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Outline

1. Local sensitivities (moduli of continuity)
2. Inverse sensitivity mechanisms

3. Matrix mechanisms and correlated noise
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Sensitivity measures

» global sensitivity of a statistic

GSy(f) = sup { [ F(Pa) = F(PL), st | P = Py < 1}

p

» saw that adding noise commensurate with this is sufficient for privacy:
M(Py) = f(Pa) + GSy(f) - N(0,0°1)
» would rather use local sensitivity [10] at Py:

L5,(: ) = sup {2 = SR 5.0~ By < 1)
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Examples of sensitivities

» mean for x; € [—1,1]

» median for z; € [—1,1]

» minimizer of empirical loss 6(P,) = argmin Ep, [¢5(X)]
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A nice idea?

> release
M(P,) = f(P,) + LS(f; P,) - Noise

Issue: scale of noise leaks information

» consider medians for samples
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Aside: exponential mechanisms

» for a score function s : © x P,, — R, where

GS(s) := Slelg GS(s(0,)) < oo,

exponential mechanism [8] releases with density

0) = e (= 55750-P) ) /[ e (=g o ¢ P) ) )

Lemma (McSherry and Talwar [8])
The exponential mechanism is e-differentially private
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A stable statistic

Definition (Asi and Duchi [1])
The inverse sensitivity of 6 : P, — O is

len(t; P,) := inf {k € N | 0(P}) = t, 1Py~ Pl <k}

» number of examples to change to get desired output

P> immediate that it is 1-Lipschitz w.r.t. Hamming distance:

|len(t; P,,) — len(t; Pl)| < 1.
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Inverse sensitivity examples

Example (Inverse sensitivity of the mean)

For data z; € [0, 7], inverse sensitivity is

len(t: Pa) = | = [Exp, [X] — 4]

Example (Inverse sensitivity of the median)

len(t; P,) = card {X; € [t,Med(P,)]}
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Inverse sensitivity mechanism

Definition (Inverse sensitivity mechanism [1])
Sample according to density

p(0) = exp (—%Ien(&; Pn)> //exp (—%Ien(t; Pn)) du(t)

Example (Median sampling)

1. For data z; € [—r,r], form shells

Sk; = {t | Ien(t;Pn) = k‘} = X(%_k),X(%_k+1):|U[X(%+k),X(%+k+1):|

2. Draw K €{0,...,n/2}, P(K = k) o< exp(—5[Sk|)
3. Return 6 ~ Uni(Sk)
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Accuracy of inverse sensitivity

Heuristic: moving P,, to P), changes at most LS(6; P,,)

0(P,) — 0(PP)
=0(P,) — 0(PV) + 0(PV) — 0(PP) + - + 0(PFV) — o(PP)

0(P,) — (P < OQ)k - LS(6; P,)

sort of

Idea: unlikely to select distance k > %
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Heuristic accuracy of inverse sensitivity

» use heuristic
’t B H(IQn)’

len(t; P,) ~ LS(0. P,

P density of inverse sensitivity
€ €
p(t) o< exp <—5Ien(t; Pn)> A exp <_§‘t - H(Pn)]>

> So M(P,) ~ 6(P,) + 2LS(6, P,) - Lap(1)

Example (Median behavior)

If X; have density f, expect median 6 to have LS(0, P,,) < m
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Implementation performance

UC Salaries
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Error in median salary for University of California school system (over
100,000 salaries) [1]
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Optimality of inverse sensitivity

Intuition: If dham (P, P,(Zk)), cannot test e-differentially private mechanisms

1

M(P,) vs. M(P¥) itk < -

Define LS*(P,) = sup {|§(P") — 8(Py)| s.t. dham(P.,, P) < k}.

Proposition (Asi and Duchi [1])
For any statistic @ and sample P,,, there exists P, with dnham(Pn, P)) < %

such that

1
E[|M(P)—0(P)|] Z LS=(P,
poms, E[M(P) - 6(P)] 2 LS (P,)
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Further work and questions inverse sensitivity

» Johnson and Shmatikov's distance score instantiates mechanism [6]

» connecting Robustness and Privacy: estimators can be robust if and
only if they are private (see Hopkins et al. [5] and Asi et al. [2])

» general (1-dimensional) optimal mechanism, but implementation
leaves many open questions:

Example (Asi et al. [3])

In a statistical model Y ~ Py(- | X), optimally estimate a single
coordinate 617
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Linear queries

(abstract) linear query problem: data in n observations
X = . = aj(l) .. x(d) e RnXd

and query matrix of m queries a; € R",

af
A — : c RmXTL
a,
Goal: accurately provide
AX e R™*d
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Linear query examples

Example (Running sums)
Take A all ones below and on diagonal:

10 0 0 [ oy ]
11 0 --- 0 (z1 4 22)T
A=1|. . | | then AX = | (71 +x2+ x3)7
11 1 1 ‘
(1 + -+ an)T

Example
Fora=1and X = [z ... z(d] e {0,1}x4

(a,00) = (1,20)

counts individuals with feature j
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Gaussian noise addition

release B
Y =AX+2) for Zij ©N(0,02)
alternative: factorize A = BC, (cf. [9, 7]) release

iid

Yiae = B(CX + Z) for Z;; ~ N(0,7%)

Errors:

2 2 2 2
E|IY - AXI}] = o? IAIR vs B[V — AX %] = 7211815
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Gaussian noise addition

for Z;; pY N(O, E% log }) release

Y = AX +0Z) or Ype = B(CX +72)

Errors:

E|IY - AXI}] = o? I 4IR vs E|lYee — AX %] = 7211815,

Lemma (cf. Pillutla et al. [11])
For C ={[c; --- ¢y], to achieve same level of privacy, set

0% oc sup [lz]}3 and 2 o sup max [l |13 12
rzeX rzeX
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Error control

> assume data z; € RY, ||z, < 1

Lemma
Frobenius error of

Y =AX +Z vs Ype = B(CX + 2)

for same privacy level

E[IY - AXIE] o IAI% vs E[IIVee - AXIR] < 1BIE ICI3
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Maximum error control

> assume data z; € RY, ||z, < 1
» consider maximum row norm

”GH2—>oo = m?‘XHgiHQ for G = [91 e gm]T'

Lemma
maximum row error of Y = AX + Z versus Yrac = B(CX + Z) for same

privacy level is
B[y - X3,

logm

2
X HA”QHOO

versus

E [[| Ve — AX 3,00

logm

2 2
o [1Bl2 00 €117 2
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The optimal matrix mechanism problem

minimize Bl [Cll Ly minimize [l [Cll; s
subject to A = BC subject to A = BC

Some issues
P typically hard to solve these problems
» unclear if improvement is that big? (but trivial example: A = 117)
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Running sums

> special case that A is all ones on and below diagonal

» important in online gradient methods [11]:

k
Ops1 = Ok =gk = =1y 9i

i=1

Theorem

There is a factorization of the running sum matrix A = BC with
[Blly—y0e = O(1)logn and [|C|;_,5 = O(1) logn

(NB: this is suboptimal, and O(1) logn possible [4].)
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Demonstration of factorization of running sums
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Experimental evidence

> “We are happy to announce that all the next word prediction neural
network LMs in Gboard now have DP guarantees, and all future

launches of Gboard neural network LMs will require DP

guarantees” [12]
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