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Abstract

The goal of decentralized optimization over a network is to optimize a global ob-
jective formed by a sum of local (possibly nonsmooth) convexfunctions using
only local computation and communication. We develop and analyze distributed
algorithms based on dual averaging of subgradients, and provide sharp bounds on
their convergence rates as a function of the network size andtopology. Our anal-
ysis clearly separates the convergence of the optimizationalgorithm itself from
the effects of communication constraints arising from the network structure. We
show that the number of iterations required by our algorithmscales inversely in
the spectral gap of the network. The sharpness of this prediction is confirmed both
by theoretical lower bounds and simulations for various networks.

1 Introduction

Network-structured optimization problems arise in a variety of application domains within the in-
formation sciences and engineering. A canonical example that arises in machine learning is the
problem of minimizing a loss function averaged over a large dataset (e.g. [16, 17]). With terabytes
of data, it is desirable (even necessary) to assign smaller subsets of the data to different proces-
sors, and the processors must communicate to find parametersthat minimize the loss over the entire
dataset. Problems such as multi-agent coordination, estimation problems in sensor networks, and
packet routing also are all naturally cast as distributed convex minimization [1, 13, 24]. The seminal
work of Tsitsiklis and colleagues [22, 1] analyzed algorithms for minimization of a smooth func-
tion f known to several agents while distributing processing of components of the parameter vector
x ∈ R

n. More recently, a few researchers have shifted focus to problems in which each processor
locally has its own convex (potentially non-differentiable) objective function [18, 15, 21, 11].

In this paper, we provide a simple new subgradient algorithmfor distributed constrained optimiza-
tion of a convex function. We refer to it as adual averaging subgradient method, since it is based on
maintaining and forming weighted averages of subgradientsthroughout the network. This approach
is essentially different from previously developed distributed subgradient methods [18, 15, 21, 11],
and these differences facilitate our analysis of network scaling issues—how convergence rates de-
pend on network size and topology. Indeed, the second main contribution of this paper is a careful
analysis that demonstrates a close link between convergence of the algorithm and the underlying
spectral properties of the network. The convergence rates for a different algorithm given by the
papers [18, 15] grow exponentially in the number of nodesn in the network. Ram et al. [21] pro-
vide tighter analysis that yields convergence rates that scale cubically in the network size, but are
independent of the network topology. Consequently, their analysis does not capture the intuition
that distributed algorithms should converge faster on “well-connected” networks—expander graphs
being a prime example—than on poorly connected networks (e.g., chains or cycles). Johansson et
al. [11] analyze a low communication peer-to-peer protocolthat attains rates dependent on network
structure. However, in their algorithm only one node has a current parameter value, while all nodes
in our algorithm maintain good estimates of the optimum at all times. This is important in online
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or streaming problems where nodes are expected to act or answer queries in real-time. In additional
comparison to previous work, our analysis yields network scaling terms that are often substantially
sharper. Our development yields an algorithm with convergence rate that scales inversely in the
spectral gap of the network. By exploiting known results on spectral gaps for graphs withn nodes,
we show that our algorithm obtains anǫ-optimal solution inO(n2/ǫ2) iterations for a single cycle
or path,O(n/ǫ2) iterations for a two-dimensional grid, andO(1/ǫ2) iterations for a bounded degree
expander graph. Simulation results show excellent agreement with these theoretical predictions.

2 Problem set-up and algorithm

In this section, we provide a formal statement of the distributed minimization problem and a de-
scription of the distributed dual averaging algorithm.

Distributed minimization: We consider an optimization problem based on functions thatare dis-
tributed over a network. More specifically, letG = (V,E) be an undirected graph over the vertex
setV = {1, 2, . . . , n} with edge setE ⊂ V × V . Associated with eachi ∈ V is convex func-
tion fi : R

d → R, and our overarching goal is to solve the constrained optimization problem
minx∈X

1
n

∑n
i=1 fi(x), whereX is a closed convex set. Each functionfi is convex and hence sub-

differentiable, but need not be smooth. We assume without loss of generality that0 ∈ X , since we
can simply translateX . Each nodei ∈ V is associated with a separate agent, and each agentimain-
tains its own parameter vectorxi ∈ R

d. The graphG imposes communication constraints on the
agents: in particular, agenti has local access to only the objective functionfi and can communicate
directly only with its immediate neighborsj ∈ N(i) := {j ∈ V | (i, j) ∈ E}.

A concrete motivating example for these types of problems isthe machine learning scenario de-
scribed in Section 1. In this case, the setX is the parameter space of the learner. Each functionfi is
the empirical loss over the subset of data assigned to processori, and the averagef is the empirical
loss over the entire dataset. We use cluster computing as ourmodel, so each processor is a node in
the cluster and the graphG contains edges between processors connected with small latencies; this
setup avoids communication bottlenecks of architectures with a centralized master node.

Dual averaging: Our algorithm is based on a dual averaging algorithm [20] forminimization of
a (potentially nonsmooth) convex functionf subject to the constraint thatx ∈ X . We begin by
describing the standard version of the algorithm. The dual averaging scheme is based on aproximal
functionψ : Rd → R assumed to be strongly convex with respect to a norm‖·‖, more precisely,
ψ(y) ≥ ψ(x)+〈∇ψ(x), y − x〉+ 1

2 ‖x− y‖2 for all x, y ∈ X . We assume w.l.o.g. thatψ ≥ 0 onX
and thatψ(0) = 0. Such proximal functions include the canonical quadraticψ(x) = 1

2 ‖x‖
2
2, which

is strongly convex with respect to theℓ2-norm, and the negative entropyψ(x) =
∑d
j=1 xi log xi−xi,

which is strongly convex with respect to theℓ1-norm forx in the probability simplex.

We assume that each functionfi isL-Lipschitzwith respect to the same norm‖·‖—that is,

|fi(x)− fi(y)| ≤ L ‖x− y‖ for x, y ∈ X . (1)

Many cost functionsfi satisfy this type of Lipschitz condition, for instance, convex functions on
a compact domainX or any polyhedral function on an arbitrary domain [8]. The Lipschitz condi-
tion (1) implies that for anyx ∈ X and any subgradientgi ∈ ∂fi(x), we have‖gi‖∗ ≤ L, where
‖·‖∗ denotes thedual normto ‖·‖, defined by‖v‖∗ := sup‖u‖=1 〈v, u〉.
The dual averaging algorithm generates a sequence of iterates{x(t), z(t)}∞t=0 contained withinX ×
R
d. At time stept, the algorithm receives a subgradientg(t) ∈ ∂f(x(t)), and updates

z(t+ 1) = z(t)− g(t) and x(t+ 1) = ΠψX (−z(t+ 1), α(t)). (2)

Here{α(t)}∞t=0 is a non-increasing sequence of positive stepsizes and

ΠψX (z, α) := argmin
x∈X

{
〈z, x〉+ 1

α
ψ(x)

}
(3)

is a type of projection. Intuitively, given the current iterate(x(t), z(t)), the next iteratex(t + 1)
to chosen to minimize an averaged first-order approximationto the functionf , while the proximal

2



functionψ and stepsizeα(t) > 0 enforce that the iterates{x(t)}∞t=0 do not oscillate wildly. The al-
gorithm is similar to the follow the perturbed/regularizedleader algorithms developed in the context
of online learning [12], though in this form the algorithm seems to be originally due to Nesterov [20].
In Section 4, we relate the above procedure to the distributed algorithm we now describe.

Distributed dual averaging: Here we consider a novel extension of dual averaging to the dis-
tributed setting. For all timest, each nodei ∈ V maintains a pair of vectors(xi(t), zi(t)) ∈ X ×R

d.
At iterationt, nodei computes a subgradientgi(t) ∈ ∂fi(xi(t)) of the local functionfi and receives
{zj(t), j ∈ N(i)} from its neighbors. Its update of the current estimatexi(t) is based on a weighted
average of these parameters. To model the process, letP ∈ R

n×n be a doubly stochastic symmetric
matrix with Pij > 0 only if (i, j) ∈ E wheni 6= j. Thus

∑n
j=1 Pij =

∑
j∈N(i) Pij = 1 for all

i ∈ V and
∑n
i=1 Pij =

∑
i∈N(j) Pij = 1 for all j ∈ V . Given a non-increasing sequence{α(t)}∞t=0

of positive stepsizes, each nodei ∈ V updates

zi(t+ 1) =
∑

j∈N(i)

Pjizj(t)− gi(t), and xi(t+ 1) = ΠψX (−zi(t+ 1), α(t)), (4)

where the projectionΠψX was defined in (3). In words, nodei computes the new dual parameter
zi(t+1) from a weighted average of its own subgradientgi(t) and the parameters{zj(t), j ∈ N(i)}
in its neighborhood; it then computes the local iteratexi(t+ 1) by a proximal projection. We show
convergence of the local sequence{xi(t)}∞t=1 to an optimum of the global objective via thelocal
averagêxi(T ) = 1

T

∑T
t=1 xi(t), which can evidently be computed in a decentralized manner.

3 Main results and consequences

We will now state the main results of this paper and illustrate some of their consequences. We give
the proofs and a deeper investigation of related corollaries at length in the sections that follow.

Convergence of distributed dual averaging: We start with a result on the convergence of the
distributed dual averaging algorithm that provides a decomposition of the error into an optimization
term and the cost associated with network communication. Inorder to state this theorem, we define
the averaged dual variablēz(t) := 1

n

∑n
i=1 zi(t), and we recall the local time-averagex̂i(T ).

Theorem 1 (Basic convergence result). Given a sequence{xi(t)}∞t=0 and{zi(t)}∞t=0 generated by
the updates (4) with step size sequence{α(t)}∞t=0, for each nodei ∈ V and anyx∗ ∈ X , we have

f(x̂i(T ))− f(x∗) ≤ 1

Tα(T )
ψ(x∗) +

L2

2T

T∑

t=1

α(t− 1) +
3L

T
max

j=1,...,n

T∑

t=1

α(t) ‖z̄(t)− zj(t)‖∗ .

Theorem 1 guarantees that afterT steps of the algorithm, every nodei ∈ V has access to a locally
defined quantitŷxi(T ) such that the differencef(x̂i(T )) − f(x∗) is upper bounded by a sum of
three terms. The first two terms in the upper bound in the theorem are optimization error terms that
are common to subgradient algorithms. The third term is the penalty incurred due to having different
estimates at different nodes in the network, and it measuresthe deviation of each node’s estimate
of the average gradient from the true average gradient. Thus, roughly, Theorem 1 ensures that as
long the bound on the deviation‖z̄(t)− zi(t)‖∗ is tight enough, for appropriately chosenα(t) (say
α(t) ≈ 1/

√
t), the error of̂xi(T ) is small uniformly across all nodesi ∈ V .

Convergence rates and network topology: We now turn to investigation of the effects of network
topology on convergence rates. In this section,1 we assume that the network topology is static and
that communication occurs via a fixed doubly stochastic weight matrixP at every round. SinceP
is symmetric and stochastic, it has largest singular valueσ1(P ) = 1. As the following result shows,
the convergence of our algorithm is controlled by thespectral gapγ(P ) := 1− σ2(P ) of P .
Theorem 2 (Rates based on spectral gap). Under the conditions and notation of Theorem 1, suppose

moreover thatψ(x∗) ≤ R2. With step size choiceα(t) =
R
√

1−σ2(P )

4L
√
t

, we have

f(x̂i(T ))− f(x∗) ≤ 8
RL√
T

· log(T
√
n)√

1− σ2(P )
for all i ∈ V .

1We can weaken these conditions; see the long version of this paper for extensions to randomP [4].
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(a) (b) (c) (d)

Figure 1. (a) A 3-connected cycle. (b)1-connected two-dimensional grid with non-toroidal boundary
conditions. (c) A random geometric graph. (d) A random 3-regular expander graph.

This theorem establishes a tight connection between the convergence rate of distributed subgradient
methods and the spectral properties of the underlying network. The inverse dependence on the
spectral gap1 − σ2(P ) is quite natural, since it is well-known to determine the rates of mixing in
random walks on graphs [14], and the propagation of information in our algorithm is integrally tied
to the random walk on the underlying graph with transition probabilities specified byP . Johansson
et al. [11] establish rates for their Markov incremental gradient method (MIGD) of

√
nΓii/T , where

Γ = (I −P +1111⊤/n)−1; performing an eigen-decomposition of theΓ matrix shows that
√
nΓii is

always lower bounded by1/
√

1− σ2(P ), our bound in Theorem 2.

Using Theorem 2, one can derive explicit convergence rates for several classes of interesting net-
works, and Figure 1 illustrates four graph topologies of interest. As a first example, thek-connected
cycle in panel (a) is formed by placingn nodes on a circle and connecting each node to itsk neigh-
bors on the right and left. The grid (panel (b)) is obtained byconnecting nodes to theirk nearest
neighbors in axis-aligned directions. In panel (c), we showa random geometric graph, constructed
by placing nodes uniformly at random in[0, 1]2 and connecting any two nodes separated by a dis-
tance less than some radiusr > 0. These graphs are often used to model the connectivity patterns
of distibruted devices such as wireless sensor motes [7]. Finally, panel (d) shows an instance of a
bounded degree expander, which belongs to a special class ofsparse graphs that have very good
mixing properties [3]. For many random graph models, a typical sample is an expander with high
probability (e.g. random degree regular graphs [5]). In addition, there are several deterministic con-
structions of expanders that are degree regular (see Section 6.3 of Chung [3] for further details).

In order to state explicit convergence rates, we need to specify a particular choice of the matrix
P that respects the graph structure. LetA ∈ R

n×n be the symmetric adjacency matrix of the
undirected graphG, satisfyingAij = 1 when(i, j) ∈ E andAij = 0 otherwise. For each node
i ∈ V , let δi = |N(i)| = ∑n

j=1Aij denote the degree of nodei and define the diagonal matrix
D = diag{δ1, . . . , δn}. Lettingδmax = maxi∈V δi denote the maximum degree, we define

Pn(G) := I − 1

δmax + 1

(
D −A

)
, (5)

which is symmetric and doubly stochastic by construction. The following result summarizes our
conclusions for the choice (5) of stochastic matrix for different network topologies. We state the re-
sults in terms of optimization error achieved afterT iterations and the number of iterationsTG(ǫ;n)
required to achieve errorǫ for network typeG with n nodes. (These are equivalent statements.)
Corollary 1. Under the conditions of Theorem 2, usingP = Pn(G) gives the following rates.

(a) k-connected paths and cycles:f(x̂i(T ))− f(x∗) = O
(
RL√
T

n log(Tn)
k

)
, T (ǫ;n) = Õ(n2/ǫ2).

(b) k-connected
√
n×√

n grids: f(x̂i(T ))− f(x∗) = O
(
RL√
T

√
n log(Tn)

k

)
, T (ǫ;n) = Õ(n/ǫ2).

(c) Random geometric graphs with connectivity radiusr = Ω(
√

log1+ǫ n/n) for any ǫ > 0:

f(x̂i(T ))− f(x∗) = O
(
RL√
T

√
n

logn log(Tn)
)

with high-probability,T (ǫ;n) = Õ(n/ǫ2).

(d) Expanders with bounded ratio of minimum to maximum node degree:
f(x̂i(T ))− f(x∗) = O

(
RL√
T

log(Tn)
)
, T (ǫ;n) = Õ(1/ǫ2).
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By comparison, the results in the paper [11] give similar bounds for grids and cycles, but for
d-dimensional grids we haveT (ǫ;n) = O(n2/d/ǫ2) while MIGD achievesT (ǫ;n = O(n/ǫ2);
for expanders and the complete graph MIGD achievesT (ǫ;n) = O(n/ǫ2). We provide the proof of
Corollary 1 in Appendix A. Up to logarithmic factors, the optimization term in the convergence rate
is always of the orderRL/

√
T , while the remaining terms vary depending on the network topology.

In general, Theorem 2 implies that at mostTG(ǫ;n) = O
(

1
ǫ2 · 1

1−σ2(Pn(G))

)
iterations are required

to achieve anǫ-accurate solution when using the matrixPn(G) defined in (5). It is interesting to
ask whether this upper bound is actually tight. On one hand, it is known that even for central-
ized optimization algorithms, any subgradient method requires at leastΩ

(
1
ǫ2

)
iterations to achieve

ǫ-accuracy [19], so that the1/ǫ2 term is unavoidable. The next proposition addresses the comple-
mentary issue, namely whether the inverse spectral gap termis unavoidable for the dual averaging
algorithm. For the quadratic proximal functionψ(x) = 1

2 ‖x‖
2
2, the following result establishes a

lower bound on the number of iterations in terms of graph topology and network structure:
Proposition 1. Consider the dual averaging algorithm (4) with quadratic proximal function and
communication matrixPn(G). For any graphG with n nodes, the number of iterationsTG(c;n)
required to achieve a fixed accuracyc > 0 is lower bounded asTG(c;n) = Ω

(
1

1−σ2(Pn(G))

)
.

The proof of this result, given in Appendix B, involves constructing a “hard” optimization problem
and lower bounding the number of iterations required for ouralgorithm to solve it. In conjunction
with Corollary 1, Proposition 1 implies that our predicted network scaling is sharp. Indeed, in
Section 5, we show that the theoretical scalings from Corollary 1—namely, quadratic, linear, and
constant in network sizen—are well-matched in simulations of our algorithm.

4 Proof sketches
Setting up the analysis: Using techniques similar to some past work [18], we establish conver-
gence via the two sequencesz̄(t) := 1

n

∑n
i=1 zi(t) andy(t) := ΠψX (−z̄(t), α). The average sum of

gradients̄z(t) evolves in a very simple way: in particular, we have

z̄(t+ 1) =
1

n

n∑

i=1

n∑

j=1

(
Pji(zj(t)− z̄(t))

)
+ z̄(t)− 1

n

n∑

j=1

gj(t) = z̄(t)− 1

n

n∑

j=1

gj(t), (6)

where the second equality follows from the double-stochasticity of P . The simple evolution (6) of
the averaged dual sequence allows us to avoid difficulties with the non-linearity of projection that
have been challenging in earlier work. Before proceeding with the proof of Theorem 1, we state a
few useful results regarding the convergence of the standard dual averaging algorithm [20].
Lemma 2 (Nesterov). Let {g(t)}∞t=1 ⊂ R

d be an arbitrary sequence and{x(t)}∞t=1 defined by the
updates (2). For a non-increasing sequence{α(t)}∞t=0 of positive stepsizes and anyx∗ ∈ X ,

T∑

t=1

〈g(t), x(t)− x∗〉 ≤ 1

2

T∑

t=1

α(t− 1) ‖g(t)‖2∗ +
1

α(T )
ψ(x∗).

Our second lemma allows us to restrict our analysis to the sequence{y(t)}∞t=0 defined previously.
Lemma 3. Consider sequences{xi(t)}∞t=1, {zi(t)}∞t=0, and{y(t)}∞t=0 that evolve according to (4).
Then for eachi ∈ V and anyx∗ ∈ X , we have

T∑

t=1

f(xi(t))− f(x∗) ≤
T∑

t=1

f(y(t))− f(x∗) + L

T∑

t=1

α(t) ‖z̄(t)− zi(t)‖∗ .

Now we give the proof of the first theorem.

Proof of Theorem 1: Our proof is based on analyzing the sequence{y(t)}∞t=0. For anyx∗ ∈ X ,
T∑

t=1

f(y(t))− f(x∗) =
T∑

t=1

1

n

n∑

i=1

fi(xi(t))− f(x∗) +
T∑

t=1

1

n

n∑

i=1

[fi(y(t))− fi(xi(t))]

≤ 1

n

T∑

t=1

n∑

i=1

fi(xi(t))− f(x∗) +
T∑

t=1

n∑

i=1

L

n
‖y(t)− xi(t)‖ , (7)
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by theL-Lipschitz continuity of thefi. Lettinggi(t) ∈ ∂fi(xi(t)) be a subgradient offi atxi(t),

1

n

T∑

t=1

n∑

i=1

fi(xi(t))− fi(x
∗) ≤

n∑

i=1

〈gi(t), y(t)− x∗〉+
n∑

i=1

〈gi(t), xi(t)− y(t)〉 . (8)

By definition of z̄(t) andy(t), we havey(t) = argminx∈X { 1
n

∑t−1
s=1

∑n
i=1 〈gi(s), x〉+ 1

α(t)ψ(x)}.
Thus, we see that the first term in the decomposition (8) can bewritten in the same way as the bound
in Lemma 2, and as a consequence, we have the bound

1

n

T∑

t=1

〈 n∑

i=1

gi(t), y(t)− x∗
〉

≤ L2

2

T∑

t=1

α(t− 1) +
1

α(T )
ψ(x∗). (9)

It remains to control the final two terms in the bounds (7) and (8). Since‖gi(t)‖∗ ≤ L by assump-
tion, we use theα-Lipschitz continuity of the projectionΠψX (·, α) [9, Theorem X.4.2.1] to see

T∑

t=1

n∑

i=1

L

n
‖y(t)− xi(t)‖+

1

n

T∑

t=1

n∑

i=1

〈gi(t), xi(t)− y(t)〉 ≤ 2L

n

T∑

t=1

n∑

i=1

‖y(t)− xi(t)‖

=
2L

n

T∑

t=1

n∑

i=1

∥∥∥ΠψX (−z̄(t), α(t))−ΠψX (−zi(t), α(t))
∥∥∥ ≤ 2L

n

T∑

t=1

n∑

i=1

α(t) ‖z̄(t)− zi(t)‖∗ .

Combining this bound with (7) and (9) yields the running sum bound

T∑

t=1

[
f(y(t))−f(x∗)

]
≤ 1

α(T )
ψ(x∗)+

L2

2

T∑

t=1

α(t−1)+
2L

n

T∑

t=1

n∑

j=1

α(t) ‖z̄(t)− zj(t)‖∗ . (10)

Applying Lemma 3 to (10) gives that
∑T
t=1[f(xi(t))− f(x∗)] is upper bounded by

1

α(T )
ψ(x∗) +

L2

2

T∑

t=1

α(t− 1) +
2L

n

T∑

t=1

n∑

j=1

α(t) ‖z̄(t)− zj(t)‖∗ + L

T∑

t=1

α(t) ‖z̄(t)− zi(t)‖∗ .

Dividing both sides byT and using convexity off yields the bound in Theorem 1.

Proof of Theorem 2: For this proof sketch, we adopt the following notational conventions. For
ann × n matrixB, we call its singular valuesσ1(B) ≥ σ2(B) ≥ · · · ≥ σn(B) ≥ 0. For a real
symmetricB, we useλ1(B) ≥ λ2(B) ≥ . . . ≥ λn(B) to denote then real eigenvalues ofB. We let
∆n = {x ∈ R

n | x � 0,
∑n
i=1 xi = 1} denote then-dimensional probability simplex. We make

frequent use of the following inequality [10]: for any positive integert = 1, 2, . . . and anyx ∈ ∆n,

∥∥P tx− 11/n
∥∥
TV

=
1

2

∥∥P tx− 11/n
∥∥
1
≤ 1

2

√
n
∥∥P tx− 11/n

∥∥
2
≤ 1

2
σ2(P )

t
√
n. (11)

We focus on controlling the network error term in Theorem 1,L
n

∑T
t=1

∑n
i=1 α(t) ‖z̄(t)− zi(t)‖∗.

Define the matrixΦ(t, s) = P t−s+1. Let [Φ(t, s)]ji be entryj of columni of Φ(t, s). Then

zi(t+ 1) =

n∑

j=1

[Φ(t, s)]jizj(s)−
t∑

r=s+1

( n∑

j=1

[Φ(t, r)]jigj(r − 1)

)
− gi(t). (12)

Clearly the above reduces to the standard update (4) whens = t. Sincez̄(t) evolves simply as in
(6), we assume w.l.o.g. thatzi(0) = 0 and use (12) to see

zi(t)− z̄(t) =

t−1∑

s=1

n∑

j=1

(1/n− [Φ(t− 1, s)]ji)gj(s− 1) +

(
1

n

n∑

j=1

(gj(t− 1)− gi(t− 1))

)
. (13)
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We use the fact that‖gi(t)‖∗ ≤ L for all i andt and (13) to see that

‖z̄(t)− zi(t)‖∗ =

∥∥∥∥
t−1∑

s=1

n∑

j=1

(1/n− [Φ(t− 1, s)]ji)gj(s− 1) +

(
1

n

n∑

j=1

gj(t− 1)− gi(t− 1)

)∥∥∥∥
∗

≤
t−1∑

s=1

n∑

j=1

‖gj(s− 1)‖∗ |(1/n)− [Φ(t− 1, s)]ji|+
1

n

n∑

i=1

‖gj(t− 1)− gi(t− 1)‖∗

≤
t−1∑

s=1

L ‖[Φ(t− 1, s)]i − 11/n‖1 + 2L. (14)

Now we break the sum in (14) into two terms separated by a cutoff point t̂. The first term consists
of “throwaway” terms, that is, timestepss for which the Markov chain with transition matrixP
has not mixed, while the second consists of stepss for which ‖[Φ(t− 1, s)]i − 11/n‖1 is small.
Note that the indexing onΦ(t − 1, s) = P t−s+1 implies that for smalls, Φ(t − 1, s) is close to
uniform. From the inequality (11), we have‖[Φ(t, s)]j − 11/n‖1 ≤ √

nσ2(P )
t−s+1. Hence, if

t − s ≥ log ǫ−1

log σ2(P )−1 − 1, then we are guaranteed‖[Φ(t, s)]j − 11/n‖1 ≤ √
nǫ. Thus, by setting

ǫ−1 = T
√
n, for t − s + 1 ≥ log(T

√
n)

log σ2(P )−1 , we have‖[Φ(t, s)]j − 11/n‖1 ≤ 1
T . For largers, we

simply have‖[Φ(t, s)]j − 11/n‖1 ≤ 2. The above suggests that we split the sum att̂ = log T
√
n

log σ2(P )−1 .

Sincet− 1− (t− t̂) = t̂ and there are at mostT steps in the summation,

‖z̄(t)− zi(t)‖∗ ≤ L

t−1∑

s=t−t̂

‖Φ(t− 1, s)ei − 11/n‖1 + L

t−1−t̂∑

s=1

‖Φ(t− 1, s)ei − 11/n‖1 + 2L

≤ 2L
log(T

√
n)

log σ2(P )−1
+ 3L ≤ 2L

log(T
√
n)

1− σ2(P )
+ 3L. (15)

The last inequality follows from the concavity oflog(·), sincelog σ2(P )−1 ≥ 1− σ2(P ).

Combining (15) with the running sum bound in (10) of the proofof the basic theorem, Theorem 1,
we find that forx∗ ∈ X ,

T∑

t=1

f(y(t))− f(x∗) ≤ 1

α(T )
ψ(x∗) +

L2

2

T∑

t=1

α(t− 1) + 6L2
T∑

t=1

α(t) + 4L2 log(T
√
n)

1− σ2(P )

T∑

t=1

α(t).

Appealing to Lemma 3 allows us to obtain the same result on thesequencexi(t) with slightly
worse constants. Since

∑T
t=1 t

−1/2 ≤ 2
√
T − 1, using the assumption thatψ(x∗) ≤ R2, bounding

f(x̂i(T )) ≤ 1
T

∑T
t=1 f(xi(t)), and settingα(t) as in the theorem statement completes the proof.

5 Simulations

In this section, we report experimental results on the network scaling behavior of the distributed
dual averaging algorithm as a function of the graph structure and number of processorsn. These
results illustrate the excellent agreement of the empirical behavior with our theoretical predictions.
For all experiments reported here, we consider distributedminimization of a sum of hinge losses.
We solve a synthetic classification problem, in which we are given n pairs of the form(ai, yi) ∈
R
d×{−1,+1}, whereai ∈ R

d corresponds to a feature vector andyi ∈ {−1,+1} is the associated
label. Given the shorthand notation[c]+ := max{0, c}, the hinge loss associated with a linear
classifier based onx is given byfi(x) = [1− yi 〈ai, x〉]+. The global objective is given by the sum
f(x) := 1

n

∑n
i=1 [1− yi 〈ai, x〉]+. SettingL = maxi ‖ai‖2, we note thatf is L-Lipschitz and

non-smooth at any point with〈ai, x〉 = yi. As is common, we impose a quadratic regularization,
choosingX = {x ∈ R

d | ‖x‖2 ≤ 5}. Then for a given graph sizen, we form a random instance
of this SVM classification problem. Although this is a specific ensemble of problems, we have
observed qualitatively similar behavior for other problemclasses. In all cases, we use the optimal
setting of the step sizeα specified in Theorem 2 and Corollary 1.
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Figure 2. Plot of the function error ver-
sus the number of iterations for a grid
graph. Each curve corresponds to a grid
with a different number of nodes (n ∈
{225, 400, 600}). As expected, larger
graphs require more iterations to reach
a pre-specified toleranceǫ > 0, as de-
fined by the iteration numberT (ǫ;n).
The network scaling problem is to de-
termine howT (ǫ;n) scales as a func-
tion of n.
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Figure 3. Each plot shows the number of iterations required to reach a fixed accuracyǫ (vertical axis)
versus the network sizen (horizontal axis). Panels show the same plot for different graph topologies:
(a) single cycle; (b) two-dimensional grid; and (c) bounded degree expander.

Figure 2 provides plots of the function errormaxi[f(x̂i(T )−f(x∗)] versus the number of iterations
for grid graphs with a varying number of nodesn ∈ {225, 400, 625}. In addition to demonstrating
convergence, these plots also show how the convergence timescales as a function of the graph size.
We also experimented with the algorithm and stepsize suggested by previous analyses [21]; the
resulting stepsize is so small that the method effectively jams and makes no progress.

In Figure 3, we compare the theoretical predictions of Corollary 1 with the actual behavior of dual
subgradient averaging. Each panel shows the functionTG(ǫ;n) versus the graph sizen for the fixed
valueǫ = 0.1; the three different panels correspond to different graph types: cycles (a), grids (b) and
expanders (c). In the panels, each point on the solid blue curve is the average of20 trials, and the
bars show standard errors. For comparison, the dotted blackline shows the theoretical prediction.
Note that the agreement between the empirical behavior and theoretical predictions is excellent in
all cases. In particular, panel (a) exhibits the quadratic scaling predicted for the cycle, panel (b)
exhibits the the linear scaling expected for the grid, and panel (c) shows that expander graphs have
the desirable property of having constant network scaling.

6 Conclusions

In this paper, we have developed and analyzed an efficient algorithm for distributed optimization
based on dual averaging of subgradients. In addition to establishing convergence, we provided
a careful analysis of the algorithm’s network scaling. Our results show an inverse scaling in the
spectral gap of the graph, and we showed that this predictionis tight in general via a matching
lower bound. We have implemented our method, and our simulations show that these theoretical
predictions provide a very accurate characterization of its behavior. In the extended version of this
paper [4], we also show that it is possible to extend our algorithm and analysis to the cases in which
communication is random and not fixed, the algorithm receives stochastic subgradient information,
and for minimization of composite regularized objectives of the formf(x) + ϕ(x).

Acknowledgements: JCD was supported by an NDSEG fellowship and Google. AA was sup-
ported by a Microsoft Research Fellowship. In addition, AA was partially supported by NSF grants
DMS-0707060 and DMS-0830410. MJW and AA were partially supported by AFOSR-09NL184.
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A Proof of Corollary 1

In order to prove the convergence rates, we relate our choiceof P to a well-known quantity in spec-
tral graph theory, specifically, the graph Laplacian [3]. Recall the definition ofA as the symmetric
adjacency matrix of the undirected graphG, the degree of nodei asδi = |N(i)| =

∑n
j=1Aij ,

and the diagonal matrixD = diag{δ1, . . . , δn}. We assume that the graph is connected, so that
δi ≥ 1 for all i andD is invertible. The(normalized) graph Laplacianis given byL(G) =
I−D−1/2AD−1/2, a matrix which is always symmetric, positive semidefinite,and satisfiesL11 = 0.
Therefore, when the graph is degree-regular (δi = δ for all i ∈ V ), the standard random walk with
self loops onG given by the matrixP := I − δ

δ+1L is doubly stochastic and is valid for our theory.
For non-degree regular graphs, we make the minor modification as in (5) to obtain

Pn(G) := I − 1

δmax + 1

(
D −A

)
= I − 1

δmax + 1
D1/2LD1/2. (16)

As noted earlier,Pn(G) is doubly stochastic, and if the graph isδ-regular, thenPn(G) is simply
(I +A)/(δ + 1). The remainder of the corollary is based on bounding the spectral gap ofPn(G).

Lemma 4. The matrixP satisfiesσ2(Pn(G)) ≤ max
{
1− mini δi

δmax+1λn−1(L), δmax

δmax+1λ1(L)− 1
}

.

Proof By a theorem of Ostrowski on congruent matrices (cf. Theorem4.5.9, [10]), we have

λk(D
1/2LD1/2) ∈

[
min
i
δiλk(L),max

i
δiλk(L)

]
. (17)

Since L11 = 0, we haveλn(L) = 0, and so it suffices to focus onλ1(D1/2LD1/2) and
λn−1(D

1/2LD1/2). From the definition (16), the eigenvalues ofP are of the form1 − (δmax +
1)−1λk(D

1/2LD1/2). The bound (17) coupled with the fact that all the eigenvalues ofL are non-
negative implies thatσ2(P ) = maxk<n

{∣∣1 − (δmax + 1)−1λk(D
1/2LD1/2)

∣∣} is upper bounded
by the larger of1− δmin

δmax+1λn−1(L) and δmax

δmax+1λ1(L)− 1.

Computing the upper bound in Lemma 4 requires controllingλn−1(L) andλ1(L). To circumvent
this complication, we use the well-known idea of a lazy random walk [3, 14], in which we replace
by P by 1

2 (I + P ). The resulting symmetric matrix has the same eigenstructure asP , moreover,

σ2

(1
2
(I + P )

)
= λ2

(
I − 1

2(δmax + 1)
D1/2LD1/2

)
≤ 1− δmin

2(δmax + 1)
λn−1(L). (18)

Consequently, it is sufficient to bound onlyλn−1(L). The convergence rate implied by the lazy ran-
dom walk through Theorem 2 is no worse than twice that of the original walk, which is insignificant
for the analysis in this paper. The remainder of the proof involves exploiting results from spectral
graph theory [3] in order to control the eigenvalues of the Laplacian.

Cycles and paths: Recall the regulark-connected cycle from Figure 1(a), constructed by placing
then nodes on a circle and connecting every node tok neighbors on the right and left. For this
graph, the LaplacianL is a circulant matrix with diagonal entries1 and off-diagonal non-zero entries
−1/2k. Using known results on circulant matrices [2, 6], we find that λn−1(L) = Θ

(
k2

n2

)
for

k = o(n). For the regulark-connected path, by computing Cheeger constants [3, Chapter 2] we
find that if k ≤ √

n, thenλn−1(L) = Θ(k2/n2). Note also that for thek-connected path onn
nodes,mini δi = k andδmax = 2k. Thus, we can combine the above with Lemma 4 to see that for
regulark-connected paths or cycles withk ≤ √

n, σ2(P ) = 1−Θ
(
k2

n2

)
. Substituting the bound into

Theorem 2 yields the claim of Corollary 1(a).

Regular grids: Now consider the case of a
√
n-by-

√
n grid, focusing in particular on regular

k-connected grids, in which any node is joined to every node that is fewer thank horizontal or
vertical edges away in an axis-aligned direction. In this case, we use results on Cartesian products
of graphs [3, Section 2.6] to analyze the eigen-structure ofthe Laplacian. In particular, the

√
n-

by-
√
n k-connected grid is simply the Cartesian product of two regular k-connected paths of

√
n

nodes. The second smallest eigenvalue of a Cartesian product of graphs is half the minimum of
second-smallest eigenvalues of the original graphs [3, Theorem 2.13]. Thus, based on the preceding
discussion ofk-connected cycles, we conclude that ifk ≤ n1/4, then we haveλn−1(L) = Θ(k2/n),
and we use Lemma 4 and (18) to see that the result in Corollary 1(b) immediately follows.

10



Random geometric graphs: Using the proof of Lemma 10 from Boyd et al. [2], we see that for

anyǫ > 0, if r =
√
log1+ǫ n/(nπ), then with probability at least1− 2/nc−1,

min
i
δi ≥ log1+ǫ n−

√
2c log n and max

i
δi ≤ log1+ǫ n+

√
2c log n. (19)

Thus, lettingL be the graph Laplacian of a random geometric graph, if we can boundλn−1(L), (19)
coupled with Lemma 4 will control the convergence rate of ouralgorithm.

Von Luxburg et al. [23] give concentration results on the second-smallest eigenvalue of a geometric
graph. In particular, their Theorem 3 says that ifr = ω(

√
log n/n), then with exceedingly high

probability,λn−1(L) = Ω(r). Using (19), we see that forr = (log1+ǫ n/n)1/2, the ratiomini δi
maxi δi

=

Θ(1) andλn−1(L) = Ω
(
log1+ǫ n

n

)
with high probability. Combining this with Lemma 4 and (18),

we haveσ2(P ) = 1− Ω
(
log1+ǫ n

n

)
, the desired result of Corollary 1(c).

Expanders: The constant spectral gap in expanders [3, Chapter 6] removes any penalty due to
network communication (up to logarithmic factors) and hence yields Corollary 1(d).

B Proof of Proposition 1

The proof is based on construction of a set of objective functions fi that force convergence to be
slow by using the second eigenvector of the communication matrix P . Recall that11 ∈ R

n is the
eigenvector ofP corresponding to its largest eigenvalue (equal to1). Let v ∈ R

n be the eigenvector
of P corresponding to its second singular value,σ2(P ). By using the lazy random walk (see Sec. A
and (18)), we may assume without loss of generality thatλ2(P ) = σ2(P ). Let w = v

‖v‖
∞

be a

normalized version of the second eigenvector ofP , and note that
∑n
i=1 wi = 0. Without loss of

generality, we assume that there is an indexi for whichwi = −1 (otherwise we can flip signs in
what follows); by re-indexing as needed, we can assume thatw1 = −1. We setX = [−1, 1] ⊂ R

and define the univariate functionsfi(x) := (c+ wi)x. The global problem is then to minimize

1

n

n∑

i=1

fi(x) =
1

n

n∑

i=1

(c+ wi)x = cx

for some constantc > 0 to be chosen. Note that eachfi is c+ 1-Lipschitz. By construction, we see
immediately thatx∗ = −1 is optimal for the global problem.

Consider the evolution of the{z(t)}∞t=0 ⊂ R
n, as generated by the update (4). By construction, we

havegi(t) = c+wi for all t. Defining the vectorg = (c11+w) ∈ R
n, we recall thatP11 = 11 to see

z(t+ 1) = Pz(t)− g = P 2z(t− 1)− Pg − g = · · · = −
t∑

τ=0

P τg

= −
t−1∑

τ=0

P τ (w + c11) = −
t−1∑

τ=0

P τw − ct11 = −
t−1∑

τ=0

σ2(P )
τw − ct11. (20)

In order to establish a lower bound, it suffices to show that atleast one node is far from the optimum
aftert steps, and we focus on node1. Sincew1 = −1, the evolution (20) guarantees that

z1(t+ 1) =

t−1∑

τ=0

σ2(P )
τ − ct =

1− σ2(P )
t−1

1− σ2(P )
− ct. (21)

Recalling thatψ(x) = 1
2x

2 for this scalar setting, we have

xi(t+ 1) = argmin
x∈X

{
− zi(t+ 1)x+

1

2α(t)
x2

}
= argmin

x∈X

{
(x− α(t)zi(t+ 1))2

}

Hencex1(t) is the projection ofα(t)z1(t+ 1) onto[−1, 1], and unlessz1(t) < 0 we have
f(x1(t))− f(−1) ≥ c > 0.

If t is overly small, the relation (21) will guarantee thatz1(t) ≥ 0, so thatx1(t) is far from the
optimum. If we choosec ≤ 1/3, then a little calculation with (21) shows that we requiret =
Ω((1− σ2(P ))

−1) in order to drivez1(t) below zero.
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