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Abstract

The goal of decentralized optimization over a network isgtiroize a global ob-

jective formed by a sum of local (possibly nonsmooth) conftections using

only local computation and communication. We develop aralyae distributed

algorithms based on dual averaging of subgradients, anddersharp bounds on
their convergence rates as a function of the network sizeé@maogy. Our anal-
ysis clearly separates the convergence of the optimizatigorithm itself from

the effects of communication constraints arising from thework structure. We
show that the number of iterations required by our algorigtales inversely in
the spectral gap of the network. The sharpness of this gredis confirmed both
by theoretical lower bounds and simulations for variousvoeks.

1 Introduction

Network-structured optimization problems arise in a \grigf application domains within the in-
formation sciences and engineering. A canonical exampedtises in machine learning is the
problem of minimizing a loss function averaged over a largeset (e.g/ 116, 17]). With terabytes
of data, it is desirable (even necessary) to assign smallesess of the data to different proces-
sors, and the processors must communicate to find parantederainimize the loss over the entire
dataset. Problems such as multi-agent coordination, astimproblems in sensor networks, and
packet routing also are all naturally cast as distributetver minimization[[1, 13, 24]. The seminal
work of Tsitsiklis and colleagues [P2] 1] analyzed algarithfor minimization of a smooth func-
tion f known to several agents while distributing processing ofijgonents of the parameter vector
x € R™. More recently, a few researchers have shifted focus tol@nabin which each processor
locally has its own convex (potentially non-differentiapbbjective function[18, 1%, 21, 11].

In this paper, we provide a simple new subgradient algoriibmalistributed constrained optimiza-
tion of a convex function. We refer to it aglaal averaging subgradient methaince it is based on
maintaining and forming weighted averages of subgraditbntsighout the network. This approach
is essentially different from previously developed dtsited subgradient methods [18] 15] 21, 11],
and these differences facilitate our analysis of netwoelisg issues—how convergence rates de-
pend on network size and topology. Indeed, the second maimiloation of this paper is a careful
analysis that demonstrates a close link between convezganihe algorithm and the underlying
spectral properties of the network. The convergence ratea flifferent algorithm given by the
papers|[[18, 15] grow exponentially in the number of nodes the network. Ram et al_[21] pro-
vide tighter analysis that yields convergence rates thalestubically in the network size, but are
independent of the network topology. Consequently, thealysis does not capture the intuition
that distributed algorithms should converge faster on fxwehnected” networks—expander graphs
being a prime example—than on poorly connected networks, @gins or cycles). Johansson et
al. [11] analyze a low communication peer-to-peer protticat attains rates dependent on network
structure. However, in their algorithm only one node hasraeci parameter value, while all nodes
in our algorithm maintain good estimates of the optimum btimes. This is important in online



or streaming problems where nodes are expected to act oeagswries in real-time. In additional
comparison to previous work, our analysis yields netwoediag terms that are often substantially
sharper. Our development yields an algorithm with convecgerate that scales inversely in the
spectral gap of the network. By exploiting known results peciral gaps for graphs with nodes,
we show that our algorithm obtains aroptimal solution inO(n?/?) iterations for a single cycle
or path,O(n/€?) iterations for a two-dimensional grid, ad¥{(1/¢?) iterations for a bounded degree
expander graph. Simulation results show excellent agreewith these theoretical predictions.

2 Problem set-up and algorithm

In this section, we provide a formal statement of the digteld minimization problem and a de-
scription of the distributed dual averaging algorithm.

Distributed minimization: We consider an optimization problem based on functionsatedis-
tributed over a network. More specifically, I6t = (V, E) be an undirected graph over the vertex
setV = {1,2,...,n} with edge setf C V x V. Associated with each € V is convex func-
tion f; : RY — R, and our overarching goal is to solve the constrained optitiin problem
mingex + >, fi(z), whereX is a closed convex set. Each functiinis convex and hence sub-
differentiable, but need not be smooth. We assume with@st &b generality that € X, since we
can simply translat&’. Each nodé € V' is associated with a separate agent, and each agein-
tains its own parameter vectef € R?. The graphG imposes communication constraints on the
agents: in particular, agenihas local access to only the objective functjprand can communicate
directly only with its immediate neighboyse N (i) :={j € V | (4,7) € E}.

A concrete motivating example for these types of problenthiésmachine learning scenario de-
scribed in Sectiofl1. In this case, the &eis the parameter space of the learner. Each fungtiom
the empirical loss over the subset of data assigned to mocgsnd the averagg is the empirical
loss over the entire dataset. We use cluster computing asodel, so each processor is a node in
the cluster and the grapghi contains edges between processors connected with sneaities; this
setup avoids communication bottlenecks of architectuigsawentralized master node.

Dual averaging: Our algorithm is based on a dual averaging algorithm [20}f@mimization of
a (potentially nonsmooth) convex functighsubject to the constraint that € X'. We begin by
describing the standard version of the algorithm. The duelaging scheme is based opraximal
functiony : R — R assumed to be strongly convex with respect to a nimmore precisely,

U(y) > P(x)+(Vo(z),y —2)+ 3 ||z — y|* forall 2,y € X. We assume w.l.0.g. that> 0 on X
and that/(0) = 0. Such proximal functions include the canonical quadratic) = 1 ||x||§, which
is strongly convex with respect to tlig-norm, and the negative entropyz) = Z;l:l x;log x;—x;,
which is strongly convex with respect to thenorm forz in the probability simplex.

We assume that each functignis L-Lipschitzwith respect to the same norjfi|—that is,

[file) = fily)| < Lz =yl fora,yeX. 1)

Many cost functionsf; satisfy this type of Lipschitz condition, for instance, ger functions on
a compact domaiik’ or any polyhedral function on an arbitrary domdih [8]. Thedghitz condi-
tion (@) implies that for any: € X and any subgradient € Jf;(x), we have||g;||, < L, where
|||, denotes thelual normto |[|-||, defined byj[v|[, := supy,j=1 (v, u).

The dual averaging algorithm generates a sequence ofitdrelt), z(t) } 22, contained withint’ x
R?. At time stept, the algorithm receives a subgradigiit) € df(x(t)), and updates

2(t4+1)=z2(t) —gt) and  z(t+1) =52+ 1),a(t)). 2)
Here{a(t)}2, is a non-increasing sequence of positive stepsizes and
1
Hi(z, Q) = argmin{ (z,z) + 1/)(:17)} (©)]
TEX a

is a type of projection. Intuitively, given the current &ée (x(¢), z(t)), the next iterate:(t 4+ 1)
to chosen to minimize an averaged first-order approximatahe functionf, while the proximal



function+) and stepsize:(t) > 0 enforce that the iterates:(¢) } 72, do not oscillate wildly. The al-
gorithm is similar to the follow the perturbed/regularidedder algorithms developed in the context
of online learning([1R], though in this form the algorithreses to be originally due to Nesterav [20].
In Sectiorl#, we relate the above procedure to the distiibaigorithm we now describe.

Distributed dual averaging: Here we consider a novel extension of dual averaging to tke di
tributed setting. For all timels each node € V maintains a pair of vector; (t), z;(t)) € X x R,

At iterationt, nodei computes a subgradient(t) € 0 f;(z;(t)) of the local functionf; and receives
{#;(t), j € N(4)} fromits neighbors. Its update of the current estimate) is based on a weighted
average of these parameters. To model the proces3,4eR™*" be a doubly stochastic symmetric
matrix with P;; > 0 only if (i, ) € E wheni # j. Thus} >\ | P;; = 3 .y Py = 1 for all
ieVand) ! P,= Yien( Fij = 1forall j € V. Given anon-increasing sequer{eg(t) } 2,

of positive stepsizes, each node V' updates

Zl t—|— 1 Z 127 gz(t)7 and xz(t + 1) = H)(/)((_Zz(t + 1)7 Oé(t)), (4)
JEN (i)

where the projectiorﬂ’f’v was defined in[{3). In words, nodecomputes the new dual parameter
z;(t+1) from a weighted average of its own subgradigtit) and the parametefs;(¢),j € N (i)}

in its neighborhood; it then computes the local iteratg + 1) by a proximal projection. We show
convergence of the local sequeniee (t)}£°, to an optimum of the global objective via thecal

averagez;(T) = 7 Zle z;(t), which can evidently be computed in a decentralized manner.

3 Main results and consequences

We will now state the main results of this paper and illugtisdme of their consequences. We give
the proofs and a deeper investigation of related coroatdength in the sections that follow.

Convergence of distributed dual averaging: We start with a result on the convergence of the
distributed dual averaging algorithm that provides a dgusition of the error into an optimization
term and the cost associated with network communicationrder to state this theorem, we define
the averaged dual variabiét) := L " | z;(t), and we recall the local time-averaggT').

Theorem 1 (Basic convergence resultiziven a sequencgr; (t)}52, and {z;(t)}$2, generated by
the updated{4) with step size sequefeé&)}:°,, for each node € V and anyz* € X, we have

P = 1) € ) + 5 D alt = 1) 4 5 mon Z 0=zl

)

Theoreni ]l guarantees that afésteps of the algorithm, every nodes V has access to a locally

defined quantityz;(7") such that the differencé(z;(7")) — f(z*) is upper bounded by a sum of

three terms. The first two terms in the upper bound in the #raa@re optimization error terms that

are common to subgradient algorithms. The third term is @mafty incurred due to having different

estimates at different nodes in the network, and it meagheesdeviation of each node’s estimate
of the average gradient from the true average gradient. ,‘TToughly, Theorenll ensures that as
long the bound on the deviatidfz(t) — z;(t)||, is tight enough, for appropriately chosef) (say

a(t) ~ 1/4/1), the error ofz;(T) is small uniformly across all nodésc V.

Convergenceratesand network topology: We now turn to investigation of the effects of network
topology on convergence rates. In this sedflame assume that the network topology is static and
that communication occurs via a fixed doubly stochastic tteigatrix P at every round. Sinc®

is symmetric and stochastic, it has largest singular valyé) = 1. As the following result shows,
the convergence of our algorithm is controlled by $pectral gapy(P) := 1 — o2(P) of P.

Theorem 2 (Rates based on spectral gap)nder the conditions and notation of Theorlem 1, suppose

moreover that)(z*) < R?. With step size choice(t) = Rivi;;;“’), we have

RL log(Tf)

\F V1 —=o0a(P

We can weaken these conditions; see the long version of this papetéosins to randon? [4].

[(@(T)) — f(z) < foralli e V.




(b)
Figure 1. (a) A 3-connected cycle. (b)-connected two-dimensional grid with non-toroidal boundary
conditions. (c) A random geometric graph. (d) A random 3-regulpaeger graph.

(d)

This theorem establishes a tight connection between theeogence rate of distributed subgradient
methods and the spectral properties of the underlying nktwdhe inverse dependence on the
spectral gag — o2(P) is quite natural, since it is well-known to determine thesadf mixing in
random walks on graphsiL4], and the propagation of infoimnah our algorithm is integrally tied
to the random walk on the underlying graph with transitioolqabilities specified by’. Johansson
etal. [11] establish rates for their Markov incrementatdigat method (MIGD) of,/nT';; /T, where
I'=(I—P+11T/n)~!; performing an eigen-decomposition of thenatrix shows that/nT; is
always lower bounded by/+/1 — o2 (P), our bound in Theorefi 2.

Using Theorenil2, one can derive explicit convergence rateseveral classes of interesting net-
works, and Figurgl1l illustrates four graph topologies céiiast. As a first example, tikeconnected
cycle in panel (a) is formed by placingnodes on a circle and connecting each node tb iteigh-
bors on the right and left. The grid (panel (b)) is obtaineccbgyinecting nodes to thelr nearest
neighbors in axis-aligned directions. In panel (c), we slacsandom geometric graph, constructed
by placing nodes uniformly at random j, 1> and connecting any two nodes separated by a dis-
tance less than some radius> 0. These graphs are often used to model the connectivityrpatte
of distibruted devices such as wireless sensor mbies [fRlliyj panel (d) shows an instance of a
bounded degree expander, which belongs to a special clagsaofe graphs that have very good
mixing properties[[B]. For many random graph models, a gipsample is an expander with high
probability (e.g. random degree regular graphs [5]). Inittaiu there are several deterministic con-
structions of expanders that are degree regular (see 8é&c8mf Chung[[B] for further details).

In order to state explicit convergence rates, we need toifype@articular choice of the matrix

P that respects the graph structure. lLete R™ " be the symmetric adjacency matrix of the
undirected grapltz, satisfyingA4,; = 1 when(s,j) € E andA;; = 0 otherwise. For each node
i€V, lets; = |N(i)| = >7_, Ai; denote the degree of nodeand define the diagonal matrix

D = diag{01,...,d,}. Lettingdmax = max;cy 0; denote the maximum degree, we define
1
P, =] ———(D—-A), 5
(@) 1P 4) ®)

which is symmetric and doubly stochastic by constructiohe Tollowing result summarizes our
conclusions for the choicgl(5) of stochastic matrix foreliént network topologies. We state the re-
sults in terms of optimization error achieved affeiterations and the number of iteratiofig (¢; n)
required to achieve errerfor network typeG with n nodes. (These are equivalent statements.)
Corollary 1. Under the conditions of Theordm 2, usiRg= P, (G) gives the following rates.

(@) k-connected paths and cycleg(z;(T)) — f(z*) = O(% nloen)) 7 (e;n) = O(n?/e2).

(b) k-connected,/n x /n grids: f(&:(T)) — f(a*) = O(LL VML) () = O(n/e?).

(c) Random geometric graphs with connectivity radius= Q(y/log**“n/n) for anye > 0:
f(@(T)) — f(z*) = O(EL " log(T'n)) with high-probability, T (¢; n) = O(n/e?).

T logn

(d) Expanders with bounded ratio of minimum to maximum nodegres:
F@(T) = fz*) = O(I2 log(Tn)), T(e;n) = O(1/€).

4



By comparison, the results in the paperl[11] give similar fmsufor grids and cycles, but for
d-dimensional grids we hav&(e;n) = O(n?/?/e?) while MIGD achievesT (e;n = O(n/e?);
for expanders and the complete graph MIGD achiévgsn) = O(n/€?). We provide the proof of
Corollary[d in AppendixZA. Up to logarithmic factors, the apization term in the convergence rate
is always of the ordeRL/+/T, while the remaining terms vary depending on the networklgy.

In general, Theoreil 2 implies that at m@$f(e; n) = O( - 1—,7p.1ayy) iterations are required
to achieve ar-accurate solution when using the matf?g(G) defined in[(b). It is interesting to
ask whether this upper bound is actually tight. On one hang, known that even for central-
ized optimization algorithms, any subgradient method ireglat leasf ( ) iterations to achieve
e-accuracy[[19], so that the/e? term is unavoidable. The next proposition addresses thglesm
mentary issue, namely whether the inverse spectral gapiseumavoidable for the dual averaging
algorithm. For the quadratic proximal functier(z) = 1 \|x||§, the following result establishes a
lower bound on the number of iterations in terms of graph lmgppand network structure:
Proposition 1. Consider the dual averaging algorithra] (4) with quadratiogimal function and
communication matrix’, (G). For any graphG with n nodes, the number of iteratioff%; (¢; n)

required to achieve a fixed accuracy> 0 is lower bounded a8 (c;n) = Q(m)

The proof of this result, given in AppendiX B, involves camsting a “hard” optimization problem
and lower bounding the number of iterations required foralgorithm to solve it. In conjunction
with Corollary[d, Propositiofi]1 implies that our predicteetwork scaling is sharp. Indeed, in
Sectior b, we show that the theoretical scalings from Carpll—namely, quadratic, linear, and
constant in network size—are well-matched in simulations of our algorithm.

4  Proof sketches

Setting up the analysis:  Using techniques similar to some past wdrk]|[18], we estaldmnver-
gence via the two sequence@) := 1 3" | z;(¢) andy(t) := H’ff(fz(t), «). The average sum of
gradientsz(¢) evolves in a very simple way: in particular, we have

n n n n
1

_ 1 _
2641 = SN (Prlas(6) — 20) +2(0) — = S g (0) = 2(0) - D g5(0). (©)
i=1 j=1 j=1 j=1
where the second equality follows from the double-stodtiagof P. The simple evolutiorn{6) of
the averaged dual sequence allows us to avoid difficultiéis thie non-linearity of projection that
have been challenging in earlier work. Before proceedirt tie proof of Theorerfl 1, we state a
few useful results regarding the convergence of the stardisal averaging algorithm [20].

Lemma 2 (Nesterov) Let{g(¢)}$,  R< be an arbitrary sequence and:(t)}:°, defined by the
updates[(R). For a non-increasing sequeredt) } 2, of positive stepsizes and any € X,

S lolt). (1) - %Zawlwn+77<>

t=1

Our second lemma allows us to restrict our analysis to theesame{y(¢)};2, defined previously.

Lemma 3. Consider sequences; (t)}2,, {z:(¢) }52,, and{y(¢) }52, that evolve according t¢14).
Then for eachi € V and anyxz* € X', we have

Do flat) = f@) <D fy@) = f@) + LY alt) |2) -z, -
t=1 t=1 t=1

Now we give the proof of the first theorem.

Proof of Theorem[X Our proof is based on analyzing the seque{y(e)};’oo For anyz™ € X,

Zf(y(t)) - f(= Z Zfz w(t +Z Z fily —fi xz( ))]
T n
ZZﬁ(Iz(t +ZZ ly(t) —z: (@), ()

t=1 i=1 t=1 i=1

IN
SRS



by the L-Lipschitz continuity of thef;. Lettingg;(t) € 0f;(x;(t)) be a subgradient of; atz;(t),

n

T n n
ESOS Rw0) ~ Fiet) < 3 a0, (0) — a7) + Y (os0) milt) — y(0) . ()

t=1 i=1 i=1 i=1

By definition of (t) andy(t), we havey(t) = argmin, ¢ {2 3021 S50 | (gi(s), z) + (@)}
Thus, we see that the first term in the decomposifidn (8) camriteen in the same way as the bound
in Lemmd2, and as a consequence, we have the bound

1 T n . 12 T ) *
n;<;gi(t)’y(t)_x ><220¢(t—1)+am1/1(x ). )

t=1

It remains to control the final two terms in the bourlds (7) @)d 8ince||g;(¢)||, < L by assump-
tion, we use thev-Lipschitz continuity of the projectioﬁ[}"((-, a) [9, Theorem X.4.2.1] to see

T n
ZZ l(e) — Ol + = 523 (oule) walt) — (1) < 22573 le) — )]

t=1i=1 t=11i=1 t

2L \~ v - o L - & -

=Yy [ (—2(8), a(t) = Mg (=), a(0))|| < a3 - H ). -
t=1i=1 t=1 i=1

Combining this bound witH {7) anf](9) yields the running sunid

S [F(®) =] < S0+ 5 S alt=1)+2 303 a(t) [0 = 5 0, - (10)

t=1

Applying Lemmd3B to[(ID) gives th@le[f(x,- (t)) — f(x*)] is upper bounded by

n

2 T £l
)+ Y al =)+ 233 a) 2(0) 5 (0], +LZ JIED =zl

t=1 t=1j=1

Dividing both sides byl and using convexity of yields the bound in Theorei 1.

Proof of Theorem[Z For this proof sketch, we adopt the foIIowing notationalwamions. For
ann x n matrix B, we call its singular values,(B) > o2(B) > --- > 0,(B) > 0. For areal
symmetricB, we use\; (B) > X\2(B) > ... > \,(B) to denote the: real eigenvalues aB. We let
A, ={zeR" | z>0>", 2 =1} denote the:-dimensional probability simplex. We make
frequent use of the following inequality [1L0]: for any pogitintegert = 1,2,...and anyx € A,,,

1Pt~ Uil = 5 [P = 1nll, < S | Pla—1/nll, < Soa(P)V (11)

We focus on controlling the network error term in Theon%];:tT=1 S a)]2@) — 2],
Define the matrix (¢, s) = P'=*+1. Let[®(t, s)];; be entryj of columni of ®(¢, s). Then

n t n

st ) = Yozt - Y (LRt -0) a0, 02

j=1 r=s+1

Clearly the above reduces to the standard update (4) whert. Sincez(t) evolves simply as in
@), we assume w.l.0.g. that(0) = 0 and usel(I2) to see

t—1 n n

—2(t) =)D (1/n—[®(t—1,9)])g;(s — 1) + <i > (gt —1) = gilt — 1))>~ (13)

s=1j=1 j=1



We use the fact thalg; (¢)||, < L for all : andt and [I3) to see that

t—1 n

I20) = 50l = [ 3 0/m = 106~ 1 aldas(s = 1)+ ( Zgjt—l w—n)
t—1 n
<Y lyto = DI 10/m) = 000~ L)l + LSl -1 - st
<ZL|| (t—1,s)); — 1/n||, +2L. (14)

Now we break the sum ifi{14) into two terms separated by afopairft ¢. The first term consists
of “throwaway” terms, that is, timestepsfor which the Markov chain with transition matrik
has not mixed, while the second consists of stefier which ||[®(¢t — 1,s)]; — 1/n||, is small.
Note that the indexing o®(t — 1,s) = P!=**! implies that for smalk, ®(t — 1, s) is close to
uniform. From the inequality(11), we hayg®(t, s)]; — 1/n|, < /noo(P)!~t1. Hence, if

oge? i
t—s > mﬁw — 1, then we are guarantee(d® (¢, s)|; — 1/n||; < y/ne. Thus, by setting

el =Tynfort—s+1> %, we have||[®(t, s)]; — 1/n, < %. For largers, we
simply have||[®(t,s)]; — 1/n||, < 2. The above suggests that we split the surﬁat%.
Sincet — 1 — (t — t) = t and there are at mo%t steps in the summation,

t—1—1

2(t) — z:(t)||, < L Z @t —1,8)e; = U/nfl, + L > [|®(t —1,8)e; — 1/nl|; + 2L

s=t—t s=1
log(TV/n) log(T'/n)
Llog oo (P) p 3L < 2L S = P) + 3L. (15)

The last inequality follows from the concavity bfg(-), sincelog oo(P)~! > 1 — ao(P).

Combining [I5) with the running sum bound [n]10) of the probthe basic theorem, Theordrh 1,
we find that forz* € X,

a . 1 2 & log(T/n) w—
> S0~ 16 < i) + Do t—1+6LQZ )+ OV S a(),

t=1

Appealing to Lemmal3 allows us to obtain the same result onséwgiencer;(t) with slightly
worse constants Sin@:T t=1/2 < 24/T — 1, using the assumption tha{z*) < R?, bounding
[(@(T)) < & Zt 1 f(z:(t)), and settingx(t) as in the theorem statement completes the proof.

5 Simulations

In this section, we report experimental results on the n&kwgcoaling behavior of the distributed
dual averaging algorithm as a function of the graph strecamd number of processatis These
results illustrate the excellent agreement of the empikiehavior with our theoretical predictions.
For all experiments reported here, we consider distribotédmization of a sum of hinge losses.
We solve a synthetic classification problem, in which we avergn pairs of the form(a;,y;) €

RY x {—1,+1}, wherea; € R corresponds to a feature vector apds {1, +1} is the associated
label. Given the shorthand notatigej, := max{0,c}, the hinge loss associated with a linear
classifier based onis given by f;(z) = [1 — y; (a;, )], . The global objective is given by the sum
fl@) == 50" 1 —yi(a;, x)], . Settingl = max; [|a;||2, we note thatf is L-Lipschitz and
non-smooth at any point wittu;, ) = y;. As is common, we impose a quadratic regularization,
choosingt = {z € R? | ||z||, < 5}. Then for a given graph size, we form a random instance
of this SVM classification problem. Although this is a speciéinsemble of problems, we have
observed qualitatively similar behavior for other problelasses. In all cases, we use the optimal
setting of the step size specified in Theoreiil 2 and Corolldry 1.
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Figure2. Plot of the function error ver-
sus the number of iterations for a grid
graph. Each curve corresponds to a grid
with a different number of nodes:(c
{225,400, 600}). As expected, larger
graphs require more iterations to reach
a pre-specified toleranee> 0, as de-
fined by the iteration numbéF (e; n).
The network scaling problem is to de-
termine howT'(e; n) scales as a func-

" \\\\ tion of n.
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Figure 3. Each plot shows the number of iterations required to reach a fixedaayeugvertical axis)
versus the network size (horizontal axis). Panels show the same plot for different graphagpes:
(a) single cycle; (b) two-dimensional grid; and (c) bounded degtpareler.

Figurel2 provides plots of the function ernanx;[f(z;(T) — f(x*)] versus the number of iterations
for grid graphs with a varying number of nodess {225, 400,625}. In addition to demonstrating
convergence, these plots also show how the convergencetiahes as a function of the graph size.
We also experimented with the algorithm and stepsize stggds/ previous analyses [21]; the
resulting stepsize is so small that the method effectivaatyg and makes no progress.

In Figure[3, we compare the theoretical predictions of Garg[d with the actual behavior of dual
subgradient averaging. Each panel shows the fun@figfa; n) versus the graph sizefor the fixed
valuee = 0.1; the three different panels correspond to different grgpks: cycles (a), grids (b) and
expanders (c). In the panels, each point on the solid blueedarthe average df trials, and the
bars show standard errors. For comparison, the dotted bfeeckhows the theoretical prediction.
Note that the agreement between the empirical behaviorlewtdtical predictions is excellent in
all cases. In particular, panel (a) exhibits the quadratadisg predicted for the cycle, panel (b)
exhibits the the linear scaling expected for the grid, antepéc) shows that expander graphs have
the desirable property of having constant network scaling.

6 Conclusions

In this paper, we have developed and analyzed an efficientitdg for distributed optimization
based on dual averaging of subgradients. In addition tdbksiiéng convergence, we provided
a careful analysis of the algorithm’s network scaling. Qesults show an inverse scaling in the
spectral gap of the graph, and we showed that this prediidight in general via a matching
lower bound. We have implemented our method, and our simakshow that these theoretical
predictions provide a very accurate characterizationsob@havior. In the extended version of this
paper[[4], we also show that it is possible to extend our égorand analysis to the cases in which
communication is random and not fixed, the algorithm resestechastic subgradient information,
and for minimization of composite regularized objectivéthe form f(z) + ¢(z).
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A Proof of Corollary[l

In order to prove the convergence rates, we relate our clodieto a well-known quantity in spec-
tral graph theory, specifically, the graph Laplacian [3]c&Ethe definition ofA as the symmetric
adjacency matrix of the undirected graph the degree of nodeasd; = [N(i)] = 327, Ay,
and the diagonal matriv = diag{ds,...,d,}. We assume that the graph is connected, so that
d; > 1 for all i and D is invertible. The(normalized) graph Laplaciams given by £L(G) =
I—-D~Y2AD~1/2, amatrix which is always symmetric, positive semidefirdied satisfie€1 = 0.
Therefore, when the graph is degree-regudar o for all i € V'), the standard random walk with
self loops onZ given by the matrixP := I — %ﬁ is doubly stochastic and is valid for our theory.
For non-degree regular graphs, we make the minor modifitatidn [5) to obtain

— _ 1 1/2 1/2

P,(G):=1 A (D-A)=1 - 1D LD=, (16)

As noted earlierP, (G) is doubly stochastic, and if the graphdgegular, thenP,, (G) is simply
(I+ A)/(d +1). The remainder of the corollary is based on bounding thetsgegap of P, (G).

Lemma4. The matrixP satisfiesrs (P, (G)) < max {1 — BN (L), Sme M (L) — 1}.

Proof By atheorem of Ostrowski on congruent matrices (cf. Theotes®, [10]), we have
Ao(DY2LDV?) € [min 8\ (L), max mk(ﬁ)] . 17)

Since L1 = 0, we have),(£) = 0, and so it suffices to focus oh;(D'/2£D'/?) and
An_1(DY2£D'?). From the definition[(16), the eigenvalues Bfare of the forml — (Spax +
1)~ \(DY2£D'?). The bound[{I7) coupled with the fact that all the eigenvaliel are non-
negative implies thatrs(P) = maxi<pn {|1 — (dmax + 1) Ax(DY/2LDY/?)|} is upper bounded

by the larger oft — 52=inr ), (L) and 2=y Ay (£) — 1. O

Computing the upper bound in Lemiah 4 requires controling; (£) and\;(£). To circumvent

this complication, we use the well-known idea of a lazy randwealk [3,[14], in which we replace

by P by %(I -+ P). The resulting symmetric matrix has the same eigenstretsi, moreover,
D1/2£D1/2> <o Omn ) @8

1
~(I+P)) =Xl ——
"2(2( + )> A2( 2 (G + 1) 2(Omax + 1)
Consequently, it is sufficient to bound only, 1 (£). The convergence rate implied by the lazy ran-
dom walk through Theorefd 2 is no worse than twice that of thgirmal walk, which is insignificant
for the analysis in this paper. The remainder of the proodlves exploiting results from spectral
graph theory([B] in order to control the eigenvalues of thplaaian.

Cyclesand paths: Recall the regulak-connected cycle from Figufé 1(a), constructed by placing
the n nodes on a circle and connecting every nodé teeighbors on the right and left. For this
graph, the LaplaciaZd is a circulant matrix with diagonal entriésand off-diagonal non-zero entries
—1/2k. Using known results on circulant matricés [2, 6], we findttha {(£) = @(ﬁé) for

k = o(n). For the regulak-connected path, by computing Cheeger constaits [3, Oh2btee

find that if k. < \/n, then\,,_1(£) = O(k*/n?). Note also that for thé&-connected path on
nodesmin; §; = k anddna.x = 2k. Thus, we can combine the above with Lenitha 4 to see that for
regulark-connected paths or cycles with< /n, oo(P) = 1— @(ﬁ—i) Substituting the bound into
Theorent2 yields the claim of Corolldy 1(a).

Regular grids: Now consider the case of @n-by-y/n grid, focusing in particular on regular
k-connected grids, in which any node is joined to every no@de it fewer thank horizontal or
vertical edges away in an axis-aligned direction. In thisegave use results on Cartesian products
of graphs|[[3, Section 2.6] to analyze the eigen-structurthefLaplacian. In particular, the/n-
by-/n k-connected grid is simply the Cartesian product of two regk#connected paths of/n
nodes. The second smallest eigenvalue of a Cartesian grofigcaphs is half the minimum of
second-smallest eigenvalues of the original graphs [3pfEma 2.13]. Thus, based on the preceding
discussion ok-connected cycles, we conclude that ik n'/4, then we have,,, (L) = ©(k?/n),

and we use Lemnid 4 arld{18) to see that the result in Cor&l{a)jirhmediately follows.
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Random geometric graphs:  Using the proof of Lemma 10 from Boyd et &l [2], we see that for
anye > 0, if 7 = y/log' ™ n/(n), then with probability at least — 2/n°~,
min d; > log' ™ n — V2clogn and maxd; < log' ™ n 4+ v2clogn. (19)

Thus, lettingC be the graph Laplacian of a random geometric graph, if we candb\,,_1(£), (Z9)
coupled with Lemm@l4 will control the convergence rate of algorithm.

Von Luxburg et al.[[28] give concentration results on theoselzsmallest eigenvalue of a geometric
graph. In particular, their Theorem 3 says that i w(y/logn/n), then with exceedingly high
probability, \,, 1 (£) = Q(r). Using [13), we see that for= (log' " n/n)!/2, the ratio 225 —

O(1) and\,_1 (L) = Q(L) with high probability. Combining this with Lemnid 4 arld118),
we havery(P) =1 — Q(k’gT) the desired result of Corollafy 1(c).

Expanders. The constant spectral gap in expandérs [3, Chapter 6] resrave penalty due to
network communication (up to logarithmic factors) and reeyields Corollary1L(d).

B Proof of Proposition[I]

The proof is based on construction of a set of objective fonstf; that force convergence to be
slow by using the second eigenvector of the communicatiomixn®&. Recall thatll € R" is the
eigenvector of” corresponding to its largest eigenvalue (equdl)td_etv € R™ be the eigenvector
of P corresponding to its second singular valag,P). By using the lazy random walk (see Set. A
and [18)), we may assume without loss of generality thdt?) = o5(P). Letw = = H be a
normalized version of the second eigenvectopfand note thaE _, w; = 0. Without loss of
generality, we assume that there is an indéar which w; = —1 (otherW|se we can flip signs in
what follows); by re-indexing as needed, we can assumeuthat —1. We sett = [-1,1] C R
and define the univariate functioffgz) := (¢ + w;)x. The global problem is then to minimize

n

1 1

- ;fz(x) = ;(c—i-wi)x =cx
for some constant > 0 to be chosen. Note that eag¢his ¢ + 1-Lipschitz. By construction, we see
immediately that:* = —1 is optimal for the global problem.

Consider the evolution of thgz(¢)}7°, C R™, as generated by the upddié (4). By construction, we
haveg; (t) = ¢+ w; for all t. Defining the vectoy = (cll +w) € R™, we recall that’1 = 1 to see

z(t+1):Pz(t)—g:Pzz(t—l)ngfg:...:,Zp‘fg

:—ZP7w+c]1 ZPT —ctl = — 202 w — ctll. (20)

In order to establish a lower bound, it suffices to show thigast one node is far from the optimum
aftert steps, and we focus on noﬂieSincewl = —1, the evolution[(2D) guarantees that

Lt +1) 202 - —%—ct. 1)

Recalling that(z) = 122 for this scalar setting, we have

zi(t+1) = ar;ger?(in{ —zi(t+ Dz + 2a1(t) xz} = arfg{in {(x —aft)z(t + 1))2}

Hencez (¢) is the projection ofy(t)z; (t + 1) onto[—1, 1], and unless; (¢) < 0 we have
flxi(¥)) — f(=1) > c>0.
If ¢ is overly small, the relatiof{21) will guarantee tha{t) > 0, so thatz;(¢) is far from the

optimum. If we choose: < 1/3, then a little calculation with[{21) shows that we require=
Q((1 — oo(P))~1) in order to drivez; (t) below zero.
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