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The “standard” story In statistics & ML
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Statistics and machine learning



The big picture

» EXxcited about the full pipeline of statistical machine learning

Collecting data:

« Choosing population
- Get datapoints

* Labeling them

- Cleaning data

Releasing your model:

{thxg)gil

y=Xp0+e

minimize f(z)
subject to

- Calibrating predictions
» ldentifying failures

* New populations

* Retraining




Motivation

Dave Donoho, “50 Years of Data Science”

't Is N0 exaggeration to say that the combination of a Predictive
Modeling culture together with Common Task Framework is the
'secret sauce’ of machine learning

Common Task Framework:
1. A publicly avallable training dataset

2. A set of enrolled competitors whose common task is to infer a
class prediction rule from the training data

3. A scoring referee to which competitors submit their prediction
rule(s)




ImageNet

The (probably) currently preferred image classification benchmark

Input data X

Goal: assign label Y to
this Image
(In this case, Y =
Golden Retriever)

Dataset description: For each of 1000 image categories (e.qg.
cherry, bow and arrow, golden retriever, dachshund) there are
1000 representative images

[Deng et al., “ImageNet: A large-scale hierarchical image database” CVPR 2009]



TOP 1 ACCURACY
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Little exaggeration to say deep learning descends from ImageNet


http://paperswithcode.com

Supervised Learning

The construction of ImageNet isn’t really what we teach

* Usual machine learning story
Input data X Noisy Label Y

“Dog”
“Golden Retriever Puppy”
“Cat”
Machine learning pipeline:
Feed in a bunch of pairs Output a model
N (magical fitting...) >~
{(X:,Y3) 1l Y = f(X)



ImageNet construction

WordNet hierarchy
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[Deng et al., “ImageNet: A large-scale hierarchical image database” CVPR 2009]



ImageNet construction

Select all the images that contain a bicycle

[Deng et al., “ImageNet: A large-scale hierarchical image database” CVPR 2009]



ImageNet construction

Select all the images that contain a bicycle
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Bicycle object class:

Include X as an example of
Y = bicycle if selection

frequency > 70%

Repeat for each of 1000 classes

What this Is: What this Is not:
Ingenious, clever, surprisingly effective Noisy labels Y given X

[Deng et al., “ImageNet: A large-scale hierarchical image database” CVPR 2009]



How much does data construction matter?

Even when we’re careful, things get weird

ImageNet
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Also, methods are quite
overconfident in predictions
(e.g., predict classes with
90+ % certainty)
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[Recht, Roelofs, Schmidt, Shankar, “Does ImageNet generalize to ImageNet?”, ICML 2019]



Remainder of this talk

Collecting data:
» Choosing population
» Get datapoints
» Labeling them
» Cleaning data

Releasing your model:

- Calibrating predictions
- |dentifying failures

* New populations

* Retraining

A very stylized model of
part of this process

Steps:

1. Propose a model
2.Analyze the model
3. [t makes some predictions: test them!



The model

* Binary classification with m labelers
Y € {-1,1}, X e R

o Symmetric link function
(Y =y| X =2)=o0(yz 0°)

* Data in tuples (n total tuples)
iid
(X, Y1,....Y), Y| X ~P|X)

. iid
« Covariate vectors X; ~ N(0, I,;)
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» Margin-based loss ¢ satisfying
U(t) = —o(—t)

 Loss of parameter 6 on (x, y)
06" zy)
* E.g. logistic regression
{(t) = log(1 + €")

1
o(t) = 1l +et
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The model (continued)
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The two estimators

* Use all the labels e Use majority vote
11l v my T
L, (0) := (Y X.' 0 L., ' (Y ,; X, 0)
)= i 2 2 X7 Z
(Log likelihood for multiple labels) where Y, = MajOrlty(Y;'l, oy Yim)
§,, = argmin L,,(6) @I{“’ = argmin L, (0)
Z Z

Main quantities of interest:

e Calibration error Ha— 0|,

» (Classification error ||27 — u*||2 where u =0/ ||0||, is unit




Convergence of the MLE

L,(0) — 71“; ZZe Y; X7 0) L(0) = E[¢(Y X T 0)
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§,, = argmin L, ()
0

Theorem:
Under the well-specified model, we have asymptotic normality
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Convergence of majority vote
L7V (0) - Z€ XT6’ where Y; = Majority(Y;1, ..., Yim)

Decompose X = u*Z +(I—wvw X =uZ+W

Theorem: Under the model, we have “overconfident” convergence

v D tou* where  ty, < /m

and asymptotic normality
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for matrices H(t) = SWW (14 0(1)) and C(t) =

C

, S(WW (1 + o(1))




Robustness of majority vote

Theorem: With misspecified link, we have “overconfident” convergence

v Do tou* where  ty, < /m

and asymptotic normality (for fixed Y. )

V(@ — %) 4N (o, : +\0%(1) 2)

Take home messages:
* Majority vote is (unfixably) uncalibrated and overconfident

 More robust (doesn’t matter if the link is correct)

e [ ess efficient when the link /s correct



Extensions: semiparametric estimates

o Corrected estimator: fit the model, refit the link, refit the model

0™ = argmin L™ (6)

1 mn T
0 = in — 20(0' X,;Yi) — 1Y)
0 = argmin nmzzljzl( o(u n )

Theorem: Under appropriate conditions,

n

~ 1 =
H = in —— (=(0" XY
argmin — ; ; ( i)
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Experimental results
If our model Is reasonable, it should make real predictions
 BlueBirds: Indlgo Bunting versus Blue Grosbeak [Welinder, Branson, Perona, Belongie 10]

e CIFAR-10H: soft labels of C”:AR 10 test Set [Peterson, Battleday, Griffiths, Russakovsky 19]
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Experimental results: bluebirds

Classification error
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Experimental results: CIFAR-10H

Classification error
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Conclusions and next steps

* |nteresting to think about dataset construction: a place for statistics to lay
down some intellectual foundations

 Would obtaining data with (human) perceptual uncertainty help build better
prediction methods?

* Currently limited datasets like those above: develop datasets to drive
progress we want to see

 Fun to make (theoretical) predictions that can be wrong



