SIAM J. OPTIM. (© 2012 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 1549-1578

ERGODIC MIRROR DESCENT"*

JOHN C. DUCHI', ALEKH AGARWAL!, MIKAEL JOHANSSON$, AND
MICHAEL I. JORDANY

Abstract. We generalize stochastic subgradient descent methods to situations in which we do
not receive independent samples from the distribution over which we optimize, instead receiving
samples coupled over time. We show that as long as the source of randomness is suitably ergodic—
it converges quickly enough to a stationary distribution—the method enjoys strong convergence
guarantees, both in expectation and with high probability. This result has implications for stochastic
optimization in high-dimensional spaces, peer-to-peer distributed optimization schemes, decision
problems with dependent data, and stochastic optimization problems over combinatorial spaces.
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1. Introduction. In this paper, we analyze a new algorithm, ergodic mirror
descent (EMD), for solving a class of stochastic optimization problems. We begin
with a statement of the problem. Let {F(+;€),& € =} be a collection of closed convex
functions whose domains contain the common closed convex set X C R%. Let II be a
probability distribution over the statistical sample space = and consider the convex
function f : X — R defined by the expectation

(11) f(@)i= EnlF(z:)] = [ Flagae).
We study algorithms for solving the following problem:

(1.2) minimize f(x) subjectto x € X.

A wide variety of stochastic optimization methods for solving the problem (1.2)
have been explored in an extensive literature [34, 31, 28, 21, 29]. We study procedures
that do not assume it is possible to receive samples from the distribution II, instead
receiving samples £ from a stochastic process P indexed by time ¢, where the stochastic
process P converges to the stationary distribution II. This is a natural relaxation,
because in many circumstances the distribution II is not even known—for example,
in statistical applications—and we cannot receive independent samples. In other
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scenarios, it may be hard to draw samples from II efficiently, such as when = is
a high-dimensional or combinatorial space, but it is possible [19] to design Markov
chains that converge to the distribution II. Further, in computational applications, it
is often unrealistic to assume that one actually has access to a source of independent
randomness, so studying the effect of correlation is natural and important [18].

Our approach to solving problem (1.2) is related to classical stochastic gradient
descent (SGD) algorithms [34, 31], where one assumes access to samples £ from the
distribution II and performs gradient updates using VF(x; £). When II is concentrated
on a set of n points and the functions F' are not necessarily differentiable, the objective
is of the form f(z) = 1 3" | fi(z) and the incremental subgradient method of Nedi¢
and Bertsekas [28] applies. More generally, our problem belongs to the family of
stochastic problems with exogenous correlated noise [21], where the goal is to minimize
En[F(z;€)] as in the objective (1.2), but we have access only to samples £ that are not
independent over time. Certainly a number of researchers in control, optimization,
stochastic approximation, and statistics have studied settings where stochastic data is
not independently and identically distributed (i.i.d.). (See, for example, the books [21,
36] and the numerous references therein.) Nonetheless, classical results in this setting
are asymptotic in nature and generally do not provide finite sample or high-probability
convergence guarantees; our work provides such results.

Our method borrows from standard stochastic subgradient and stochastic mirror
descent methodology [30, 29], but we generalize this work in that we receive sam-
ples not from the distribution II but from an ergodic process &1, &2, ... converging to
the stationary distribution II. In spite of the new setting, we do not modify stan-
dard stochastic subgradient algorithms; our algorithm receives samples & and takes
mirror descent steps with respect to the subgradients of F(z;&;). Consequently, our
approach generalizes several recent works on stochastic and nonstochastic optimiza-
tion, including the randomized incremental subgradient method [28], as well as the
Markov incremental subgradient method [20, 33]. There are a number of applications
for this work: in control problems, data is often coupled over time or may come from
an autoregressive process [21]; in distributed sensor networks [22], a set of wireless
sensors attempt to minimize an objective corresponding to a sequence of correlated
measurements; and in statistical problems, data comes from an unknown distribution
and may be dependent [39]. See our examples and experiments in sections 4 and 5,
as well as the examples in the paper by Ram, Nedi¢, and Veeravalli [33], for other
motivating applications.

The main result of this paper is that performing stochastic gradient or mirror
descent steps as described in the previous paragraph is a provably convergent opti-
mization procedure. The convergence is governed by problem-dependent quantities
(namely, the radius of X and the Lipschitz constant of the functions F’) familiar from
previous results on stochastic methods [28, 40, 29] and also depends on the rate at
which the stochastic process &1,&s, ... converges to its stationary distribution. Our
three main convergence theorems characterize the convergence rate of EMD in terms
of the mixing time 7,ix (the time it takes the process & to converge to the stationary
distribution II, in a sense we make precise later) in expectation, with high probability,
and when the mixing times of the process are themselves random. In particular, we
show that this rate is O (, / %) for a large class of ergodic processes, both in expecta-
tion and with high probability. We also give a lower bound that shows that our results
are tight: they cannot (in general) be improved by more than numerical constants.

The remainder of the paper is organized as follows. Section 2 contains our main
assumptions and a description of the algorithm. Following that, we collect our main
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technical results in section 3. We expand on these results in example corollaries
throughout section 4 and give numerical simulations exploring our algorithms in sec-
tion 5. We provide complete proofs of all our results in section 6 and the appendices.

Notation. For the reader’s convenience, we collect our (standard) notation here.
A function f is G-Lipschitz with respect to a norm ||-|| if |f(x) — f(y)| < G|z — y]|.
The dual norm ||-||, to a norm ||-|| is defined by |[|z[, := sup, <1 (z, 7). A function v
is strongly convex with respect to the norm ||-|| over the domain X if

Y(6) 2 (@) + (Vo()y — o)+ 5 o =yl foray € X.

For a convex function f, we let 9f(z) = {g € R?| f(y) > f(x)+ {9,y — x)} denote its
subdifferential. For a matrix A € R™"*™ we let p;(A) denote its ith largest singular
value, and when A € R™*" is symmetric we let \;(A) denote its ith largest eigenvalue.
The all-ones vector is 1, and we denote the transpose of the matrix A by AT. We
let [n] denote the set {1,...,n}. For functions f and g, we write f(n) = O(g(n))
if there exist N < oo and C' < oo such that f(n) < Cg(n) for n > N and write
f(n) = Q(g(n)) if there exist N < oo and ¢ > 0 such that f(n) > cg(n) for n > N.
For a probability measure P and measurable set or event A, P(A) denotes the mass
P assigns A.

2. Assumptions and algorithm. We now turn to describing our algorithm and
the assumptions underlying it. We begin with a description of the algorithm, which
is familiar from the literature on mirror descent algorithms [30, 3]. Specifically, we
generalize the stochastic mirror descent algorithm [30, 29], which in turn generalizes
gradient descent to elegantly address non-Euclidean geometry. The algorithm is based
on a prox-function 1, a differentiable convex function defined on X assumed (without
loss of generality by scaling) to be l-strongly convex with respect to the norm |-||
over X. The Bregman divergence D, generated by 1 is defined as

1
(2.1) Dy(z,y) :=v(2) =d(y) = (Ve(y),x —y) 2 5 llo -~ yll*.
We assume X is compact and that there exists a radius R < oo such that
1
(2.2) Dy(z,y) < 5]‘1’2 for x,y € X.

The EMD algorithm is an iterative algorithm that maintains a parameter x(t) €
X, which it updates using stochastic gradient information to form x(¢ 4+ 1). Let the
time-indexed sequence (§1,&a,...,&;,...) represent a draw from P. At time ¢, given
&, EMD computes the update

<m>g@WMM@»awnm%y%wwﬁ%mww%.

The initial point x(1) may be selected arbitrarily in X, and here «(t) is a non-
increasing (time-dependent) stepsize. The algorithm (2.3) reduces to projected gra-
dient descent with the choice ¢(z) = 3 ||x||g, since then Dy (z,y) = 3 ||z — y||§

Our main assumption on the functions F'(-;£) regards their continuity and subdif-
ferentiability properties, though we require a bit more notation. Let G(x;&) € OF (x;€)
denote a fixed and measurable element of the subgradient of F(+; &) evaluated at the

point z, where (without loss of generality) we assume that in the EMD algorithm (2.3)
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we have g(t) = G(x(t);&;). We let F; denote the o-field of the first ¢ random sam-
ples, &1,...,&, drawn from the stochastic process P. We make one of the following
two assumptions, where in each the norm ||-|| is the norm with respect to which ¢ is
strongly convex (2.1).

AssuMPTION A (finite single-step variance). Let x be measurable with respect to
the o-field Fy—1. There exists a constant G < co such that with probability 1

E[l|G(w; &)|% | Feor] < G2

ASSUMPTION B. For II-almost every &, the functions F(-;€) are G-Lipschitz con-
tinuous functions with respect to a norm ||-|| over X. That is,

|F(2:8) = F(y; Ol < Gllz —yll - forz,y € X.

As a consequence of Assumption B, for any g € 0F(x;€) we have that ||g|, < G
(e.g., [17]), and it is clear that the expected function f is also G-Lipschitz. Assump-
tion B implies Assumption A, though Assumption A still guarantees f is G-Lipschitz,
and under either assumption we have

(2.4) E |60l =E [B[I6@ 2 | Fu ] < &>

Having described the family of functions {F(-;€) : £ € E}, we recall a few defi-
nitions from probability theory that are essential to the presentation of our results.
We measure the convergence of the stochastic process P using one of two common
statistical distances [13]: the Hellinger distance and the total variation distance. (Our
definitions differ by a factor of two from some definitions of these metrics.) The to-
tal variation distance between probability distributions P and @ defined on a set =,
assumed to have densities p and ¢ with respect to an underlying measure u,' is

(2.5) 0oy (P.Q) = / ()~ a(©)ldu€) = 2 s1p [P(4) — QA

the supremum taken over measurable subsets of =. The squared Hellinger distance is

2

26) dua(P.@? = [ ( @—1) 0©dun(©) = [ (VoE - Va@) dute).

q(&)

It is a well-known fact [13] that for any probability distributions P and Q,

(2.7) dhet(P,Q)? < dypy (P, Q) < 2dnai(P, Q).

Using the total variation (2.5) and Hellinger (2.6) metrics, we now describe our
notion of mixing (convergence) of the stochastic process P. Recall our definition
of the o-field F; = o(&1,...,&). Let P[ts] denote the distribution of & conditioned
on Fs (i.e., given the initial samples &1,...,&s), so for measurable A C E we have
P[ts] (A) :== P(& € A | Fs). We measure convergence of P to II in terms of the mixing

time of the different P[ts], defined for the Hellinger and total variation distances as
follows. In the definitions, let pfs] and 7 denote the densities of P[ts] and II, respectively.

IThis is no loss of generality, since P and @Q are absolutely continuous with respect to P + Q.
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DEFINITION 2.1. The total variation mixing time 7. (P, €) of the process P
conditioned on the o-field of the initial s samples Fs = o(&1,...,&s) is the smallest

t € N such that d, (P[‘Z]th, II) <,

oy (P ©) = inf{t—s:teN, / \pfs]<s>—w<s>\du(£><e}.

The Hellinger mixing time Tye(FPy, €) is the smallest t such that dhel(P[SS]H, II) <e,

Thel(Pg), €) := inf {t —s:teN, /: ( /pfsl(g) _ M)zdu(ﬁ) < 52}.

Put another way, the mixing times 7. (P, €) and Thel(P4), €) are the number
of additional steps required until the distribution of & is close to the stationary
distribution II given the initial s samples &1, ..., &;.

The following assumption, which makes the mixing times of the stochastic process
P uniform, is our main probabilistic assumption.

AssuMPTION C. The mizing times of the stochastic process {&;} are uniform in
the sense that there exist uniform mizing times 7., (P, €), Thel(P,€) < oo such that
with probability 1,

Ty (Py€) > Ty, (P[S] ,€) and  The (P e) > Thel(P[s] ,€)

for all e >0 and s € N.

Assumption C is a weaker version of the common assumption of ¢-mixing in the
probability literature (e.g., [9]); ¢-mixing requires convergence of the process over the
entire “future” o-field o(&;,&+1,-..) of the process &. Any finite state-space time-
homeogeneous Markov chain satisfies the above assumption, as do uniformly ergodic
Markov chains on general state spaces [26].

We remark that the definition of mixing time in Definition 2.1 does not assume
that the distributions P, are time-homogeneous. Indeed, Assumption C requires
only that there exists a uniform upper bound on the mixing times. We can weaken
Assumption C to allow randomness in the probability distributions P[ts] themselves,
that is, conditional on F, the mixing time 7, (P, €) is an F,-measurable random
variable. Our weakened probabilistic assumption is as follows.

ASSUMPTION D. The mizing times of the stochastic process {&;} are stochasti-
cally uniform in the sense that there exists a uniform mizing time T, (P, €) < 00,
continuous from the right as a function of €, such that for alle >0, s € N, and c € R

P(TTV (P, €) > Ty (Pr€) + KJC) < exp(—c).

Assumption D allows us to provide convergence guarantees for a much wider range
of processes, such as autoregressive processes, than permitted by Assumption C.

3. Main results. With our assumptions in place, we can now give our main
results. We begin with three general theorems that guarantee the convergence of
the EMD algorithm in expectation and with high probability. The second part of
the section shows that our analysis is sharp—unimprovable by more than numerical
constant factors—by giving an information-theoretic lower bound on the convergence
rate of any optimization procedure receiving non-i.i.d. samples from P.
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3.1. Convergence guarantees. Our first result gives convergence in expecta-
tion of the EMD algorithm (2.3); we provide the proof in section 6.2.

THEOREM 3.1. Let Assumption C hold and let x(t) be defined by the EMD
update (2.3) with nonincreasing stepsize sequence {«(t)}. Let x* € X be arbitrary
and let (2.2) hold. If Assumption A holds, then for any e > 0,

E[i (FGate) - 1) |

t=1
R? a2 T
< 5a(T) + - Z a(t) + 3TeGR + (Tha (P e) — 1) |:G2 Za(t) n RG} 7
=1 t=1
while if Assumption B holds, then for any e > 0,
T
E| Y (7o) - 1)) |
t=1
R P
< 2a(T) + > Za(t) +TeGR+ (1, (Pe) — 1) [G2 Z alt) + Rg] )
=1 t=1
The expectation in both bounds is taken with respect to the samples &1, ..., ¢r.

We obtain an immediate corollary to Theorem 3.1 by applying Jensen’s inequality
to the convex function f.

COROLLARY 3.2. Define z(T) = %Z?:l x(t) and let the conditions of Theo-
rem 3.1 hold. If Assumption A holds, then for any e >0

G*Y a(t)+RG|.

t=1 -

2 2 T

e Pv -1

L a(t)+3eGR+%[
t=1

2 2 T 7
E[f(Z(T))— f(x*)] < i +G— a(t)+eGR+% {GZ > a(t)+RG|.
t=1 t=1 J
Corollary 3.2 shows that so long as the stepsize sequence «(t) is nonincreasing
and satisfies the asymptotic conditions T'a(T) — oo and (1/T) Zle a(t) — 0, the
EMD method converges. We can also provide similar high-probability convergence
guarantees.
THEOREM 3.3. Let the conditions of Theorem 3.1 and Assumption B hold. Let
0 € (0,1) and define the average T(T) = %Zle x(t). With probability at least 1 — 6,
for € >0 such that 7, (P,e) <T/2,

T

~ X R? G? Toy(Pre) — 1 a
FEI) ~ 1) < s + 57 el + A= g2 S+ r|

t=1

T (P, €) log T2

T

We provide the proof of this theorem in section 6.3. Note that the rate of conver-
gence in Theorem 3.3 is identical to that obtained in Theorem 3.1 plus an additional
term that arises as a result of the control of the deviation of the ergodic process
around its expectation. The additional log %—dependent term arises from the appli-

+ecGR+ 4GR\/
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cation of martingale concentration inequalities [2], which requires some care because
the process {&} is coupled over time. Nonetheless, as we discuss briefly following
Corollary 3.5—and as made clear by our lower bound in Theorem 3.7—the additional
terms introduce a factor of at most /log 7, (P, €) to the bounds. That is, the domi-
nant terms in the convergence rates (modulo logarithmic factors) also appear in the
expected bounds in Theorem 3.1.

The last of our convergence theorems extends the previous two to the case when
the stochastic process is not uniformly mixing but has mixing properties that may
depend on its state. We provide the proof of Theorem 3.4 in section 6.4.

THEOREM 3.4. Let the conditions of Theorem 3.3 hold, except that we replace
the uniform mixzing Assumption C with the probabilistic miring Assumption D. Let
0 € (0,1). In the notation of Assumption D, define

T(€,0) := Ty (Py€) + K (logg + 210g(T)> .

With probability at least 1 — 8, for any x* € X,

2 2 T T
f(f(T))—f(x*)<ggg{%m+%;a(t)+( He '3 el 0+ cr|
7(€,0)
+ ¢GR+ 4GR %}

In section 4.2 we give two applications of Theorem 3.4 (to estimation in autore-
gressive processes and a fault-tolerant distributed optimization scheme) that show
how it significantly increases the range of applicability of our framework.

We now turn to a slight specialization of our bounds to build intuition and attain
a simplified statement of convergence rates. Theorems 3.1, 3.3, and 3.4 hold for
essentially any ergodic process that converges to the stationary distribution II. For
a large class of processes, the convergence of the distributions P? to the stationary
distribution II is uniform and at a geometric rate [26]: there exist constants x; and
ko such that 7., (P, €) < k1 log(ka/€). We have the following corollary for this special
case; we present only the version yielding expected convergence rates, as the high—
probability corollary is similar. In addition, by the fact (2.7) relating dyel to dy., if
the process P satisfies 7., (P, €) < k1 log(ka/€), then there exist constants ) and k5
such that e (P, €) < k) log(k,/€). Thus we only state the corollary for total variation
mixing and under Assumption B; an analogous result holds under Assumption A for
mixing with respect to the Hellinger distance.

COROLLARY 3.5. Under the conditions of Theorem 3.1, assume in addition that
Toy (Py€) < k1 log(ka/€) and let Assumption B hold. The EMD update (2.3) with
stepsize a(t) = a/\/t satisfies

R? | 2067 20G?
2(1\/? \/T
Proof. Using the definition a(t) = a/+v/t and the integral bound

RGEk1 log %2

E[f@(T)) - f(=")] < -

(/4:1 log — ) +eGR+

(3.1) 27 <1 /Tt1/2dt=2\/f— 1< 2VT,

we have Zt La(t) < 2aV/T. The corollary now follows from Theorem 3.1. O
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We can obtain a simplified convergence rate with appropriate choice of the stepsize
multiplier o and mixing parameter e: choosing o« = R/(G+/k1log(keT)) and € =
T~1/2 reduces the corollary to

~ o1 RG\/ k1 log(keT)
(3:2) E[f(@(T)) - f(2")] = O < T ) :

More generally, using the stepsize a(t) = «a/y/t and the same argument as in
Corollary 3.5 gives
(3.3)

E[f(@(T)) — f(«")] < inf

R? 20G? RG(7,, (Pye) —1) }
—— 4+ ——= T (P€) + eGR + - :
{2a\/T v B e T

Again choosing ¢ = T~'/2 and defining the shorthand 7 = 7., (P,T~'/2), by
choosing &« = R/(G+/Tmix), we see the bound (3.3) implies that

_ o _ BRG \/Tmix = RG  RG(Tmix—1)
B4 ESG) - fa) < e Yo 2y T,

In the classical setting [29] of i.i.d. samples, & ~ II, stochastic gradient descent
and its mirror descent generalizations attain convergence rates of O(RG/+/T). Since
Ty (P, 0) = The(P,0) = 1 for an i.i.d. process, the rate (3.3) shows that our results
subsume existing results for i.i.d. noise. Moreover, they are sharp in the i.i.d. case,
that is, unimprovable by more than a numerical constant factor [30, 1.

In addition, we note that the conclusions of Corollary 3.5 (and the bound (3.3))
hold—modulo an additional log 7., (P, €)—with high probability. We may also note
that replacing eGR with 3¢GR and 7., with T, in the bound (3.3) yields a guar-
antee under Assumption A. Further, the stepsize choice a(t) = a/v/t is robust—
in a way similarly noted by Nemirovski et al. [29]—for quickly mixing ergodic pro-
cesses. Indeed, using the inequalities (3.3) and (3.4), we see that setting the multiplier
a = YR/ (G/Tmix) yields E[f (Z(T))— f(z*)] = O(max{y,y '} RG\/Tanix/V'T), 50 mis-
specification of a by a constant  leads to a penalty in convergence that scales at worst
linearly in max{y~!,v}. In classical stochastic approximation settings [34, 36, 21],
one usually chooses stepsize sequence a(t) = O(t™™) for m € (.5,1]; in our case,
such choices may yield suboptimal rates because we study convergence of the aver-
aged parameter Z(7") rather than the final parameter z(¢). Nonetheless, averaging is
known to yield robustness in i.i.d. settings [31, 29] and moreover gives unimprovable
convergence rates in many cases (see section 3.2 as well as references [30, 1]). We
provide some evidence of this robustness in numerical simulations in section 5, and
we see generally that EMD has qualitative convergence behavior similar to stochastic
mirror descent for a broad class of ergodic processes.

Before continuing, we make two final remarks. First, none of our main theorems
assumes Markovianity or even homogeneity of the stochastic process P; all that is
needed is that the mixing time 7., (or Thel) exists, or even that it exists only with
some reasonably high probability. Previous work similar to ours [33, 20] assumes
Markovianity. (See also our discussion concluding section 4.2.) Further, general er-
godic processes do not always enjoy the geometric mixing assumed in Corollary 3.5,
satisfying either Assumption D’s probabilistic mixing condition or simply mixing more
slowly. In section 4.2, we present examples of such probabilistically mixing processes
on general state spaces, while the bound (3.3) suggests an approach to attain conver-
gence for more slowly mixing processes (see section 4.3).
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3.2. Lower bounds and optimality guarantees. Our final main result con-
cerns the optimality of the results we have presented. Informally, the theorem states
that our results are unimprovable by more than numerical constant factors, though
making this formal requires additional notation. In the stochastic gradient oracle
model of convex optimization [30, 1], a method M issues queries of the form x € X
to an oracle that returns noisy function and gradient information. In our setting, the
oracle is represented by the pair 8 = (P, G), and when the oracle is queried at a point
x at time ¢ (i.e., this is the tth query 6 has received), it draws a sample §; according to
the distribution P(- | &1,...,&_1) and returns G(z,&;) € R%. The method issues a se-
quence of queries z(1), ..., x(¢) to the oracle and may use {G(z(1),&1),...,G(x(¢),&)}
to devise a new query point z(t + 1). For an oracle 8, we define the error of method
M on a function f after T" queries of the oracle as

(35) er(M, £, X,0) = f(3) - inf f()
where Z denotes method M'’s estimate of the minimizer of f after seeing the T' samples
{G(z(1),&),...,G(x(T),&r)}. The quantity (3.5) is random, so we measure accuracy
in terms of the expected value Eg[er (M, f, X, 0)], where the expectation is taken with
respect to the randomness in 6.

Now we define a natural collection of stochastic oracles for our dependent setting.

DEFINITION 3.6. For f convex, T € N, G € (0,00), and p € [1,00], the admis-
sible oracle set O (f,7,G,p) is the set of oracles § = (P, G) for which there exists a
probability distribution I on & such that

1G(x; )|, < G forz € X and § € Z, En[G(x;§)] € 0f(x) for x € X,

and d, (PHT, H) =0 for all t € N with probability 1.

The set © (f, 7, G, p) is the collection of oracles § = (P, G) for which the distribu-
tion P has stationary distribution II, mixing time bounded by 7, and returns £,-norm
bounded stochastic subgradients of the function f. The condition [|G(z;§)[|, < G

guarantees that Assumptions A and B hold, while d (P[tt]”,ﬂ) = 0 satisfies As-
sumption C. With Definition 3.6, for any collection C of convex functions f, we can

define the minimax error over distributions with mixing times bounded by 7 as

(3.6) er(C, X, 7,G,p) :=inf sup sup  Eglep(M, f,X,0)].
M fecoco(f,r,G.p)

We have the following theorem on this minimax error (see section 6.5 for a proof).

THEOREM 3.7. Let X C R? be a convex set containing the lo ball of radius r
for some r > 0. Let 1/p+1/q =1 and p > 1 and let the set C consist of convex
functions that are G-Lipschitz continuous with respect to the {,-norm over the set X .
For p € [1,2] and for any 7 € N, the minimaz oracle complexity (3.6) satisfies

(3.7a) e (C, X, 7,G,p) = <Gr\/E\/;) .

For p € [2,00] and for any 7 € N, the minimaz oracle complexity (3.6) satisfies

(3.7h) e (C, X, 7,G,p) =Q <Grd%\/;> .



1558 DUCHI, AGARWAL, JOHANSSON, AND JORDAN

We make a few brief comments on the implications of Theorem 3.7. First, the de-
pendence on 7 and T in the bounds of /7 /T matches that of the upper bound (3.4). In
addition, following the discussion of Agarwal et al. [1, section ITI.A and Appendix C],
we can see that the dependence of the bounds (3.7a) and (3.7b) on the quantities
r, G, and the dimension d are optimal (to within logarithmic factors). In brief, the
bound (3.7a) is achieved by taking ¢(x) = %||x||§ in the definition of the proxi-
mal function for the EMD algorithm, while the bound (3.7b) is achieved by taking
Y(z) =3 ||x||z for ¢ = 1+1/1og(d) (see also [4], [3, section 5]). Summarizing, we find
that Theorems 3.1-3.4 are unimprovable by more than numerical constants, and the
EMD algorithm (2.3) attains the minimax optimal rate of convergence.

4. Examples and consequences. We now collect several consequences of the
convergence rates of Theorems 3.1, 3.3, and 3.4 to provide insight and illustrate
applications of the theoretical statements. We begin with a concrete example and
move toward more abstract principles, completing the section with finite sample and
asymptotic convergence guarantees for more slowly mixing ergodic processes. Most
of the results are new or improve over previously known bounds, and we provide a
few additional examples in the extended version of this paper [14].

4.1. Peer-to-peer optimization and Markov incremental gradient de-
scent. The Markov incremental gradient descent (MIGD) procedure due to Johans-
son, Rabi, and Johansson [20] is a generalization of the randomized incremental sub-
gradient method of Nedi¢ and Bertsekas [28], which Ram, Nedi¢, and Veeravalli [33]
further analyze. The motivation for MIGD comes from a distributed optimization al-
gorithm using a simple (locally computable) peer-to-peer communication scheme. We
assume we have n processors or computers, each with a convex function f; : X — R,
and the goal is to minimize

n

(4.1) f(z) = %Zfl(x) subject to = € X.
i=1

The procedure works as follows. The current set of parameters z(t) € X is passed
among the processors in the network, where a token i(¢) € [n] indicates the processor
holding x(t) at iteration ¢. At iteration ¢, the algorithm computes the update

9(t) € D (@(1)), ut+n=a§$m{@ux@+

1
i Dot}
after which the token i(¢) moves to a new processor. This update is a generalization
of the papers [20, 33], which assume ¢(z) = 1 ||x|\§ Slightly more generally, the local
functions may be defined as expectations, f;(z) = Eg, [F(z; )], for a local distribution
II;. At iteration ¢, a sample & ;) is drawn from the local distribution II;;) and the
algorithm computes the update

@mg@MMM@m»awnm%ywwwﬁ%mww%.

We view the token i(t) as evolving according to a Markov chain with doubly
stochastic transition matrix P, so its stationary distribution is the uniform distribu-
tion. In this case,

P(i(t) = j | i(t — 1) = i) = P,
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The total variation distance of the stochastic process initialized at i(0) = ¢ from the
true (uniform) distribution is ||P'e; — 1/n||;, where e; denotes the ith standard basis
vector. In addition, since P is doubly stochastic, we have P1 = 1 and thus

IPrec—1/nl, < Vil P'ec—1/n], = Vit P(e ~ D),
< Vnpa(P)" |lei — 1/nl|, < v/npa(P)",

where py(P) denotes the second singular value of the matrix P. From this spec-
Llog(Tn)
Tog 2 (P) T
|Pte; — 1/n|; < \/LT In addition, recalling the sandwich inequalities (2.7), we have

dyer(Plei, 1/n) < \/do, (Pte;, 1/n) < n'/*py(P)H/?

50 dhel(Ple;, 1/n) < 1/V/T when t > —22")_ Ty the notation of Assumption C,

tral bound on the total variation distance, we see that if ¢ > we have

log p2(P)~ 1"
(4.3)
_ log(Tn) log(Tn) _ log(Tn)
1.0 (P, T71?) < < and e (P, T Y?) < —22= 2
BT S e P) T = 20— pa(P) (BT < 7P

(Since log p~t ~ 1 — p for p ~ 1, using 1 — p is no significant loss in our applications.)

Consequently, we have the following result, which is similar to Corollary 3.5.

COROLLARY 4.1. Let x(t) evolve according to the Markov incremental descent
update (4.2), where i(t) evolves via the doubly stochastic transition matriz P and
a(t) = a/vt. Define 2(T) = %Z?:l z(t) and Tmix = +/log(Tn)/\/1— p2(P).
Choose stepsize multiplier o = R/G\/Tmix. 1If for each distribution 1I; we have
B [[|6(x;€) 2] < G*, then

SRG Twix | BRG | RG

> VT  JT T

Let § € (0,1) and assume Tmix < T'/2. If for each i and I1;-almost every & we have
1G(x; &), < G, then with probability at least 1 — &

(4.4) E[f(@(T))] - f(z") <

5 . SRG /Tmix 2RG RG 3RG Tmix
— < . T - . o
FGT)) ~ f(a") < 257 YT 4 T S S [ log

Proof. The proof is a consequence of Theorems 3.1 and 3.3 and Corollary 3.5. We
use the uniform bound (4.3) on the mixing time of the random walk, in Hellinger or
total variation distance, and the result follows via algebra. d

Corollary 4.1 gives convergence rates sharper and somewhat more powerful than
those in the original MIGD papers [20, 33]. First, our results allow us to use mirror de-
scent updates, thus applying to problems having non-Euclidean geometry; it is by now
well known that this is essential for obtaining efficient methods for high-dimensional
problems [30, 4, 3]. Second, because we base our convergence analysis on mixing time
rather than return times, we can give sharp high-probability convergence guarantees.
Finally, our convergence rates are often tighter. Ram, Nedi¢, and Veeravalli [33] do not
appear to give finite sample convergence rates, and as discussed by Duchi, Agarwal,
and Wainwright [15], Johansson, Rabi, and Johansson [20] show that MIGD—with op-

timal choice of their algorithm parameters—has convergence rate O(RG max; V ”;“ ),
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where T is the return time matrix given by I' = (I — P+ 11T /n)~!. When P is sym-
metric (as in [20, Lemma 1]), the eigenvalues of T are 1 and 1/(1 — \;(P)) for i > 1,
and

- 1 1
nmaxDy; > tr(T) =1+ Z > .
i 1_)\1(P) 1—[)2(P)

i€[n]

Thus, up to logarithmic factors, the bound (4.4) from Corollary 4.1 is never weaker.
For well-connected graphs, the bound is substantially stronger; for example, a random
walk on an expander graph has constant spectral gap [10], so (1 — p2(P))~ = O(1),
while the previous bound is n max;cp, ['i = Q(n).

4.2. Probabilistically mixing processes. We now turn to two examples to
show the broader applicability of the EMD algorithm guaranteed by Theorem 3.4.
Our first example generalizes the Markov incremental gradient method of section 4.1
to allow random communication matrices P, while our second considers optimization
problems where the data comes from a (potentially nonlinear) autoregressive moving
average (ARMA) process. For both examples, we require a conversion from expected
convergence of the total variation distance d.,, (P[i]*”7 IT) as 7 — oo to the probabilistic
bound in Assumption D. To that end, we prove the following lemma in Appendix D.

LEMMA 4.2. Let E[d,, (P57, 1) < Kp™ for all 7 € N, where K > 1 and

(1]
p € (0,1). Define

1
|log p|’

logl  logK
|logp| = [logpl

T

-] o ot s

For any € € (0,1] and ¢ € R,
P (TTV (P, €) > Ty (Pre) + KJC) < exp(—c).

We begin with the analysis of the random version of the MIGD procedure. As
before, a token i(t) moves among the processors in a network of n nodes, but now
the transition matrix P governing the token is random. At time ¢, the transition
probability P(i(t) = j | i(t — 1) = i) = P;;(t), where {P(¢)} is an ii.d. sequence
of doubly stochastic matrices. Let A, denote the probability simplex in R™ and
u(0) € A, be arbitrary. Define the sequence u(t + 1) = P(t)u(t), so u(t) is the
distribution of i(¢) if the token has initial distribution «(0). As shown by Boyd et
al. [7] and further studied by Duchi, Agarwal, and Wainwright [15], we obtain

(4.5) E[[u(t) = 1/n]l,] < vV u0)]3 A(E[P(1) T PL)))" < Vire(E[P(1)TP(1)])".

Notably, with p = A2 (E[P(1) T P(1)]) < 1 and K = /n, the estimate (4.5) satisfies the
conditions of Lemma 4.2, since d., (P*,1I) = |u(t) — 1/n||,. Generally, E[P(1)" P(1)]
has a much smaller second eigenvalue than any of the random matrices P(t). (Indeed,
it may be the case that A2(P(t)) = 1 with probability 1, as in randomized gossip [7].)
Using (4.5), if we define Ay = \2(E[P(1)T P(1)]), we may take

log
1—

a3

Ty (Pre) < and k<

>
]

1—2X2

in Lemma 4.2. Applying Theorem 3.4 we obtain the following corollary.
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COROLLARY 4.3. Let the conditions of Theorem 3.4 hold, and in the notation of
the previous paragraph, define \g := Mo(E[P(1)T P(1)]). Fiz § € (0,1]. With stepsize
choice a(t) = a/\/t, there is a constant C' < 4 such that with probability at least 1 —§

( R?> logZ+logLl G2a
e :
av'T 1—X VT

GR |log Lo log(4log L2 /(1 — /\2)))
VT 1— X '

As an example of the applicability of this approach, suppose that in the network of
communicating agents used in MIGD, each communication link fails with a probability
~v € (0,1), independently of the other links. Let P denote the transition matrix used
by the MIGD algorithm without network failures. Then (under suitable conditions
on the network topology; see [15] for details)

M (E[P(1)TPA)]) < 5+ (1= 7)A2(P).

Applying Corollary 4.3 and taking e = 1/T and § = 1/T?, we obtain (ignoring doubly
logarithmic factors) that there is a universal constant C' such that with probability

at least 1 — T2
2 2
aVT (=71 =X(P) VT
Roughly, we see the intuitive result that as the failure probability v increases to 1,
the convergence rate of the algorithm suffers; for v bounded away from 1, we suffer
only constant factor losses over the rates in Corollary 4.1.

As another example of the applicability of Theorem 3.4, we look to problems where
the statistical sample space = is uncountable. In such scenarios, standard (finite-
dimensional) Markov chain theory does not apply. Uncountable spaces commonly
arise, for example, in physical simulations of natural phenomena or autoregressive
processes [26] and control problems [21], as well as in statistical learning applications,
such as Monte Carlo sampling based variants of the expectation maximization al-
gorithm [38]. To apply results based on Assumption C, however, requires uniform
ergodicity [26, Chapter 16] of the Markov chain. Uniform ergodicity is difficult to
verify and often requires conditions essentially equivalent to compactness of =.

Theorem 3.4 allows us to avoid such difficulties. For concreteness, we focus on
ARMA processes, common models for control problems and statistical time series. In
general, an ARMA process is defined by the recursion

(4.6) §ev1 = A(&) + 2(&) W,

where 4 : R? — R% and ¥ : R* — R%*4 are measurable, the innovations W, € R¢ are
ii.d., and Cov(W;) exists. When A(z) = Az, that is, A is identified with a matrix A €
R¥¥4 and ¥(z) is a constant matrix ¥, we recover the standard linear ARMA model.
The convergence of such processes is area of recent research (e.g., [26, 27, 23]), but
we focus particularly on the paper of Liebscher [23]. As a consequence of Liebscher’s
Theorem 2, we obtain that if A(¢) = A + h(€), where h(£) = o(||€]]) as [|€|| — oo,
the matrix A satisfies p1(A) < 1, and ¥(§) = ¥ is a fixed matrix, then there exist
constants M > 0 and p € (0, 1) such that for all t,7 € N

@) = f@") < inf C-

e>0

+eGR

E[dTV(P[gT,H) < Mp™ whenever E[||&]] < .

Here II is the stationary distribution of the ARMA process (4.6).
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In particular, for any ARMA process (4.6) satisfying the conditions, Lemma 4.2
guarantees that Assumption D holds. We thus have the following corollary. (It
appears challenging to obtain sharp constants [23, 26], so we leave many unspecified.)

COROLLARY 4.4. Let the stochastic process P be the nonlinear ARMA process

o1 = A& + (&) + W,

where the singular value p1(A) < 1, h(€) = o(||€]|) as ||&|| — oo, and IE[HWtHg] < 00.
Let Assumption B hold and § € (0,1). Then there exist constants M > 1, p € (0,1),
and a universal constant C' < 4 such that with probability at least 1 —§

( R?  logML (G2a
+ .
T 1—=p T

GR [log % log(5 log 75 /(1 — p)))
VT L—p '

Having provided Corollaries 4.3 and 4.4, we can now somewhat more concretely
contrast our results with those of Ram, Nedi¢, and Veeravalli [33]. Their results
(essentially) apply when the set Z is finite, as they define their objective f(z) =
o, fi(z) for functions f;; the ARMA example does not satisfy this property. In
addition, Ram, Nedi¢, and Veeravalli assume in the MIGD case that the network of
agents {1,...,n} is strongly connected over time: for any ¢, if one defines E(t) =
{(4,7) : P(t);; > 0}, there exists a finite # € N such that U_, E(s) defines a strongly
connected graph. This assumption need not hold for our analysis and fails for the
examples motivating Corollary 4.3.

f@E(T)) = fa) <inf C-

e>0

+eGR

4.3. Slowly mixing processes. Many ergodic processes do not enjoy the fast
convergence rates of the previous three examples. Thus we turn to a brief discussion of
more slowly mixing processes, which culminates in a result (Corollary 4.5) establishing
asymptotic convergence of EMD for any ergodic process satisfying Assumption C.

In general, attaining optimal rates of convergence for slowly mixing processes
requires knowledge of the mixing rate of P. Choosing an incorrect rate—that is,
setting «(t) oc t~™ for incorrect m—can lead to substantially slower convergence. In
contrast, as noted in section 3, our other bounds are robust to misspecification of the
stepsize so long as the ergodic process P mixes suitably quickly and we can choose
a(t) « t~1/2. There is a simple technique we can use to demonstrate that the stepsize
choice a(t) = a/+/t provably yields convergence, both in expectation and with high
probability, even for slowly mixing processes. To be specific, note that the bound in
Corollary 3.2 guarantees that for Z(T) = + Z; x(t), if we choose a(t) = a/+/t, then
< R? N G_zoz L 3CR4 27mix (P, €) G2 n Tmix (P, e)RG’

2oz\/T \/T \/T T
where Thmix denotes either the Hellinger or total variation mixing time. The conver-
gence guarantee (4.7) holds regardless of our choice of €, so we can choose ¢ minimizing
the right-hand side. That is (setting & = R/G for notational convenience),

~ 3GR . 2Tmix (P, €) GR  Tmix(P, €)GR }
El[f(z(T))] — x*<—+1nf{3eGR+ + .
FE@N - ) < S+ int N .

For any fixed ¢ > 0, the term inside the infimum decreases to 4¢GR as T 1 oo, so
the infimal term decreases to zero as T' 1 oo. High-probability convergence follows

(4.7) E[f(2(T))] = f (=)
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similarly by using Theorem 3.3, since for any dr > 0 we have

- . 3GR . 27, (P,e)GR  7.,(P,e)GR
f@@?%—ﬂx)<57?+g§K}GR+ RGO, Tl

4GR Toy (P €
+ T Try (P, €) log %}

with probability at least 1 — 7. We obtain the following corollary.

COROLLARY 4.5. Define Z(T) = %23:1 x(t). Under the conditions of Theo-
rem 3.3, the stepsize sequence a(t) = a/\/t for any a > 0 yields f(Z(T)) — f(z*) as
T — oo both in expectation and with probability 1.

Proof. Fix v > 0 and let Ep denote the event that f(Z(T)) — f(z*) > ~v. We
use the Borel-Cantelli lemma [6] to argue that Ep occurs for only a finite number
of T' with probability one. Take the sequence d7 = 1/T? (any sequence for which
log(1/67)/T L 0 as T — oo and Y ,_, 67 < oo will suffice) and choose some T such
that the right-hand side of the bound (4.8) is less than . Then we have

(4.8)

Y P(f@ET) - f@)>7) =Y P(BEr)<To+ », P(Er)<To+» br <o
T=1

T=1 T=To+1 T=1
For any v > 0, we have P(f(Z(T)) — f(z*) > v i.0.) = 0. O

5. Numerical results. In this section, we present simulation experiments that
further investigate the behavior of the EMD algorithm (2.3). Though Theorem 3.7
guarantees that our rates are essentially unimprovable, it is interesting to compare our
method with other natural well-known procedures. We would also like to understand
the benefits of the mirror descent approach for problems in which the natural geometry
is non-Euclidean as well as the robustness properties of the algorithm.

5.1. Sampling strategies. For our first experiment, we study the performance
of the EMD algorithm on a robust system identification task [32], where we assume the
data is generated by an autoregressive process. More precisely, our data generation
mechanism is as follows. For each experiment, we set the matrix A to be a subdiagonal
matrix (all entries are 0 except those on the subdiagonal), where A;,_; is drawn
uniformly from [.8,.99]. We then draw a vector u uniformly from surface of the d-
dimensional fo-ball of radius R = 5. The data comes in pairs (¢},£?) € R? x R with
d = 50 and is generated as follows:

(5.1) & =Ag  +eaW, &= (ug)+E,

where e; is the first standard basis vector, W; are i.i.d. samples from N(0,1), and E;
are i.i.d. biexponential random variables with variance 1. Polyak and Tsypkin [32]
suggest the method of least-moduli for the system identification task, setting

F(ZIJ, (61762)) = |<$a€1> _62‘ )

which is optimal (in a minimax sense) when little is known about the noise distribu-
tion [32]. Our minimization problem is

(5.2) minimize f(z) = En [|(z,&") = €|] subject to |[lz[|, < R,

where II is the stationary distribution of the autoregressive model (5.1) and we take
R=5.
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Fi1c. 5.1. Performance of the EMD algorithm (2.3) on a robust system identification task where
data is generated according to an autoregressive process.

We use this experiment to investigate two issues. In addition to studying the
performance of the EMD algorithm in minimizing the expected objective (5.2), we
compare EMD to a natural alternative. In many engineering applications it is possible
to generate samples from a distribution P that converges to II, in which case a natural
algorithm is the so-called multiple replications approach (e.g., [16]). In this approach,
one specifies initial conditions of the stochastic process P, then simulates it for some
number k of steps and obtains a sample ¢ according to the marginal distribution P*,
which (hopefully) is close to II. Repeating this, one can obtain multiple independent
samples & from P*, then use standard algorithms and analyses for independent data.?
A difficulty with this approach—which we see in our experiments—is that the mixing
time of the process P may be unknown, and if P¥ does not converge precisely to II
for any finite k£ € N, then any algorithm using such samples will be biased even in the
limit of infinite gradient steps.

As a natural representative from the multiple-replications family of algorithms,
we use the classical SGD algorithm (in the form studied by Nemirovski et al. [29]). To
generate each sample for SGD, we begin with the point ¢ = 0 and perform k of steps

of the procedure (5.1), using 5,51’2} to compute subgradients for SGD. For EMD, we
use the proximal function ¢(z) = % ||ac||§7 which yields the direct analogue of SGD.
To measure the objective value f(z), we generate an independent fixed sample of size
N = 10° from the process (5.1), using f(z) ~ + Zfil F(z;&;). For each algorithm, to
choose the stepsize multiplier o oc R/G, we estimate G by taking 100 samples &} and
computing the empirical average of ||£}]|3. For EMD, we deliberately underestimate
the mixing time by the constant 1 (other estimates of the mixing time yielded similar
performance).

In Figure 5.1, we show the convergence behavior (as a function of number of
samples) for the EMD algorithm compared with the behavior of the stochastic gradient
method for different numbers k of initial simulation steps before obtaining the sample
& used in each iteration of SGD. The line in each plot corresponding to SGD-k shows
the convergence of SGD as a function of number of iterations when £ initial samples
are used for each independent sample £. The left plot in Figure 5.1 makes clear
that if the mixing time is underestimated, the multiple-replications approach fails.
As demonstrated by our theory, however, EMD still guarantees convergence even

2This approach is inapplicable when the data &; comes from a real (unsimulated) source, such as
in streaming, online optimization, or statistical applications, though the EMD algorithm still applies.
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with poor stepsize choices. (See also our experiments in the next section.) For large
enough mixing time estimate k, the multiple-replication stochastic gradient method
and the EMD method have comparable performance in terms of optimization error
as a function of number of gradient steps. The right plot in Figure 5.1 shows the
convergence behavior of the competing methods as a function of the number of samples
of the stochastic process (5.1). From this plot, it becomes clear that using each sample
sequentially as in EMD—rather than attempting to draw independent samples at each
iteration—is the more computationally efficient approach.

5.2. Robustness and non-Euclidean geometry. In our second numerical
experiment, we study an important problem that takes motivation from distributed
statistical machine learning problems: the support vector machine problem [11], where
the samples ¢ € R? and the instantaneous objective is

Fz;6) = [1 = (& o)

We study the performance of the EMD algorithm for the distributed Markov incre-
mental mirror descent framework in section 4.1. In the notation of section 4.1, we
simulate n = 50 “processors,” and for each we draw a sample of m = 50 samples
according to the following process. Before performing any sampling, we set u to be
a random vector from {z € R?: ||z||, < R}, where R = 5 and d = 500. To generate
the ith data sample, we draw a vector a; € R? with entries a; ; € {—1,1}, each with
probability 3, and set b; = sign({a;,u)). With probability .05, we flip the sign of
b; (this makes the problem slightly more difficult, as no vector x will perfectly sat-
isfy b; = sign({ai, x))), and regardless we set & = b;a;. We thus generate a total of
N = nm = 2500 samples and set the ith objective in the distributed minimization
problem (4.1) to be

1 mie

(5.3) file)=— > Fla;&) =B, [F(2;6)] = En, [[1 - (€ 2)],],

k=m(i—1)+1

where II; denotes the uniform distribution over the ith block of m samples. Our
algorithm to minimize f(z) = 2 3" | f;(x) is the Markov analogue (4.2) of the general
EMD algorithm (2.3). We minimize f(x) over {z : ||z]|; < R} offline using standard
LP software to obtain the optimal value f(z*) of the problem.

We use the objectives (5.3) to (i) understand the effectiveness of allowing non-
Euclidean proximal functions ¢ in the update (2.3) and (ii) study the robustness of
the EMD algorithm (2.3) to stepsize selection. We begin with the first goal. As noted
by Ben-Tal, Margalit, and Nemirovski [4], the choice ¢(z) = % Hx||2 with ¢ = 1+
1/log(d) yields a nearly optimal dependence on dimension in non-Euclidean gradient
methods. Let 7ix denote the mixing time of the Markov chain (for Hellinger or total
variation distance). Applying Corollary 4.1 and the analysis of Ben-Tal, Margalit,
and Nemirovski with this choice of proximal function and o = R/+/log(d)mmix yields

R/Tix log d)
VT ’

since [|0,F(2;€)|.. < |I€]lo, = 1 by our sampling of the vectors a; € {—1,1}%, and
R is the radius of X in ¢;-norm. Compared to the Euclidean variant [20, 33] with

Y(x) = % ||x||§, whose convergence rate also follows from Corollary 4.1, this is an

improvement of \/d/logd, since |0, F(x;€)||, can be as large as V/d.

B/ - i, () =0

reX
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F1G. 5.2. Left: optimization error on a statistical machine learning task of the Euclidean variant
of the EMD algorithm (2.3) versus that of the £q-norm variant with ¥ (z) = % ||x||§, qg=1+1/logd,
plotted against number of iterations. Right: robustness of the EMD algorithm (2.3) to modifications
in the choice of stepsize.

We plot the results of 50 simulations of the distributed minimization problem in
the left plot of Figure 5.2. For our underlying network topology, we use a 4-connected
cycle (each node in the cycle is connected to its four neighbors on the right and left)
and n = 50 nodes. The line of blue squares is the mirror-descent approach with
Y(z) = %Htz with ¢ = 14 1/log(d) (we use d = 500), while the black line of
circles denotes the Euclidean variant with ¢(z) = 3 Ha:Hg The dotted lines below and
above each plot give the 5th and 95th percentiles, respectively, of the optimization
error across all simulations. For each algorithm, we use the optimal stepsize setting
a(t) predicted by our theory (recall Corollary 4.1). It is clear that the non-Euclidean
variant enjoys better performance, as our theory (and previous work on the dimension
dependence of mirror descent [30, 29, 4, 3]) suggests.

The final simulation we perform is on the same problem, but we investigate the
robustness of the EMD algorithm to misspecified stepsizes. We take the stepsize
o predicted by our theory (Corollary 4.1) and use a(t) = ya*/+/t for values of v
uniformly logarithmically spaced from v = 10~2 to v = 102. The plot on the right side
of Figure 5.2 shows the mean optimality gap of Z(T") after T' = 10,000 iterations for
different values of v, along with standard deviations, across 50 experiments. The black
dotted line shows the predicted optimality gap as a function of the misspecification.
(Recall our discussion on robustness following Corollary 3.5.) The EMD algorithm
is certainly affected by misspecification of the initial stepsize, though for a range of
values of roughly v = 107! to v = 10, the performance degradation does not appear
extraordinary. In addition, our experiments show that our theoretical predictions
appear to capture the empirical behavior of the method quite well.

6. Analysis. In this section, we analyze the convergence of the EMD algorithm
from section 2. Our first subsection lays the groundwork, gives necessary notation, and
provides a few optimization-based results. The second subsection contains the proofs
of results on expected rates of convergence, while the third subsection shows how to
achieve convergence guarantees with high probability. The fourth subsection shows
the convergence of the EMD method under probabilistic (random) mixing times, while
the final subsection proves the order-optimality of the EMD method.

6.1. Definitions, assumptions, and optimization-based results. To state
our results formally, we begin by giving a few standard definitions and collecting a
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few consequences of Assumptions A and B that make our proofs cleaner. Recall the
measurable selection G, where G(x; &) € 0, F(x;&) represents a fixed and measurable
element of the subgradient of F(-;¢) evaluated at x, and the EMD algorithm (2.3)
has g(t) = G(x(t);&:). By our assumptions on F', for any distribution @ for which the
expectations below are defined, expectation and subdifferentiation commute [35, 5]:

fo(@) = Eq[F(z;6)] = / F(2:€)dQ(), then dfo(x) = EqloF(z;€)].

In particular, En[0F (z;€)] = 0f(z) and En[G(z; )] € df(x). In addition, the com-
pactness assumption that Dy (z*,z(t)) < £ R? for all t coupled with the strong con-
vexity of ¢ implies

(6.1) lz(t) — 2*||* < 2Dy(a*, () < B* so |a(t) —a*| < R.

We now provide two relatively standard optimization-theoretic results that make
our proofs substantially easier. To make the presentation self-contained, we give
proofs of these results in Appendix A. The two lemmas are essentially present in
earlier work [30, 3], but our stochastic setting requires a bit of care.

LEMMA 6.1. Let 2(t) be defined by the EMD wupdate (2.3). For any 7 € N and
any x* € X,

= . 1 s o alt) 2
3N Fa(t):&) - Fla*:&) < st PR IOI

t=7+1 t=7+1
LEMMA 6.2. Let z(t) be generated according to the EMD algorithm (2.3). Then

[e(t) — 2@t + D] < at) lg®)]. -

6.2. Expected convergence rates. Now that we have established the relevant
optimization-based results and setup in section 6.1, the proof of Theorem 3.1 requires
that we understand the impact of the ergodic sequence &7, &a, ... on the EMD proce-
dure. The key equality that allows us to prove Theorems 3.1 and 3.3 is the following;:
for any 7 > 0,

T—1
D Sa®) = fa) =) fa(t) — @) = F@(t);&er) + Fa*36eir)
T—71
(6.2) + Z F(a(t); §e4r) — Fa(t + 7); &4r)
T :
3 Fe@i) - Faha) + Y fa®) - ).
t=7+1 t=T—-71+1

We may set 7 = 0 in the expression (6.2), taking expectations and applying
Lemma 6.1, to recover the known convergence rates [29] for the stochastic gradi-
ent method with independent samples. However, the essential idea that the expan-
sion (6.2) allows us to implement is that for large enough 7, the sample & is nearly
“independent” of the parameters z(t), since the stochastic process P is mixing. By
allowing 7 > 0, we can bound the four sums (6.2) using a combination of Lemmas 6.1
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and 6.2, then apply the mixing properties of the stochastic process P to show that
F(x(t); &4+) is a nearly unbiased estimate of f(x(¢)):

E[f(z(t)) — F(2(t); &4-)] = 0.

We formalize this intuition with two lemmas, whose proofs we provide in Appendix B.
LEMMA 6.3. Let x be Fy-measurable and 7 > 1. If Assumption A holds,

E[f(z) = f(z*) = F(2;§e40) + F(2%&4r) | Fel| < 3GR - dner (P[i]JrT,H) :
If Assumption B holds,
(/) - f(e") - Flaséonn) + Pla*i&sr) | Rl < GR-dyy (B47.1).

The next lemma applies a type of stability argument, showing that function values
evaluated at x(t) and z(t + 7) cannot be too far apart.
LEMMA 6.4. Let 7 > 0 and «(t) be nonincreasing. If Assumption A holds, then

E[F(2(t); &rvr) — F(@(t +7);64r) | Feoa] < T(t)G2.
If Assumption B holds, then
F(z(t);&qr) — Fx(t +7);&40) < Ta(t)G2.

We can now apply Lemmas 6.1-6.4 to give the promised proof of Theorem 3.1.

Proof of Theorem 3.1. The equality (6.2) is nonprobabilistic, so all we need to
complete the proof is to take expectations, applying the preceding lemmas. First,
we map 7 to 7 — 1 in the previous results, which will make our analysis cleaner.
Throughout this proof, the quantity d(-,II) will denote 3dpei(-,II) when we apply
Assumption A and will denote d,, (-,II) when using Assumption B, as the proof is
identical in either case. We control the expectation of each of the four sums (6.2) in
turn. First, we apply Lemma 6.3 to see that

T—7+1 T—71+1
Y Elf(@(t) = f(2*) = F(@(t);éer—1) + F(2"3ésr-)] < GR Y E[d(PL7,10)].
t=1 t=0

The second of the four sums (6.2) requires Lemma 6.4, which yields

T—74+1 T—7+1

S EF@(t)i€ir) — Flalt+7— iér )] < (-G Y alt).

t=1 t=1
Lemma 6.1 controls the third term in the series (6.2), and taking expectations gives
E[|lg(t)||’] < G2 The final term in the sum (6.2) is bounded by (r — 1)RG when
either of the Lipschitz assumptions, A or B, holds. Summing our four bounds, we
obtain that for any 7 > 1,

T T—7+1 2 9 T
E{Zf(x(t)) ) ] <GR Z E[ (P{jg L H)} zsz) +%Za(t)
- T—71+1 -
(6.3) + (1 — 1)G? Z a(t) + (r — 1)RG.

t=1

Assumption C states that there exists a uniform m1x1ng time Tix (P, €) (for both

total variation and Hellinger mixing) such that d(Ptt*;] ,II) < e. Applying the

definition of 7,ix for Hellinger or total variation mixing completes the proof. O
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6.3. High-probability convergence. In this section, we complement the con-
vergence bounds in section 6.2 with high-probability statements. We use martingale
theory to show that the bound of Theorem 3.1 holds with high probability. We begin
from the same starting point as the proof of Theorem 3.1—with the expansion (6.2)—
but now we show that the random sum

T—7+1

(6.4) Z f(@@) = f(z") = F(2(t); §qr—1) + F (25 &4 r—1)
t=1

is small with high probability. Intuitively, this follows because given the initial t — 7
samples &1, . ..,&_,, the tth sample & is almost a sample from the stationary distri-
bution II. With this in mind, we can show that an appropriately subsampled version
of the above sequence behaves approximately as a martingale, and we can then apply
Azuma’s inequality [2] to derive high-probability guarantees on the sum (6.4).

PROPOSITION 6.5. Let Assumption B hold and 6 € (0,1). With probability at
least 1 — ¢, for 7 € N with 7 € [1,T/2],

T—7+1

Z [f(z(t) = F(2(t); §err—1) + F(21 67 —1) — f(27)]

t=1
pa T
t
< 4GR[Trlog 5 + GR; dyy (P[t_T], H) :

We provide a proof in Appendix C and can now prove Theorem 3.3.
Proof of Theorem 3.3. The proof is a combination of the proofs of previous results.
Starting from the expansion (6.2), we use Lemma 6.4 to see that

T—7+1 T—7+1

> Fat)ibiir) = Flat+7 =156, 1) < (7= 1G> > aft),

t=1 t=1

and applying the G-Lipschitz continuity of the functions F'(-;£) and compactness of
X we obtain

T
S fla(t) - f(z*) < (7~ 1)GR.

t=T—7+2
In addition, the convergence guarantee in Lemma 6.1 guarantees that
T

T . . . _ 1 e G?
; (ﬁ(t)vgt) - ({E 7515) = m + 7204@)

t=1
Combining these bounds, we can replace the equality (6.2) with the bound
(6.5)

T ] @ T T
> 1(elt) - 1(a") < g B+ G Dot + (7= 1) GR+ 623 a)]
T—714+1

+ 3 [f@®) = F@t);eyr) + F@*5 &) — f@*)],

which holds for any 7 > 1. What remains is to replace the last term in the non-
probabilistic bound (6.5) with the upper bound in Proposition 6.5, which holds with
probability 1—4, and then to replace 7 with 7, (P, €), which guarantees the inequality
do (P} II) <e. O

[t—r]’
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6.4. Random mixing. In this section, we give the proof of Theorem 3.4. The
proof is similar to that of Theorem 3.3, but we need an auxiliary lemma that allows
us to guarantee that the mixing times are bounded uniformly for all times and for all
desired accuracies of mixing €. See Appendix D for the proof of the lemma.

LEMMA 6.6. Let Assumption D hold and § € (0,1). With probability at least
1-49,

1
max sup (Tov (P}, €) — oy (Pr€)) < K (log —+2 10g(T)> .
s€{l, T} {e: 7y, (Pe)<T} d

Rewriting Lemma 6.6 slightly, we may define 7 = 7, (P, €) + x(log $ + 2log(T)),

and we find that with probability at least 1 — 9,

(6.6) dyy (P[SS]”,H) <e

for all s € {1,...,T} and for all ¢ > 0 with 7., (P,e) < T. This leads us to the
following proof.

Proof of Theorem 3.4. All that is different in the proof of this theorem from that
of Theorem 3.3 is that in the penultimate inequality (6.5), when we apply Proposi-
tion 6.5, we no longer have the guarantee that dTV(P[tth],H) < ¢ for all ¢. To that
end, let € be such that 7., (P,e) < T. Apply Lemma 6.6 and its consequence (6.6),
which states that if we take 7 = 7., (P, €) + £(log + + 2log(T’)), then we obtain that

dypy (P[i_T],H) < € with probability at least 1 —¢. If 7, (P, €) > T, the bound in the
theorem holds vacuously, so we may extend the result to all € > 0. d

6.5. Lower bounds on optimization accuracy. Our proof of Theorem 3.7
mirrors the proof of Theorem 1 in the paper by Agarwal et al. [1], so we are somewhat
terse in our description and proof. The intuition in the proof is that if the stochastic
process P returns a sample from the stationary distribution II every 7 timesteps,
otherwise returning a sample identical to the previous one, then the convergence rate
of any algorithm should be a factor of 7 slower than if it could receive independent
samples from II. Mesterharm [25] employs a similar approach to give a lower bound
on the performance of online learning algorithms. More formally, by using an identical
construction to [1, section IV.A], we may reduce the problem of minimization of a
function f : R — R to that of identifying the bias of d coins. To that end, let
V € {—1,1}? be a packing of the d-dimensional hypercube such that v,/ € V with
v # V' satisfy ||v — /|, > d/2; it is a classical fact [24] that there is such a set with
cardinality [V| > (2¢~2)%/2.

Now for a fixed 7 € N, consider the following sequential sampling procedure,
which generates a set of pairs of random vectors {(Uy, Y;)}72,. Choose a vector v € V
uniformly at random and let § € (0,1/4]. Let P, denote the distribution (conditional
on v) that corresponds, at each time ¢, to constructing samples according to the
following scheme: for each ¢, construct samples according to the following:

(a) If (t —1) mod 7 # 0, take Uy = Uy—q and Y; = Y;_1.

(b) Otherwise, pick a uniformly random subset U, C {1,...,d} of size |Uy| = m,

then
(i) for each i € U, construct a random variable C; such that C; = 1 with
probability % + v;0 and C; = —1 with probability % — 1;0;
(ii) construct the vector Y; € {—1,1}% such that Y;; = C; if i € U, and
otherwise Y; ; is uniform Bernoulli, that is, if ¢ & Uy, then Y;; = 1 with
probability % and Y; ; = —1 with probability %
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This sampling procedure yields a sequence & = (U, Y;), where if II,, is the distribution
of a pair (U,Y) such that U C {1,...,d} is chosen uniformly at random with size
|U| = m and Y is sampled according to steps (i)—(ii) above, then II, is the stationary
distribution of P,. Moreover, we see that d,, (P[i]*TJrk, IT) = 0 for any k > 0 and any
t, since the distribution P, corresponds to receiving an independent sample (U,Y)
from II, every 7 steps.

Let I(X;Y) denote the mutual information between random variables X and Y
and let H(X) denote the (Shannon) entropy of X. By inspection of the proof of Agar-
wal et al. [1, Lemma 3], since II,, is the stationary distribution of P,, a tight enough
bound on the mutual information I((Uy,Y1),...,(Ur,Yr);v) proves Theorem 3.7.
Hence, we provide the following lemma.

LEMMA 6.7. Let the sequence & = (Uy, Yy) be generated according to the steps (6.5)—
(6.5) above. Then for § € (0,1/4],

I(U,YY),...,(Ur,Y7);v) <16 Pw mo?.

T

Proof. Our sampling model (6.5)—(6.5) sets blocks of size 7 to be equal, that is,
U, ) =---=UY:), (Urs1,Yr11) =+ = (Uas, Y2;), and so on, whereas differ-
ent blocks are independent given the variable v. We thus see that by the definitions of
mutual information, conditional entropy, and the fact that entropy is subadditive [12],

I((Uy,Y1),...,(Up,Yr);v)
= H((Ul,yl), ceey (UT,YT)) — H((Ul,yl), ceey (UT,YT) | V)

[T/7]
= H((U17 Yl)a ey (UTa YT)) - Z H ((U(k—l)7+17 Sf(k—l)T-{-l)a ey (UkTa YkT) | U)
k=1
[T/7]
< Z [H ((U(k—l)‘r—i-la Yv(k—l)‘r—i—l)a SERE) (Uk7'7 Ykr))
k=1
— H ((Ugg—1yr+1, Y—1)r41)s - - - » (U, Yir) | l/)}
[T/7] [T/7]
= > I ((U-1yr+1: Yo tyr41)s - o> (Ukrs Yer)iv) = D I ((Ukr, Yir);v) -
k=1 k=1
(6.7)

In the last line we have used that within the same block of size 7, all (U, Y;) pairs
are equal. Now, using the bound (6.7), we apply an identical derivation to that given
in the proof of Lemma 3 by Agarwal et al. (following equation (25)). For any fixed k
we have I((Ugr, Yir);v) < 16md?, which completes the proof of the lemma. |

Proof of Theorem 3.7. Use the construction by Agarwal et al. (see equation (16) in
section IV. A of [1]) of a “difficult” subclass of functions; then in the proof of Theorem 1
from [1], replace their coin-flipping oracle with steps (6.5)—(6.5) and applications of
their Lemma 3 with Lemma 6.7 above. 0

7. Conclusions. In this paper, we have shown that stochastic subgradient and
mirror descent approaches extend in an elegant way to situations in which we have
no access to i.i.d. samples from the desired distribution. Despite this difficulty, we
are able to achieve reasonably fast rates of convergence for the EMD algorithm—the
natural extension of stochastic mirror descent—under reasonable assumptions on the
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ergodicity of the stochastic process {£;} that generates the samples. We gave several
examples showing the strengths and uses of our new analysis, and we believe that
there are many more. In the extended version of this paper [14], we give additional
applications to optimization over combinatorial spaces where Markov chain Monte
Carlo samplers can be designed to sample efficiently from the space [19]. In addition,
our results give a relatively clean and simple way to derive finite sample rates of
convergence for statistical estimators with dependent data without requiring the full
machinery of empirical process theory (e.g., [39]). Though we have provided lower
bounds showing that our analysis is tight to numerical constants, it may be possible
to sharpen our results for interesting special cases, such as when the distribution of
the stochastic process {&:} has nice enough Markovianity properties. We leave such
questions to future work.

Appendix A. Proofs of optimization results.

Proof of Lemma 6.1. The proof of the lemma begins by controlling the amount of
progress made by one step of the EMD method, then summing the resulting bound.
By the first-order convexity inequality and definition of the subgradient g(t), we have

F(x(t); &) — F(x*; &) < (g(t), z(t) — x™)
(A1) =(g(t),x(t+ 1) —a*) + (g(t),x(t + 1) — z(t)) .

For y € X, the first-order optimality conditions for (¢ + 1) in the update (2.3) imply
(a(t)g(t) + Vi (x(t +1)) = Vi (z(t),y — z(t + 1)) = 0.

In particular, we can take y = z* in this bound to find

(A2)  alt) (gt),alt +1) — 2%) < (Vb(a(t + 1)) — Vea(t), 2" — alt +1)).

Now we use the definition of the Bregman divergence Dy, to obtain

(V(z(t +1)) — Vip(z(t), 2" —z(t + 1))
= Dy(z",2(t)) — Dy(z",2(t + 1)) — Dy(z(t + 1), 2(¢)).

Combining this result with the expanded gradient term (A.1) and the first-order
convexity inequality (A.2), we get

F(z(t); &) — F(2";&)
< ti(x*,x(t)) - ti(x*,x(t +1))

T at) a(t)
-~ Dalalt+ 1,(0) + {02t + 1) — o(0)

< %Dw(ﬂc ya(t)) — %Dw(x Lot +1)) — me(x(t +1),z(t))
+ 2P 12 + 5 e+ 1) o0

(i) 1 . 1 . a(t) )

< qp et 2 ®) = g Delat 2t + 1) + == gl

Inequality (i) is a consequence of the Fenchel-Young inequality applied to the conju-
gates % |-|* and : -7 (see, e.g., [8, Example 3.27]), while inequality (ii) follows by
the strong convexity of v, which gives Dy (z(t + 1), z(t)) > 5 [|z(t + 1) — z(t)])°.
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Summing the final inequality, we obtain

T
Z [F(x(t); &) — F(a"; &)
t=7+1
G| Tt )
< Y o Dula” x(t) — Dy(a® et + I+ Y == eI
t=7+41 a( ) t=1+1

Using the compactness assumption that Dy (z*, z) < %RQ for all x € X, we have

T
< Z Dy(z*, z(t)) {%t) - a(tl_ 1)] + 04(71+ 1)D¢($*’$(T +1))

R? 11 1 . R
=53 t;g[a(t) a(t—l)} T+ T 2a(r)

where for the last inequality we used that the stepsizes «(t) are nonincreasing. a
Proof of Lemma 6.2. By the first-order condition for the optimality of (¢ + 1)
for the update (2.3), we have

(a(t)g(t) + Vip(x(t + 1)) — Vp(x(t)), z(t) —z(t + 1)) > 0.
Rewriting, we have

(Vo (z(t) = Vet + 1)), x(t) — 2(t + 1)) < a(t) (9(t), z(t) —x(t +1))

@) lg@I. M=) — 2t + 1|

using Holder’s inequality. Simple algebra shows that

<«
<«

Dy (2(t), x(t + 1)) + Dy (2t +1),2(t)) = (VY (x(t) — V(a(t + 1)), 2(t) — z(t + 1)),
and by the assumed strong convexity of ¥, we see
la(t) — a(t + DI* < Dya(t +1).2(1)) + Dy (a(t), 2(t + 1))
< a(t) lg@ll, lx(t) — =+ 1.
Dividing by ||z(t) — z(t + 1)|| gives the desired result. O

Appendix B. Mixing and expected function values.
Proof of Lemma 6.3. Since x € F;, we may integrate only against £ when taking
expectations, which yields

E[f(z) = f(z*) = F(2;&17) + F(2%;&41) | Ft]
— [F@e) - Famsoan(e) - [P - Fa)ari (@)

Since we assume P[ts] and II have densities pt

(5] and 7 with respect to a measure p,

this difference becomes [(F(z;&) — F(x*;€))(n(€) — pf;]”(ﬁ))du(f). Setting p = pf;]”
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as shorthand, we obtain
[(Fas6) = Pt en(e) - pe)iuco)
< [ 196 - Ft1in©) ~ ()] due)
— [P0 - Fa )l (VA© + Vo) |Va© - V@) dute)

\// (@:6) = Fla€))? (VA + vVo®) dn /(@—M)Qdu@

N e

by Holder’s inequality. Applying the inequality (a+b)? < 2a?+2b%, valid for a,b € R,
we obtain the further bound

=

B2 (2 (P - R (0 +pO)dn(©)) dua(P7ID
_ ﬁ(EH[(F(x;g) — F(z*;€))]

+E((F(2:&1r) = F(a5€040))” | Fi]) dua (P 10).

To control the expectation terms in the bound (B.1), we now use Assumption A.
By the (P-almost sure) convexity of the function = — F(x;&), we observe that

F(z;§) — F(2%;8) < (G(w;8),x —a”)  and  F(z";§) — F(z;§) < (G(z%;¢), 2" — x) .
Combining these two inequalities, we see that
(F(w5€) = F(a":€)* < max { (G(a;€),w — 0*)* , (G(a*3), 2" — 2)°}
ax { 6@ OII7, 16" 9)II2} 1o — 2"
< max {[|G(a: )12, Ga"; )2} R®

where the last inequality uses our compactness assumption (2.2). Now we invoke
Assumption A combined with the above inequality to obtain the further bound

E [(F(x§§t+r) — F(z*;640))° | —Ft}
< RPE [|G(w;&4r) 2 + 16" €04 | o] < 2G7R2.

IN
=

An analogous argument yields the same bound for the expectation under the station-
ary distribution, so based on our earlier bound (B.1) we have

[ - Fatie) (ane) - ar @)
< /|F(x;§) — P(a*:)| [dII(€) — dPE ()| < VBGZR? dhat (P, T1)

This completes the proof of the first statement of the lemma.
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The second statement is simpler: apply Assumption B to obtain
‘/(F(x;ﬁ) — F(2*;:6))(m(¢) —p(é))du(ﬁ)‘ < GR/ Ip(&) — m(&)|dp(E).

Observing that the above bound is equal to GRd., (PHT, ITI) completes the
proof. a

Proof of Lemma 6.4. For any x measurable with respect to the o-field Fs, we can
define the function hg(x) = E[F(2;&:41) | Fs]. Assumption A implies that hpy is
a G-Lipschitz continuous function so long as its argument is Fs-measurable, that is,
|his)(z) — hig(y)| < G|z —y|| for z,y € Fs. In turn, this implies that

E[E(z(t); E4r) = F(2(t +7); Ee4r) | Fia]
t+7—1

Y E[F(a(s);éerr) = Fla(s +1);€r) | Foor
t+7—1

Z E[E[F((s); §+7) = F(2(s + 1) §e17) | Fear—a] [ Fea]

t+7—1

< Y E[Gllz(s) —a(s + 1)|| | Fir]

since z(s) is Fi4+r—1-measurable for s < t+7. Now we apply Lemma 6.2, which shows
that ||z(s) — z(s + 1)|| < a(s) ||g(s)]],, and we have the further inequality

t+7—1
E[F(z(t); §i4r) — F(2(t +7); §t4r) | Fro1] < Z Ga(s)E[|lg(s)|l, | Fi-1]-

Applying Jensen’s inequality and Assumption A, we see that

Elllgs)ll, | Fii] < VEElg(s)? | Faor] | Fir) < VG = G,

In conclusion, we have the first statement of the lemma,

t+7—1

E[F(x(t); &) — F(2(t +7); €r4r) | Fioa] < G? Z a(s) < G*ra(t),

s=t
since the sequence «(t) is nonincreasing. The proof of the second statement is entirely
similar, but we do not need to apply conditional expectations. a

Appendix C. Martingale concentration.

Proof of Proposition 6.5. We construct a family of 7 different martingales from
the summation in the statement of the proposition, each of which we control with
high probability. Applying a union bound gives us control on the deviation of the
entire series. We begin by defining the random variables

Zyi=fla(t—7+1)) = Flat —7+1);&) + F(a™; &) — f(z"),
noting that

T—7+1

Z Zy = Z f(@@) = F(2(t); §e4r—1) + F(2%&1r—1) — f(27)]

t=1

By defining the filtration of o-fields AJ = Fritj for j =1,...,7, we can construct a
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set of Doob martingales {X7, XJ,...} for j =1,...,7 by making the definition

XZ = Lirigy — E[Zri+j | Ag—l] = ZTi+j - E[Z71+] | ‘FT(i_l)J"j]
=fla(r(i —1)+j+1) = Fa(r( — 1) +j + 1);&rigy)
+ B (2% 6rivg) — f(2%) = E[Z¢ | Friim1y4]-

By inspection, X7 is measurable with respect to the o-field A7, and E[X7 | A7 || =
So, for each j, the sequence {Xf ;i =1,2,...} is a martingale difference sequence
adapted to the filtration {A7 : i = 1,2,...}. Define the index set Z(j) to be the
indices {1,...,|T/7| + 1} for j < T — 7 |T/7] and {1,...,[T/7]} otherwise. With
the definition of X; and the indices Z(j), we see that

T T |Z()I
c1n > z= ZZXJ+ZEZt|]-}T:ZZXJ+ZEZt|]-}T
t=T1 J=14€Z(y) j=1 =1

Now we note the following important fact: by the compactness assumption (6.1)
and Assumption B, the F,(;_1);;-measurability of f(x(7(i — 1)+ j + 1)) implies

X7 | = |Zrivj = ElZrivy | Frnyas]| < 2GR.

This bound, coupled with the representation (C.1), shows that Z;‘F:T Zy is a sum of 7
different bounded-difference martingales plus a sum of conditional expectations that
we will bound later. To control the martingale portion of the sum (C.1), we apply
the triangle inequality, a union bound, and Azuma’s inequality [2] to find

T ) 2
(X X x>0)<2p( ¥ x0>7) < oo (g
J=14eZ(j) i€Z(5)

since there are fewer than 27/7 terms in each of the sums X7 (by our assumption
that T'/2 > 7). Substituting v = 4GR+/T'Tlog(7/0), we find

P(Z .Z_ X7 > 4GR,/TTlog%) <4
Ji=14eZ(j)

To bound the final term E[Z; | F;—,] in the sum (C.1), we recall from Lemma 6.3
that

[BlZ | Firll < GR-dy, (Bi_p.11)

Summing this bound completes the proof. O

Appendix D. Probabilistic mixing.
Proof of Lemma 4.2. Using the definitions in the statement of the lemma, take

1gl log K c
~ llogy| * [logn|  [logy|’

T = |70y (Pr€) + Ke| >

which implies by Markov’s inequality that

P (dTV (Pt+‘r7H) > 6) B K:T . K exp(—log i) exp(—log K)

[1] exp(—c) = exp(—c)
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since y%/11°87| = exp(—a) for 0 < v < 1. Noting that
P (TTV(P[t],e) > 7') <P (dTV (P[i]JrT’H) > 6)

for any 7 € N completes the proof. O

Proof of Lemma 6.6. We use a covering number argument, which is common
in uniform concentration inequalities in probability theory (e.g., [37]). For each t €
{1,...,T}, define

e :=1nf {e > 0: 7., (Pe) <t}.

By the right-continuity of € — 7., (P, €), we have 7., (P, ;) <t but 7., (P&t — ) > t
for any § > 0. As a consequence, we see that for some ¢ > ep to exist satisfying
Tov (P}, €) > Toy (P €) + ¢, it must be the case that

Trv (P[s]vet) — Try (P, et) >c

for some €;, where t € {1,...,T}. That is, we have
P (7py (P, €) > Ty (Py€) 4 ¢ for some s € {1,...,T} and € > e7)

<P (trr;?% [Ty (P)s €0) — To (Pret)] > c) .

Applying a union bound and Assumption D, we thus see that for any ¢ > 0,

P (max sup (TTV (P[s]ve) — Ty (P 6)) > C)

SST EZET

<T? ma):%P (Tov (P, €0) > Ty (Pr€) +¢) < T exp (—¢/k).

t,s<

Setting the final equation equal to § and solving, we obtain ¢ = x[log(1/d) +2log(T)],
which is equivalent to the statement of the lemma. O
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