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Outline for today

1. optimality techniques in local differential privacy

2. optimality techniques in central differential privacy
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Setting for lower bounds

Definition (Minimax risk)

For parameter θ = θ(P ) of interest, minimax risk for the loss ℓ is

inf
M∈M

sup
P∈P

E [ℓ(M(Pn)− θ(P ))]

where infimum is over family M of mechanisms
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Basic lower bound techniques: from estimation to testing

▶ call a pair P0, P1 of distributions δ-separated if

|θ(P0)− θ(P1)| ≥ δ

Lemma (Le Cam’s method; cf. [6])

For any two distributions P0 and P1,

max
P∈{P0,P1}

EP

[
ℓ
(
|θ̂ − θ(P )|

)]
≥ ℓ(δ/2)

2
inf
Ψ

{P0(Ψ = 1) + P1(Ψ = 0)}

=
ℓ(δ/2)

2
(1− ∥P0 − P1∥TV) .
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Example lower bound technique

Big idea: find parameters as far apart as possible while hard to test
between P0, P1 (see Duchi [6] for more)

Proposition (Pinsker’s inequality)

For distributions P0, P1,

∥P0 − P1∥2TV ≤ 1

2
Dkl (P0||P1)

smaller idea: often Dkl (P0||P1) ≲ δ2 for |θ(P0)− θ(P1)| ≤ δ

Example (distance between normals)

For P0 = N(µ0, σ
2) and P1 = N(µ1, σ

2),

Dkl (P0||P1) =
(µ0 − µ1)

2

2σ2
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Example lower bound technique (continued)

for δ-separated P0, P1,

max
P∈{P0,P1}

EPn

[
ℓ
(
|θ̂ − θ(P )|

)]
≥ ℓ(δ/2)

2
(1− ∥Pn

0 − Pn
1 ∥TV)

▶ in “typical” case that Dkl (P0||P1) ≤ κδ2 for |θ(P0)− θ(P1)| = δ,

∥Pn
0 − Pn

1 ∥
2
TV ≤ 1

2
Dkl (P

n
0 ||Pn

1 ) =
n

2
Dkl (P0||P1) ≤

κnδ2

2

▶ make probability of error 1
2 :

δ2 =
1

2κn

▶ lower bound
1

4
ℓ

(
1

2
√
2κn

)
.
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Example (Normal estimation lower bound)

For location estimation in {N(θ, σ2)}θ∈R,

sup
P

EPn

[
ℓ
(
|θ̂n − θ(P )|

)]
≥ 1

4
ℓ

(
σ

2
√
n

)
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Lower bound in locally private scenarios

▶ data release via (sequentially interactive) channel:

Zi ∼ Q(· | Xi, Z
i−1
1 )

where Q is ε-differentially private

▶ interested in locally private minimax risk

Mn(ε) := inf
Qn

1

inf
θ̂

sup
P∈P

E
[
ℓ
(
θ̂(Zn

1 )− θ(P )
)]
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The key contraction

For distributions P0, P1, let R
n
v be the result marginals over Zn

1 from

Xi
iid∼ Pv, Zi ∼ Q(·Xi, Z

i−1
1 )

Theorem (Duchi et al. [9], Corollary 3)

For any sequentially interactive ε-locally differentially private channels,

Dkl (R
n
0 ||Rn

1 ) ≤ 4n(eε − 1)2 ∥P0 − P1∥2TV .
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Generic lower bounds
Corollary

For any pair of distributions with |θ(P0)− θ(P1)| ≥ δ,

Mn(ε) ≳ ℓ(δ/2)
(
1− 4n(eε − 1)2 ∥P0 − P1∥2TV

)
.

Example (Mean estimation with k moments)

If Pk = {P : EP [|X|k] ≤ 1}, then minimax mean-squared error has scaling

Mn(ε) ≍
(

1

n(eε − 1)2

) k−1
k

.
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Lower bounds in central differential privacy

Big picture: let d-dimensional estimator converges with rate r(n), i.e.,

E[ℓ(θ̂n − θ)] ≍ r(n)

with ε-differential privacy, expect privacy penalty

E[ℓ(θ̂n − θ)] ≍ r(n) + r

(
n2ε2

d2

)
with (ε, δ-differential privacy, expect penalty

E[ℓ(θ̂n − θ)] ≍ r(n) + r

(
n2ε2

d log(1/δ)

)

Example

mean estimation with data xi ∈ Rd, ∥xi∥2 ≤ 1
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Cai et al.’s Score Attack

Definition
The (Fisher) score is

sθ(x) := ∇ log pθ(x) =
∇pθ
pθ

(x)

Idea: (Cai et al. [4, 5]): if M(Pn) is an accurate estimator, then

1. M(Pn) should correlate with
∑n

i=1 sθ(Xi), but

2. privacy limits this correlation
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The minimaxlower bound

Theorem (Cai et al. [5])

Define Fisher Information Iθ := E[sθ(X)sθ(X)T ] and let M be
(ε, δ)-differentially private. For any smooth enough prior π on θ near θ0,∫

Eθ

[
∥M(Pn)− θ∥22

]
π(θ)dθ ≳

d2

n2ε2
· 1

∥Iθ0∥op
.

Remark: classical lower bounds scale as d
n∥Iθ∥op

Example (Gaussian mean estimation)

Let Xi
iid∼ N(θ, Id), where ∥θ∥2 ≤ 1. Then∫

Eθ

[
∥M(Pn)− θ∥22

]
π(θ)dθ ≳

d

n
+

d2

n2ε2
.
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Proof I

Define alignment

Aθ(x, Pn) := ⟨M(Pn)− θ, sθ(x)⟩

and let X ′ ∼ Pθ, independent of Pn

Lemma
we have E[Aθ(X

′, Pn)] = 0 and

E[|Aθ(X
′, Pn)|] ≤

√
E[∥M(Pn)− θ∥22] · ∥Iθ∥

1/2
op
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Proof II: bounding alignment by privacy

Lemma
We have E[Aθ(X,Pn)] ≤ (eε − 1)E[|Aθ(X

′, Pn)|].
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Proof III: from alignment to expectations

Lemma
The summed alignment satisfies

n∑
i=1

E[Aθ(Xi, Pn)] =

d∑
j=1

∂

∂θj
Eθ[Mj(Pn)]

Lemma (Proposition 2.2 [5])

If E[∥M(Pn)− θ∥22] = O(1), then

d∑
j=1

∫
∂

∂θj
Eθ[Mj(Pn)]π(θ)dθ ≳ d.
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Putting it all together

d ≲
n∑

i=1

E[Aθ(Xi, Pn)]

≤ n(eε − 1)E
[
|Aθ(X

′, Pn)|
]

≤ n(eε − 1)E
[
∥M(Pn)− θ∥22

]1/2
∥Iθ∥1/2op .
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A few additional references

▶ Optimality in local differential privacy:
▶ Duchi and Rogers [7] present general (interactive) lower bounds using

communication complexity

▶ Duchi and Ruan [8] present a “geometric” characterization of local
differential privacy (asymptotics)

▶ Acharya et al. [1] present results on information-constrained estimation

▶ Optimality in central differential privacy:
▶ early work using pure differential privacy and packings [11, 14, 3]

▶ Steinke and Ullman [15] leverage fingerprinting (cryptographic) lower
bounds [10, 12, 13]

▶ Attias et al. [2] provide lower bounds on memorization in statistical
learning using similar “score attack” techniques
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Take-homes

1. Many open questions remain in privacy
▶ continuous observation (e.g., long-term users)
▶ leveraging public data
▶ fundamental limits
▶ even basic statistical questions

2. Big ideas we’ve discussed
▶ Definitions and importance of composition
▶ Amplification: shuffling, sampling, iteration
▶ Some more sophisticated mechanisms (inverse sensitivity, matrix

mechanisms)
▶ Optimality

3. Big ideas we’ve missed
▶ propose-test-release framework
▶ application areas and deployments, e.g., machine learning, US Census
▶ others!
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