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Outline for today

1. optimality techniques in local differential privacy

2. optimality techniques in central differential privacy
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Setting for lower bounds

Definition (Minimax risk)

For parameter § = 6(P) of interest, minimax risk for the loss ¢ is

]\411615\/1 js:'lelgE U(M(P,) — 0(P))]

where infimum is over family M of mechanisms
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Basic lower bound techniques: from estimation to testing

» call a pair Py, P; of distributions §-separated if
0(Fy) — 0(P1)| = 6

Lemma (Le Cam’s method; cf. [6])
For any two distributions Py and Py,

(6/2)

pms Ep [z (|§— 9(P)|)} > inf {Py(¥ = 1) + P1(¥ = 0)}
e )
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Example lower bound technique

Big idea: find parameters as far apart as possible while hard to test
between Py, P; (see Duchi [6] for more)

Proposition (Pinsker's inequality)
For distributions Py, Py,

1
[Py — Pi|y < §Dkl (Pol P1)

smaller idea: often Dy (Py|Py) < 62 for |6(Py) — O(Py)| <6
Example (distance between normals)
For Py = N(uo,0?) and Py = N(u1,0%),

N2
D (Ro|Py) = ('“’02051)

5/19



Example lower bound technique (continued)

for -separated Py, P,

0(8/2)
2

max Ep» [5 (|§— 9(P)\>} > (1= = Pllry)

PE{P07P1}

P> in “typical’ case that Dy (Po”Pl) < k62 for ‘H(PO) — Q(Pl)‘ =9,

1 n Kknd>
2

170 — Py < §Dkl (P P) = §Dk1 (Po|Pr) < 5
1.

» make probability of error 5

» |ower bound

i€<2v%mn>‘

6/19



Example (Normal estimation lower bound)

For location estimation in {N(6,0?%)}gcr,

sgpIEpn [5 (|§n - H(P)\)} > %E <2i‘/ﬁ>
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Lower bound in locally private scenarios

> data release via (sequentially interactive) channel:
—1
Zi~ QG| Xi, 2777)

where () is e-differentially private

P interested in locally private minimax risk

M, (e) := gl?f i%f jsvlégE [ﬁ (é\(Z{L) - 9(P)>]
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The key contraction

For distributions Py, P, let R} be the result marginals over Z* from

X, 8P, Zi~Q(X;,Z™

Theorem (Duchi et al. [9], Corollary 3)

For any sequentially interactive e-locally differentially private channels,

Dig (R§|RY) < 4n(e® = 1)° [Py — Pill1y -
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Generic lower bounds

Corollary
For any pair of distributions with |0(Py) — 0(Py)| > 9,

M, (e) 2 £6/2) (1= anfe” = 1? | Ry = Pilly )

Example (Mean estimation with & moments)
If P, = {P:Ep[|X|¥] <1}, then minimax mean-squared error has scaling
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Lower bounds in central differential privacy

Big picture: let d-dimensional estimator converges with rate r(n), i.e.,
E[¢(,, — 0)] = r(n)

with e-differential privacy, expect privacy penalty

E[((6,, — 0)] < r(n) +r <n;§2>

with (g, §-differential privacy, expect penalty

~ n2 2
E[(0n — 0)] < r(n) +7 (dbg(gl/6)>

Example
mean estimation with data x; € RY, |z;|l, < 1
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Cai et al.'s Score Attack

Definition
The (Fisher) score is

so(2) = Viogpg(a) = 22 ()
Do

|dea: (Cai et al. [4, 5]): if M(P,) is an accurate estimator, then

1. M(P,) should correlate with > """ ; sg(X;), but

2. privacy limits this correlation
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The minimaxlower bound

Theorem (Cai et al. [5])

Define Fisher Information Iy := E[sg(X)s¢(X)?] and let M be
(¢, 6)-differentially private. For any smooth enough prior ™ on 6 near 6y,

/E9 (182(P,) = 0113] =(6)db 2 @1

~n?e? gl

Remark: classical lower bounds scale as Id
n[lZgllop

Example (Gaussian mean estimation)
Let X; N(0,14), where ||0]|, < 1. Then

[ [z — 013] wi@ran 2 ¢+

n2e?’
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Proof |

Define alignment

Ag(x, Pp) := (M(P,) — 6, sg(x))

and let X’ ~ Py, independent of P,

Lemma
we have E[Ap(X’, P,)] = 0 and

El|Ao(X', P)l) < \/ENIM (Py) — 012 - 6]
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Proof |I: bounding alignment by privacy

Lemma
We have E[Ay(X, P,)] < (ef — )E[|Ag(X', P,)|].
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Proof Ill: from alignment to expectations

Lemma
The summed alignment satisfies

n d
SO EA K P = 3 g ol ()
j=1

=1

Lemma (Proposition 2.2 [5])
IFE[|M(P) — 9”3] = O(1), then

16/19



Putting it all together

s_< E [|40(X', P.)]
(et~ DE [121(2,) - 03] 1ol f2.
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A few additional references

» Optimality in local differential privacy:

» Duchi and Rogers [7] present general (interactive) lower bounds using
communication complexity

» Duchi and Ruan [8] present a “geometric” characterization of local
differential privacy (asymptotics)

» Acharya et al. [1] present results on information-constrained estimation

» Optimality in central differential privacy:
> early work using pure differential privacy and packings [11, 14, 3]

> Steinke and Ullman [15] leverage fingerprinting (cryptographic) lower
bounds [10, 12, 13]

> Attias et al. [2] provide lower bounds on memorization in statistical
learning using similar “score attack” techniques
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Take-homes

1. Many open questions remain in privacy

> continuous observation (e.g., long-term users)
> leveraging public data

> fundamental limits

P even basic statistical questions

2. Big ideas we've discussed
> Definitions and importance of composition
» Amplification: shuffling, sampling, iteration
> Some more sophisticated mechanisms (inverse sensitivity, matrix
mechanisms)
» Optimality

3. Big ideas we've missed

» propose-test-release framework
> application areas and deployments, e.g., machine learning, US Census
> others!

19/19



[1] J. Acharya, C. Cannone, C. Freitag, Z. Sun, and H. Tyagi. Inference
under information constraints Ill: Local privacy constraints. /EEE
Journal on Selected Areas in Information Theory, 2(1):253-267, 2021.

[2] I. Attias, G. K. Dziugaite, M. Haghifam, R. Livni, and D. M. Roy.
Information complexity of stochastic convex optimization:
Applications to generalization and memorization. In Proceedings of
the 41st International Conference on Machine Learning, 2024.

[3] R. F. Barber and J. C. Duchi. Privacy and statistical risk: Formalisms
and minimax bounds. arXiv:1412.4451 [math.ST], 2014.

[4] T. T. Cai, Y. Wang, and L. Zhang. The cost of privacy: optimal
rates of convergence for parameter estimation with differential
privacy. Annals of Statistics, 49(5):2825-2850, 2021.

[5] T. T. Cai, Y. Wang, and L. Zhang. Score attack: A lower bound
technique for optimal differentially private learning. arXiv:2303.07152
[math.ST], 2023.

[6] J. C. Duchi. Lecture Notes on Information Theory and Statistics.
2024. URL http://web.stanford.edu/class/stats311.

[7] J. C. Duchi and R. Rogers. Lower bounds for locally private

estimation via communication complexity. In Proceedings of the
19/19


http://web.stanford.edu/class/stats311

[8]

[9]

[10]

[11]

[12]

Thirty Second Annual Conference on Computational Learning
Theory, 2019.

J. C. Duchi and F. Ruan. The right complexity measure in locally
private estimation: It is not the Fisher information. Annals of
Statistics, 52(1):1-51, 2024.

J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Minimax optimal
procedures for locally private estimation (with discussion). Journal of
the American Statistical Association, 113(521):182-215, 2018.

C. Dwork, A. Smith, T. Steinke, J. Ullman, and S. Vadhan. Robust
traceability from trace amounts. In 56th Annual Symposium on
Foundations of Computer Science, 2015. Long version available at
https://jonathan-ullman.github.io/assets/tracing.pdf.

M. Hardt and K. Talwar. On the geometry of differential privacy. In
Proceedings of the Forty-Second Annual ACM Symposium on the
Theory of Computing, pages 705-714, 2010.

G. Kamath, J. Li, V. Singhal, and J. R. Ullman. Privately learning
high-dimensional distributions. In Proceedings of the Thirty Second

Annual Conference on Computational Learning Theory, 2019.
19/19


https://jonathan-ullman.github.io/assets/tracing.pdf

[13] G. Kamath, A. Mouzakis, and V. Singhal. New lower bounds for
private estimation and a generalized fingerprinting lemma. In
Advances in Neural Information Processing Systems 35, 2022.

[14] A. Nikolov, K. Talwar, and L. Zhang. The geometry of differential
privacy: the sparse and approximate case. In Proceedings of the
Forty-Fifth Annual ACM Symposium on the Theory of Computing,
2013.

[15] T. Steinke and J. Ullman. Between pure and approximate differential
privacy. In Proceedings of the Twenty Eighth Annual Conference on
Computational Learning Theory, 2015.

19/19



	References

