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The plan

» subsampling
P stochastic gradient methods

» shuffling and local privacy
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Intuition

» algorithmic choices ought to improve privacy

» subsampling: only a small fraction of individuals?

» local privacy and shuffling
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The subsampling mechanism

» assume mechanisms M work on Py, Ps, ..., P,

» the subsampling mechanism
draw S C {1,...,n} with card(S) =m <n

uniformly at random, release

1
M*®(P,) := M(Ps), Ps= o > 1y,
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Privacy amplification of subsampling

Theorem (Ullman [12], Balle et al. [4])
Let g =". If M is (e, 0)-differentially private, then M*"® is

(log(1 + g(e® — 1)), qd) -DP.

Corollary
Ife <1, then M*'® is (O(1)qe, qd)-differentially private
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Proof of amplification |

» Let P,, P, differ on index i, ¢ = o write

P(M®(P,) € A)
=1 -qP(M(Ps) € A|i¢gS)+qP(M(Ps) € A|i€S)
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Proof of amplification Il
» bound the terms

po=P(M(Ps) € A[i ¢ S),
p=P(M(Ps) € Ali€S), py=P(M(Pg) € Ali€cS)
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A heuristic application: mean estimation

» assume data x1,...,z, € [—1,1],

1
10525 so z; + N(0,02 5) is (¢, )-private

> choose 0?5 = O(1)
> repeat k times: sample S; C [n], m = card(S;) = ¢n,

1 025
A~ 67
,uj——— E .Ti—i-N(O, 2>.

iGSj

Proposition (Informal)
Ifq> % and k < q%, then i1 = % Z§:1 L is (e, 6)-private and
2

2 1 Ocs
B[(7-2)"] <+ o
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|dea of argument
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Application of amplification: stochastic gradient
Problem: minimize
1 n
f0) == fi(6)
=1

where f; are convex, Lg-Lipschitz, have Li-Lipschitz gradient

Example (Logistic regression)
For data (w;,v;) € R? x {—1,1}, ||z4]|, < Lo, losses

fi(0) =log(1 + exp(—y;x; 6))

are Lg-Lipschitz and have L1 = LT.
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Application of amplification: stochastic gradient

Problem: minimize

£(6) =~ 3" 5i(6)
=1

Algorithm: noisy SGD
» sample S C [n], card(S) = m, compute

1
= — +(01) +N(0, 0T
9 m;vmw+mm>

» update 011 = 0 — Mk
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Convergence of private SGD

Theorem (Folklore, see [2], Thm. 1)

If Var(gy, | 0x) < V2, then stepsize n =

1
Li+~v
k 2
0 6* k
SB[ (B4) - fo7) < ST Ky
i=1 2n 2y

Corollary (Noisy SGD)

@ - o) < PEDIOE L (2 1),
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Privacy analysis of noisy SGD

> sensitivity of g = =

m Zies V fi(Ok):

2 1
o =0(1) 20 . %

m2

» with subsampling ¢ = 7> and € < 1, per-step privacy

Estep S, q<
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Privacy analysis of noisy SGD (continued)

P total privacy loss after k iterations:

(kzegtep + O(1)4/ keZep log = 5 k:s) -differentially private.
1
Erotal S kq®e? + 4/ k(ge)? log — 3

> convergence (with R? = ||6; — 6*||3)

E[f(0r) = f(0")] S —— +——+ m2e2 m

L1R?  ~R? 1 dL%log } N L7(2)
k k 0

» find dominant terms
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Convergence of private (noisy) SGD

Theorem

Assume that (i) k > +/n, (i) m < 2, and (i) 1 > * > 4logt. Then
DP-5GD achieves

B (@) - 0] £ A+ Dol

Corollary (Bassily et al. [5, 6], Feldman et al. [10])
With appropriate choices for m and k = n’

m2’

1
< LoR+/dlog ;.

~

E | f(0,) — f(0%)

ne
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Amplification by shuffling

» individual data z1,..., 2z,

> for differentially private ), each reports
Zi ~ Q( | ws)

» permute (Z1,...,Z,) randomly
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Intuition

» heuristic idea: suppose x1,...,z, € {0,1}
» randomized response: for ¢. = %

T W.p. ge
Z; = .
1 —x; otherwise

> key intuition: Y 1" | Z; is sufficient statistic for (Z;))i_,
P using

E[Zi] = gewi + (1 — ¢)(1 — ) = (2¢c — Dzi — (1 — ¢¢)
Var(Z;) = qe(1 — ¢c),

approximately

n

Z Z;i ~N((2¢- — D17z — (1 - ¢)n, ng(1 — q:))
i=1
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Intuition (continued)
» for z,z’ € {0,1}" with ||z — /||, <1,

n

Z Zi ~ N ((2¢- — D1%z — (1 — ¢)n, ng(1 — g:))
=1
Z Zz{ ~N ((2% - 1)1T$/ — (1= gc)n,ng:(1 - QE))
i=1

» normals N(z,02) and N(0, 02) are (5 6) close if 02 > u210g5

> /’L:(2q671):2511 and o? m

final privacy

s (e 1)%log 3 _ef(1— e~¢)?log }
Efinal = e’ = " .
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A more formal statement

Theorem (Feldman et al. [11])
Let Z; be eq-locally differentially private views of X; and 7 : [n] — [n] a

uniformly random permutation. Then (Zyy, ..., Zypn)) is

£0 1 1
e=0(1)(1—e) e %5 differentially private
V' n
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Proof idea 1 (randomized response): releases as mixtures

Q(-|x)=§@('|0)+§Q(' [ 1)+ (1 -p) [1fx]
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Proof idea 2: simulate outputs

[0 wep. p/2
Yie{0,1,2}, ;{1 wp. p/2
2 wp.l—0p
and when 7(i) # 1,
Ber(q) ifY;=0

Zi=4Ber(l—¢q) ifY;=1

21/27



Proof idea 3: control Binomial deviations

Bound difference between (1 + Ny, N — Ng) and (No, N — Ny + 1) for

N ~Bin(n —1,p) and Ny | N ~ Bin(N,1/2).
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Other types of amplification and some references

» Binary case: Cheu et al. [7]

» RAPPOR system of Erlingsson et al. [8]

» Amplification by iteration, Feldman et al. [9] and Altschuler and
Talwar [3]

> “application” in deep learning: moments-accountant, Abadi et al. [1]
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A convergence analysis of stochastic gradient

minimize f(x)
subjectto z € X

where f has Li-Lipschitz gradient and stochastic gradients g satisfy
Var(g | z) = E[|lg — Vf(2)|3] < V*
stochastic gradient iteration
. 1
Tg41 = argmin {Vf(l’k)T?U 3, |z — kag}
zeX n

Theorem
Ifn~t = Ly 4+, then

k

_ X 2
;Ewmm — f@)] < W + ;;VQ-
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Proof: building blocks

Idea: analyze one-step progress

Lemma (smoothness properties)

Fli) = F@*) < (V@) min — %) + 2 i — 2 |

Lemma (intermediate minimizers)

for h convex, x minimizes h over X iff (Vh(x),y —x) >0, ally € X
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Proof: one-step progress

Lemma
for noise error & = V f(zx) — gr,

1
flar) = F@) < o [l =21 = w21 = ok =z

Ly
+ (€, T — xF) + > [
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Finalizing the analysis by telescoping
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