2}$, then $\hat{\mu} = \frac{1}{k} \sum_{j=1}^k \hat{\mu}_j$ is (ε, δ) -private and

$$\mathbb{E} \left[(\hat{\mu} - \bar{x}_n)^2 \right] \leq \frac{1}{kqn} + \frac{\sigma_{\varepsilon, \delta}^2}{km^2}.$$

Idea of argument

Application of amplification: stochastic gradient

Problem: minimize

$$f(\theta) := \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

where f_i are convex, L_0 -Lipschitz, have L_1 -Lipschitz gradient

Example (Logistic regression)

For data $(x_i, y_i) \in \mathbb{R}^d \times \{-1, 1\}$, $\|x_i\|_2 \leq L_0$, losses

$$f_i(\theta) = \log(1 + \exp(-y_i x_i^T \theta))$$

are L_0 -Lipschitz and have $L_1 = \frac{L_0}{4}$.

Application of amplification: stochastic gradient

Problem: minimize

$$f(\theta) := \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

Algorithm: noisy SGD

- ▶ sample $S \subset [n]$, $\text{card}(S) = m$, compute

$$g_k = \frac{1}{m} \sum_{i \in S} \nabla f_i(\theta_k) + \mathcal{N}(0, \sigma^2 I)$$

- ▶ update $\theta_{k+1} = \theta_k - \eta_k g_k$

Convergence of private SGD

Theorem (Folklore, see [2], Thm. 1)

If $\text{Var}(g_k \mid \theta_k) \leq V^2$, then stepsize $\eta = \frac{1}{L_1 + \gamma}$

$$\sum_{i=1}^k \mathbb{E}[f(\theta_{i+1}) - f(\theta^*)] \leq \frac{\|\theta_1 - \theta^*\|^2}{2\eta} + \frac{k}{2\gamma} V^2.$$

Corollary (Noisy SGD)

$$\mathbb{E}[f(\bar{\theta}_k) - f(\theta^*)] \leq \frac{(L_1 + \gamma) \|\theta_1 - \theta^*\|^2}{2k} + \frac{1}{2\gamma} \left(\sigma^2 d + \frac{L_0^2}{m} \right).$$

Privacy analysis of noisy SGD

- sensitivity of $g = \frac{1}{m} \sum_{i \in S} \nabla f_i(\theta_k)$:

$$\|g - g'\|_2 \leq \frac{2L_0}{m}$$

- to obtain (ε, δ) -DP per iteration via $g_k = g + \mathcal{N}(0, \sigma^2 I_d)$:

$$\sigma^2 = O(1) \frac{L_0^2}{m^2} \cdot \frac{\log \frac{1}{\delta}}{\varepsilon^2}.$$

- with subsampling $q = \frac{m}{n}$ and $\varepsilon \leq 1$, per-step privacy

$$\varepsilon_{\text{step}} \lesssim q\varepsilon$$

Privacy analysis of noisy SGD (continued)

- ▶ total privacy loss after k iterations:

$$\left(k\varepsilon_{\text{step}}^2 + O(1) \sqrt{k\varepsilon_{\text{step}}^2 \log \frac{1}{\delta}}, k\varepsilon \right) \text{-differentially private.}$$

i.e.

$$\varepsilon_{\text{total}} \lesssim kq^2\varepsilon^2 + \sqrt{k(q\varepsilon)^2 \log \frac{1}{\delta}}$$

- ▶ convergence (with $R^2 = \|\theta_1 - \theta^*\|_2^2$)

$$\mathbb{E}[f(\bar{\theta}_k) - f(\theta^*)] \lesssim \frac{L_1 R^2}{k} + \frac{\gamma R^2}{k} + \frac{1}{\gamma} \left(\frac{dL_0^2 \log \frac{1}{\delta}}{m^2 \varepsilon^2} + \frac{L_0^2}{m} \right)$$

- ▶ find dominant terms

Convergence of private (noisy) SGD

Theorem

Assume that (i) $k \gg \sqrt{n}$, (ii) $m \leq \frac{n}{\sqrt{k}}$, and (iii) $1 \geq \varepsilon^2 \geq \frac{d}{m} \log \frac{1}{\delta}$. Then DP-SGD achieves

$$\mathbb{E} [f(\bar{\theta}_k) - f(\theta^*)] \lesssim \frac{L_1 R^2}{k} + \frac{L_0 R}{\sqrt{km}}$$

Corollary (Bassily et al. [5, 6], Feldman et al. [10])

With appropriate choices for m and $k = \frac{n^2}{m^2}$,

$$\mathbb{E} [f(\hat{\theta}_n) - f(\theta^*)] \lesssim \frac{L_0 R \sqrt{d} \log \frac{1}{\delta}}{n \varepsilon}.$$

Amplification by shuffling

- ▶ individual data x_1, \dots, x_n
- ▶ for differentially private Q , each reports

$$Z_i \sim Q(\cdot \mid x_i)$$

- ▶ permute (Z_1, \dots, Z_n) randomly

Intuition

- ▶ heuristic idea: suppose $x_1, \dots, x_n \in \{0, 1\}$
- ▶ randomized response: for $q_\varepsilon = \frac{e^\varepsilon}{1+e^\varepsilon}$,

$$Z_i = \begin{cases} x_i & \text{w.p. } q_\varepsilon \\ 1 - x_i & \text{otherwise} \end{cases}$$

- ▶ key intuition: $\sum_{i=1}^n Z_i$ is sufficient statistic for $(Z_{\pi(i)})_{i=1}^n$
- ▶ using

$$\mathbb{E}[Z_i] = q_\varepsilon x_i + (1 - q_\varepsilon)(1 - x_i) = (2q_\varepsilon - 1)x_i - (1 - q_\varepsilon)$$

$$\text{Var}(Z_i) = q_\varepsilon(1 - q_\varepsilon),$$

approximately

$$\sum_{i=1}^n Z_i \stackrel{\text{d}}{\sim} \mathcal{N} \left((2q_\varepsilon - 1)\mathbf{1}^T x - (1 - q_\varepsilon)n, nq_\varepsilon(1 - q_\varepsilon) \right)$$

Intuition (continued)

- for $x, x' \in \{0, 1\}^n$ with $\|x - x'\|_1 \leq 1$,

$$\sum_{i=1}^n Z_i \stackrel{.}{\sim} \mathcal{N} \left((2q_\varepsilon - 1)\mathbf{1}^T x - (1 - q_\varepsilon)n, nq_\varepsilon(1 - q_\varepsilon) \right)$$

$$\sum_{i=1}^n Z'_i \stackrel{.}{\sim} \mathcal{N} \left((2q_\varepsilon - 1)\mathbf{1}^T x' - (1 - q_\varepsilon)n, nq_\varepsilon(1 - q_\varepsilon) \right)$$

- normals $\mathcal{N}(\mu, \sigma^2)$ and $\mathcal{N}(0, \sigma^2)$ are (ε, δ) -close if $\sigma^2 \gtrsim \mu^2 \frac{\log \frac{1}{\delta}}{\varepsilon^2}$

$$\mu = (2q_\varepsilon - 1) = \frac{e^\varepsilon - 1}{e^\varepsilon + 1} \text{ and } \sigma^2 = n \frac{e^\varepsilon}{(1 + e^\varepsilon)^2}$$

final privacy

$$\varepsilon_{\text{final}}^2 = \frac{(e^\varepsilon - 1)^2 \log \frac{1}{\delta}}{n e^\varepsilon} = \frac{e^\varepsilon (1 - e^{-\varepsilon})^2 \log \frac{1}{\delta}}{n}.$$

A more formal statement

Theorem (Feldman et al. [11])

Let Z_i be ε_0 -locally differentially private views of X_i and $\pi : [n] \rightarrow [n]$ a uniformly random permutation. Then $(Z_{\pi(1)}, \dots, Z_{\pi(n)})$ is

$$\varepsilon = O(1)(1 - e^{-\varepsilon_0}) \sqrt{\frac{e^{\varepsilon_0} \log \frac{1}{\delta}}{n}} \text{ differentially private}$$

Proof idea 1 (randomized response): releases as mixtures

$$Q(\cdot \mid x) = \frac{p}{2}Q(\cdot \mid 0) + \frac{p}{2}Q(\cdot \mid 1) + (1-p) \begin{bmatrix} x \\ 1-x \end{bmatrix}$$

Proof idea 2: simulate outputs

$$Y_i \in \{0, 1, 2\}, \quad Y_i \stackrel{\text{iid}}{\sim} \begin{cases} 0 & \text{w.p. } p/2 \\ 1 & \text{w.p. } p/2 \\ 2 & \text{w.p. } 1 - p \end{cases}$$

and when $\pi(i) \neq 1$,

$$Z_i = \begin{cases} \text{Ber}(q) & \text{if } Y_i = 0 \\ \text{Ber}(1 - q) & \text{if } Y_i = 1 \\ x_{\pi(i)} & \text{if } Y_i = 2 \end{cases}$$

Proof idea 3: control Binomial deviations

Bound difference between $(1 + N_0, N - N_0)$ and $(N_0, N - N_0 + 1)$ for

$$N \sim \text{Bin}(n - 1, p) \text{ and } N_0 \mid N \sim \text{Bin}(N, 1/2).$$

Other types of amplification and some references

- ▶ Binary case: Cheu et al. [7]
- ▶ RAPPOR system of Erlingsson et al. [8]
- ▶ Amplification by *iteration*, Feldman et al. [9] and Altschuler and Talwar [3]
- ▶ “application” in deep learning: moments-accountant, Abadi et al. [1]

A convergence analysis of stochastic gradient

$$\begin{array}{ll}\text{minimize} & f(x) \\ \text{subject to} & x \in X\end{array}$$

where f has L_1 -Lipschitz gradient and stochastic gradients g satisfy

$$\text{Var}(g \mid x) = \mathbb{E}[\|g - \nabla f(x)\|_2^2] \leq V^2$$

stochastic gradient iteration

$$x_{k+1} = \operatorname{argmin}_{x \in X} \left\{ \nabla f(x_k)^T x + \frac{1}{2\eta} \|x - x_k\|_2^2 \right\}$$

Theorem

If $\eta^{-1} = L_1 + \gamma$, then

$$\sum_{i=1}^k \mathbb{E}[f(x_{i+1}) - f(x^*)] \leq \frac{\|x_1 - x^*\|^2}{2\eta} + \frac{k}{2\gamma} V^2.$$

Proof: building blocks

Idea: analyze one-step progress

Lemma (smoothness properties)

$$f(x_{k+1}) - f(x^*) \leq \langle \nabla f(x_k), x_{k+1} - x^* \rangle + \frac{L_1}{2} \|x_k - x_{k+1}\|^2.$$

Lemma (intermediate minimizers)

for h convex, x minimizes h over X iff $\langle \nabla h(x), y - x \rangle \geq 0$, all $y \in X$

Proof: one-step progress

Lemma

for noise error $\xi_k = \nabla f(x_k) - g_k$,

$$\begin{aligned} f(x_{k+1}) - f(x^*) &\leq \frac{1}{2\eta} \left[\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2 - \|x_k - x_{k+1}\|^2 \right] \\ &\quad + \langle \xi_k, x_{k+1} - x^* \rangle + \frac{L_1}{2} \|x_k - x_{k+1}\|^2 \end{aligned}$$

Finalizing the analysis by telescoping

- [1] M. Abadi, A. Chu, I. Goodfellow, B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep learning with differential privacy. In *23rd ACM Conference on Computer and Communications Security (ACM CCS)*, pages 308–318, 2016.
- [2] A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. In *Advances in Neural Information Processing Systems 24*, 2011.
- [3] J. Altschuler and K. Talwar. Privacy of noisy stochastic gradient descent: More iterations without more privacy loss. In *Advances in Neural Information Processing Systems 35*, 2022.
- [4] B. Balle, G. Barthe, and M. Gaboardi. Privacy amplification by subsampling: Tight analyses via couplings and divergences. In *Advances in Neural Information Processing Systems 31*, pages 6277–6287, 2018.
- [5] R. Bassily, A. Smith, and A. Thakurta. Private empirical risk minimization: Efficient algorithms and tight error bounds. In *55th Annual Symposium on Foundations of Computer Science*, pages 464–473, 2014.

- [6] R. Bassily, V. Feldman, K. Talwar, and A. Thakurta. Private stochastic convex optimization with optimal rates. In *Advances in Neural Information Processing Systems 32*, 2019.
- [7] A. Cheu, A. Smith, J. Ullman, D. Zeber, and M. Zhilyaev. Distributed differential privacy via shuffling. In *Advances in Cryptology: EUROCRYPT 2019*, 2019.
- [8] U. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: Randomized aggregatable privacy-preserving ordinal response. In *Proceedings of the 21st ACM Conference on Computer and Communications Security (CCS)*, 2014.
- [9] V. Feldman, I. Mironov, K. Talwar, and A. Thakurta. Privacy amplification by iteration. In *59th Annual Symposium on Foundations of Computer Science*, 2018.
- [10] V. Feldman, T. Koren, and K. Talwar. Private stochastic convex optimization: Optimal rates in linear time. In *Proceedings of the Fifty-Second Annual ACM Symposium on the Theory of Computing*, 2020.
- [11] V. Feldman, A. McMillan, and K. Talwar. Hiding among the clones: A simple and nearly optimal analysis of privacy amplification by

shuffling. In *62nd Annual Symposium on Foundations of Computer Science*, 2021.

- [12] J. Ullman. Rigorous approaches to data privacy. Lecture notes for CS7880, Northeastern University.