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Outline

1. Local sensitivities (moduli of continuity)

2. Inverse sensitivity mechanisms

3. Matrix mechanisms and correlated noise
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Sensitivity measures

▶ global sensitivity of a statistic

GSp(f) := sup
{∥∥f(Pn)− f(P ′

n)
∥∥
p
s.t. n

∥∥Pn − P ′
n

∥∥
TV

≤ 1
}

▶ saw that adding noise commensurate with this is sufficient for privacy:

M(Pn) = f(Pn) + GSp(f) · N(0, σ2I)

▶ would rather use local sensitivity [10] at Pn:

LSp(f ;Pn) := sup
P ′
n

{∥∥f(Pn)− f(P ′
n)
∥∥ s.t. n

∥∥Pn − P ′
n

∥∥
TV

≤ 1
}
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Examples of sensitivities

▶ mean for xi ∈ [−1, 1]

▶ median for xi ∈ [−1, 1]

▶ minimizer of empirical loss θ(Pn) = argminEPn [ℓθ(X)]
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A nice idea?

▶ release
M(Pn) = f(Pn) + LS(f ;Pn) · Noise

Issue: scale of noise leaks information

▶ consider medians for samples

Pn =
n− 1

2
10 +

n+ 1

2
11 and P ′

n =
n+ 1

2
10 +

n− 1

2
11
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Aside: exponential mechanisms

▶ for a score function s : Θ× Pn → R, where

GS(s) := sup
θ∈Θ

GS(s(θ, ·)) < ∞,

exponential mechanism [8] releases with density

p(θ) = exp

(
− ε

2GS(s)
s(θ, Pn)

)
/

∫
exp

(
− ε

2GS(s)
s(θ′, Pn)

)
dµ(θ′)

Lemma (McSherry and Talwar [8])

The exponential mechanism is ε-differentially private
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A stable statistic

Definition (Asi and Duchi [1])

The inverse sensitivity of θ : Pn → Θ is

len(t;Pn) := inf
{
k ∈ N | θ(P ′

n) = t, n
∥∥Pn − P ′

n

∥∥
TV

≤ k
}

▶ number of examples to change to get desired output

▶ immediate that it is 1-Lipschitz w.r.t. Hamming distance:

|len(t;Pn)− len(t;P ′
n)| ≤ 1.
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Inverse sensitivity examples

Example (Inverse sensitivity of the mean)

For data xi ∈ [0, r], inverse sensitivity is

len(t;Pn) =
⌈n
r
|EPn [X]− t|

⌉

Example (Inverse sensitivity of the median)

len(t;Pn) = card {Xi ∈ [t,Med(Pn)]}

8 / 24



Inverse sensitivity mechanism

Definition (Inverse sensitivity mechanism [1])

Sample according to density

p(θ) = exp
(
−ε

2
len(θ;Pn)

)
/

∫
exp

(
−ε

2
len(t;Pn)

)
dµ(t)

Example (Median sampling)

1. For data xi ∈ [−r, r], form shells

Sk = {t | len(t;Pn) = k} =
[
X(n

2
−k), X(n

2
−k+1)

]
∪
[
X(n

2
+k), X(n

2
+k+1)

]
2. Draw K ∈ {0, . . . , n/2}, P(K = k) ∝ exp(− ε

2 |Sk|)
3. Return θ ∼ Uni(Sk)
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Accuracy of inverse sensitivity

Heuristic: moving Pn to P ′
n changes at most LS(θ;Pn)

θ(Pn)− θ(P (k)
n )

= θ(Pn)− θ(P (1)
n ) + θ(P (1)

n )− θ(P (2)
n ) + · · ·+ θ(P (k−1)

n )− θ(P (k)
n )

i.e.
|θ(Pn)− θ(P (k)

n )| ≤
sort of

O(1)k · LS(θ;Pn)

Idea: unlikely to select distance k ≫ 1
ε
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Heuristic accuracy of inverse sensitivity

▶ use heuristic

len(t;Pn) ≈
|t− θ(Pn)|
LS(θ, Pn)

▶ density of inverse sensitivity

p(t) ∝ exp
(
−ε

2
len(t;Pn)

)
≈ exp

(
−ε

2
|t− θ(Pn)|

)
▶ So M(Pn)

·∼ θ(Pn) +
2
εLS(θ, Pn) · Lap(1)

Example (Median behavior)

If Xi have density f , expect median θ to have LS(θ, Pn) ≍ 1
nf(Med(Pn))
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Implementation performance
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Error in median salary for University of California school system (over
100,000 salaries) [1]
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Optimality of inverse sensitivity

Intuition: If dham(Pn, P
(k)
n ), cannot test ε-differentially private mechanisms

M(Pn) vs. M(P (k)
n ) if k ≤ 1

ε

Define LSk(Pn) = sup {|θ(P ′
n)− θ(Pn)| s.t. dham(P ′

n, Pn) ≤ k}.

Proposition (Asi and Duchi [1])

For any statistic θ and sample Pn, there exists P ′
n with dham(Pn, P

′
n) ≤ 1

ε
such that

max
P∈{Pn,P ′

n}
E[|M(P )− θ(P )|] ≳ LS

1
ε (Pn)
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Further work and questions inverse sensitivity

▶ Johnson and Shmatikov’s distance score instantiates mechanism [6]

▶ connecting Robustness and Privacy: estimators can be robust if and
only if they are private (see Hopkins et al. [5] and Asi et al. [2])

▶ general (1-dimensional) optimal mechanism, but implementation
leaves many open questions:

Example (Asi et al. [3])

In a statistical model Y ∼ Pθ(· | X), optimally estimate a single
coordinate θ1?
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Linear queries

(abstract) linear query problem: data in n observations

X =

· · · xT1 · · ·
...

· · · xTn · · ·

 =


...

...

x(1) · · · x(d)

...
...

 ∈ Rn×d

and query matrix of m queries ai ∈ Rn,

A =

· · · aT1 · · ·
...

· · · aTm · · ·

 ∈ Rm×n

Goal: accurately provide
AX ∈ Rm×d
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Linear query examples

Example (Running sums)

Take A all ones below and on diagonal:

A =


1 0 0 · · · 0
1 1 0 · · · 0
...

...
. . .

...
1 1 1 · · · 1

 then AX =


xT1

(x1 + x2)
T

(x1 + x2 + x3)
T

...
(x1 + · · ·+ xn)

T



Example

For a = 1 and X = [x(1) · · · x(d)] ∈ {0, 1}n×d

⟨a, x(j)⟩ = ⟨1, x(j)⟩

counts individuals with feature j
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Gaussian noise addition

release
Y = A(X + Z) for Zij

iid∼ N(0, σ2)

alternative: factorize A = BC, (cf. [9, 7]) release

Yfac = B(CX + Z) for Zij
iid∼ N(0, τ2)

Errors:

E
[
∥Y −AX∥2Fr

]
= σ2 ∥A∥2Fr vs E

[
∥Yfac −AX∥2Fr

]
= τ2 ∥B∥2Fr
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Gaussian noise addition

for Zij
iid∼ N(0, 1

ε2
log 1

δ ) release

Y = A(X + σZ) or Yfac = B(CX + τZ)

Errors:

E
[
∥Y −AX∥2Fr

]
= σ2 ∥A∥2Fr vs E

[
∥Yfac −AX∥2Fr

]
= τ2 ∥B∥2Fr

Lemma (cf. Pillutla et al. [11])

For C = [c1 · · · cn], to achieve same level of privacy, set

σ2 ∝ sup
x∈X

∥x∥22 and τ2 ∝ sup
x∈X

max
i

∥ci∥22 ∥x∥
2
2
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Error control

▶ assume data xi ∈ Rd, ∥xi∥2 ≤ 1

Lemma
Frobenius error of

Y = AX + Z vs Yfac = B(CX + Z)

for same privacy level

E
[
∥Y −AX∥2Fr

]
∝ ∥A∥2Fr vs E

[
∥Yfac −AX∥2Fr

]
∝ ∥B∥2Fr ∥C∥21→2
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Maximum error control

▶ assume data xi ∈ Rd, ∥xi∥2 ≤ 1

▶ consider maximum row norm

∥G∥2→∞ = max
i

∥gi∥2 for G = [g1 · · · gm]T .

Lemma
maximum row error of Y = AX + Z versus Yfac = B(CX + Z) for same
privacy level is

E
[
∥Y −AX∥22→∞

]
logm

∝ ∥A∥22→∞

versus
E
[
∥Yfac −AX∥22→∞

]
logm

∝ ∥B∥22→∞ ∥C∥21→2

20 / 24



The optimal matrix mechanism problem

minimize ∥B∥Fr ∥C∥1→2

subject to A = BC
or

minimize ∥B∥2→∞ ∥C∥1→2

subject to A = BC

Some issues

▶ typically hard to solve these problems

▶ unclear if improvement is that big? (but trivial example: A = 11T )
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Running sums

▶ special case that A is all ones on and below diagonal

▶ important in online gradient methods [11]:

θk+1 = θk − ηgk = −η

k∑
i=1

gi

Theorem
There is a factorization of the running sum matrix A = BC with
∥B∥2→∞ = O(1) log n and ∥C∥1→2 = O(1) log n

(NB: this is suboptimal, and O(1) log n possible [4].)
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Demonstration of factorization of running sums
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Experimental evidence

▶ “We are happy to announce that all the next word prediction neural
network LMs in Gboard now have DP guarantees, and all future
launches of Gboard neural network LMs will require DP
guarantees” [12]
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(a) Evaluation accuracy (b) Clip norm

Figure 3: DP training of the en-GB NWP model. Adaptive clipping performs similar to fixed
clipping, while achieves slightly weaker guarantees. Pre-training significantly reduces the number of
rounds to reach the utility target, and achieves stronger guarantees.

improve the privacy guarantees. Next, we discuss the e!ect of MaxP and MinS, and the privacy-
utility-computation trade-o! for system configuration.

(a) Population 1M (b) Population 3M (c) Report goal 6500

Figure 4: The e!ect of population size, number of rounds, report goals, and min separation on
DP-FTRL privacy guarantees. For a fixed number of rounds to achieve utility target, increasing
report goal and min separation can achieve stronger guarantees measured by smaller zCDP.

Client participation. DP-FTRL achieves strong privacy if each client only participates once dur-
ing training, or the number of client participation is limited when a client can participate multiple
times. Two parameters are introduced to characterize client participation for DP-FTRL: the max-
imum participations (MaxP) of a client in all training rounds and the minimum round separation
(MinS) between any single client’s two participations. MaxP and MinS are correlated as MaxP is
upper bounded by rounds T divided by MinS. In general, for fixed rounds T , decreasing MaxP and
increasing MinS can lead to stronger privacy guarantees without changing utility. In addition, Cho
et al. [2023] suggests potential advantage of increasing MinS for utility.

When using the worst-case MaxP estimated by rounds T divided by MinS, Fig. 4c shows increas-
ing MinS can achieve stronger privacy measured by smaller zCDP values. However, the maximum
MinS is limited by the population size divided by the number of clients per round lower bounded
by the report goal. For example, when the report goal is 6500 for small population of around 106,

5

Lan Acc.(+) Pop(·106)
en-US .11% 13

pt-BR .29% 16.6

en-IN .4% 7.7
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