How many labels do you have? Some perspectives on gold standard labels

John Duchi Based on joint work with Chen Cheng and Hilal Asi

The "standard" story in statistics & ML

 $\{(X_i, Y_i)\}_{i=1}^N$ $y = X\beta + \varepsilon$

minimize f(x)

Data

subject to $x \in X$

 $g(x) \in \int_{\mathcal{S}} \partial F(x;s) dP(s)$

Statistics and machine learning

Great model

The big picture

Excited about the full pipeline of statistical machine learning

Motivation

Dave Donoho, "50 Years of Data Science"

It is no exaggeration to say that the combination of a Predictive Modeling culture together with Common Task Framework is the 'secret sauce' of machine learning

Common Task Framework:

- 1. A publicly available training dataset
- 2. A set of enrolled competitors whose common task is to infer a class prediction rule from the training data
- 3. A scoring referee to which competitors submit their prediction rule(s)

ImageNet

The (probably) currently preferred image classification benchmark

Input data X

Goal: assign label Y to this image (In this case, Y = Golden Retriever)

Dataset description: For each of 1000 image categories (e.g. cherry, bow and arrow, golden retriever, dachshund) there are 1000 representative images

ImageNet Progress

Little exaggeration to say deep learning descends from ImageNet

Supervised Learning

The construction of ImageNet isn't really what we teach

Usual machine learning story

Input data X

"Dog"

"Golden Retriever Puppy"

"Cat"

Machine learning pipeline:

Feed in a bunch of pairs ______(magical fitting...) Output a model
$$\widehat{Y} = f(X)$$

ImageNet construction

WordNet hierarchy

ImageNet construction

ImageNet construction

Select all the images that contain a bicycle

Bicycle object class:

Include X as an example of Y = bicycle if selection frequency > 70%

Repeat for each of 1000 classes

What this is:
Ingenious, clever, surprisingly effective

What this is not: Noisy labels Y given X

How much does data construction matter?

Even when we're careful, things get weird

Also, methods are quite overconfident in predictions (e.g., predict classes with 90+% certainty)

Remainder of this talk

- 1. Propose a model
- 2. Analyze the model
- 3. It makes some predictions: test them!

The model

• Binary classification with *m* labelers

$$Y \in \{-1, 1\}, X \in \mathbb{R}^d$$

Symmetric link function

$$\mathbb{P}(Y = y \mid X = x) = \sigma(yx^{\top}\theta^{\star})$$

Data in tuples (n total tuples)

$$(X, Y_1, \ldots, Y_m), \quad Y_j \mid X \stackrel{\text{iid}}{\sim} \mathbb{P}(\cdot \mid X)$$

• Covariate vectors $X_i \overset{\mathrm{iid}}{\sim} \mathsf{N}(0,I_d)$

The model (continued)

Margin-based loss ℓ satisfying

$$\ell'(t) = -\sigma(-t)$$

• Loss of parameter θ on (x,y)

$$\ell(\theta^T xy)$$

• E.g. logistic regression

$$\ell(t) = \log(1 + e^t)$$

$$\sigma(t) = \frac{1}{1 + e^{-t}}$$

The two estimators

Use all the labels

$$L_n(\theta) := \frac{1}{n} \frac{1}{m} \sum_{i=1}^m \sum_{j=1}^m \ell(Y_{ij} X_i^{\top} \theta)$$

(Log likelihood for multiple labels)

$$\widehat{\theta}_n = \operatorname*{argmin}_{\theta} L_n(\theta)$$

Use majority vote

$$L_n^{\text{mv}}(\theta) := \frac{1}{n} \sum_{i=1}^n \ell(\overline{Y}_i X_i^{\top} \theta)$$

where $\overline{Y}_i = \mathsf{Majority}(Y_{i1}, \dots, Y_{im})$

$$\widehat{\theta}_n^{\text{mv}} = \operatorname*{argmin}_{\theta} L_n^{\text{mv}}(\theta)$$

Main quantities of interest:

- Calibration error $\|\widehat{\theta} \theta^{\star}\|_2$
- Classification error $\|\widehat{u}-u^\star\|_2$ where $u=\theta/\|\theta\|_2$ is unit

Convergence of the MLE

$$L_n(\theta) := \frac{1}{n} \frac{1}{m} \sum_{i=1}^n \sum_{j=1}^m \ell(Y_{ij} X_i^{\top} \theta) \qquad L(\theta) = \mathbb{E}[\ell(Y X^{\top} \theta)]$$
$$\widehat{\theta}_n = \underset{\theta}{\operatorname{argmin}} L_n(\theta)$$

Theorem:

Under the well-specified model, we have asymptotic normality

$$\sqrt{n} \left(\widehat{\theta}_n - \theta^* \right) \stackrel{d}{\to} \mathsf{N} \left(0, \frac{1}{m} \nabla^2 L(\theta^*)^{-1} \operatorname{Cov}(\dot{\ell}_{\theta^*}) \nabla^2 L(\theta^*)^{-1} \right)$$

and

$$\sqrt{n} \left(\widehat{u}_n - u^* \right) \xrightarrow{d} \mathsf{N} \left(0, \frac{1}{m \|\theta^*\|_2^2} (I - u^* u^{*^\top}) \right)$$

Convergence of majority vote

$$L_n^{\mathrm{mv}}(\theta) := \frac{1}{n} \sum_{i=1}^n \ell(\overline{Y}_i X_i^\top \theta) \quad \text{where } \overline{Y}_i = \mathsf{Majority}(Y_{i1}, \dots, Y_{im})$$

Decompose
$$X = u^{\star}Z + (I - u^{\star}u^{\star^{\top}})X = u^{\star}Z + W$$

Theorem: Under the model, we have "overconfident" convergence

$$\widehat{\theta}_{m}^{\mathrm{mv}} \stackrel{p}{\to} t_{m} u^{\star} \quad \text{where} \quad t_{m} \simeq \sqrt{m}$$

and asymptotic normality

$$\sqrt{n} \left(\widehat{u}_n^{\text{mv}} - u^* \right) \xrightarrow{d} \mathsf{N} \left(0, \frac{1}{t_m^2} H(t_m)^{\dagger} C(t_m) H(t_m)^{\dagger} \right) \\
\stackrel{\text{dist}}{=} \mathsf{N} \left(0, \frac{c(1 + o_m(1)}{\sqrt{m}} (I - u^* u^{*\top}) \right)$$

for matrices $H(t) = \frac{1}{4t}\mathbb{E}[WW^{\top}](1+o(1))$ and $C(t) = \frac{c}{t}\mathbb{E}[WW^{\top}](1+o(1))$

Robustness of majority vote

Theorem: With misspecified link, we have "overconfident" convergence

$$\widehat{\theta}_n^{\mathrm{mv}} \stackrel{p}{\to} t_m u^{\star}$$
 where $t_m \simeq \sqrt{m}$

and asymptotic normality (for fixed Σ)

$$\sqrt{n} \left(\widehat{u}_n^{\text{mv}} - u^* \right) \xrightarrow{d} \mathsf{N} \left(0, \frac{1 + o_m(1)}{\sqrt{m}} \Sigma \right)$$

Take home messages:

- Majority vote is (unfixably) uncalibrated and overconfident
- More robust (doesn't matter if the link is correct)
- Less efficient when the link is correct

Extensions: semiparametric estimates

Corrected estimator: fit the model, refit the link, refit the model

$$\widehat{\theta}^{\text{mv}} = \operatorname{argmin} L_n^{\text{mv}}(\theta)$$

$$\widehat{\sigma} = \operatorname{argmin} \frac{1}{nm} \sum_{i=1}^n \sum_{j=1}^m (2\sigma(\widehat{u}^{\top} X_i Y_{ij}) - 1 - Y_{ij})^2$$

Theorem: Under appropriate conditions,

$$\widehat{\theta} = \operatorname{argmin} \frac{1}{nm} \sum_{i=1}^{m} \sum_{j=1}^{m} \ell_{\widehat{\sigma}}(\theta^{\top} X_i Y_{ij})$$

is efficient:
$$\sqrt{n} \left(\widehat{\theta} - \theta^* \right) \stackrel{d}{\to} \mathsf{N} \left(0, \frac{1}{m} I(\theta^*)^{-1} \right)$$

Experimental results

If our model is reasonable, it should make real predictions

• BlueBirds: Indigo Bunting versus Blue Grosbeak [Welinder, Branson, Perona, Belongie 10]

• CIFAR-10H: soft labels of CIFAR-10 test set [Peterson, Battleday, Griffiths, Russakovsky 19]

Experimental results: bluebirds

Experimental results: CIFAR-10H

Conclusions and next steps

- Interesting to think about dataset construction: a place for statistics to lay down some intellectual foundations
- Would obtaining data with (human) perceptual uncertainty help build better prediction methods?
- Currently limited datasets like those above: develop datasets to drive progress we want to see
- Fun to make (theoretical) predictions that can be wrong