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Abstract

By combining randomized smoothing tech-
niques with accelerated gradient methods, we
obtain convergence rates for stochastic opti-
mization procedures, both in expectation and
with high probability, that have optimal de-
pendence on the variance of the gradient es-
timates. To the best of our knowledge, these
are the first variance-based convergence guar-
antees for non-smooth optimization. A com-
bination of our techniques with recent work
on decentralized optimization yields order-
optimal parallel stochastic optimization algo-
rithms. We give applications of our results
to several statistical machine learning prob-
lems, providing experimental results demon-
strating the effectiveness of our algorithms.

1. Introduction

In this paper, we develop and analyze procedures for
solving a class of stochastic optimization problems
that frequently arise in machine learning and statis-
tics. Formally, consider a collection {F (· ; ξ), ξ ∈ Ξ} of
closed convex functions, each with domain containing
the closed convex set X ⊆ R

d. Let P be a probability
distribution over the sample space Ξ and consider the
expected convex function f : X → R defined via

f(x) : = E
[
F (x; ξ)

]
=

∫

Ξ

F (x; ξ)dP (ξ). (1)

We focus on potentially non-smooth stochastic opti-
mization problems of the form

min
x∈X

{
f(x) + ϕ(x)

}
, (2)
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where ϕ : X → R is a known regularizing function,
which may be non-smooth. The problem (2) has wide
applicability in machine learning problems; essentially
all empirical risk-minimization procedures fall into the
form (2), where the distribution P in the definition (1)
is either the empirical distribution over some sample
of n datapoints, or it may simply be the (unknown)
population distribution of the samples ξ ∈ Ξ.

As a first motivating example, consider support vector
machines (SVMs) (Cortes & Vapnik, 1995). In this
setting, the loss F and regularizer ϕ are defined by

F (x; ξ) = [1− 〈ξ, x〉]+ and ϕ(x) =
λ

2
‖x‖22 , (3)

where [α]+ := max{α, 0}. Here, the samples take the
form ξ = ba, where b ∈ {−1,+1} is the label of the
data point a ∈ R

d, and the goal of the learner is to
find an x ∈ R

d that separates positive b from negative.

More complicated examples include structured predic-
tion (Taskar, 2005), inverse convex or combinatorial
optimization (e.g. Ahuja & Orlin, 2001) and inverse
reinforcement learning or optimal control (Abbeel,
2008). The learner receives examples of the form
(ξ, ν) where ξ is the input to a system (for exam-
ple, in NLP applications ξ may be a sentence) and
ν ∈ V is a target (e.g. the parse tree for the sen-
tence ξ) that belongs to a potentially complicated set
V. The goal of the learner is to find parameters x so
that ν = argmaxv∈V 〈x, φ(ξ, v)〉, where φ is a feature
mapping. Given a loss ℓ(ν, v) measuring the penalty
for predicting v 6= ν, the objective F (x; (ξ, ν)) is

max
v∈V

[ℓ(ν, v) + 〈x, φ(ξ, v)〉 − 〈x, φ(ξ, ν)〉] . (4)

These examples highlight one of the two main diffi-
culties in solving the problem (2). The first, which is
by now well known (e.g. Nemirovski et al., 2009), is
that it is often difficult to compute the integral (1).
Indeed, when ξ is high-dimensional, the integral can-
not be efficiently computed, and in machine learn-
ing problems, we rarely even know the distribution
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P . Thus, throughout this work, we assume only that
we have access to i.i.d. samples ξ ∼ P , and conse-
quently we adopt the current method of choice and
focus on stochastic gradient procedures for solving
the convex program (2) (Nemirovski et al., 2009; Lan,
2010; Duchi & Singer, 2009; Xiao, 2010). In the oracle
model we assume, the optimizer issues a query vector
x, after which the oracle samples a point ξ i.i.d. ac-
cording to P and returns a vector g ∈ ∂xF (x; ξ). The
second difficulty of solving the problem (2), which in
this stochastic setting is the main focus of our paper,
is that the functions F and expected function f may
be non-smooth (i.e. non-differentiable).

When the objective function f is smooth, meaning
that it has Lipschitz continuous gradient, recent work
by Juditsky et al. (2008) and Lan (2010) has shown
that if the variance of a stochastic gradient estimate
is at most σ2 then stochastic optimization procedures
may obtain convergence rate O(σ/

√
T ). Of partic-

ular relevance here is that if instead of receiving sin-
gle stochastic gradient estimates the algorithm receives
m unbiased estimates of the gradient, the variance of
the gradient estimator is reduced by a factor of m.
Dekel et al. (2011) exploit this fact to develop asymp-
totically order-optimal distributed optimization algo-
rithms. The dependence on the variance is essential for
improvements gained through parallelism; however, to
the best of our knowledge there has thus far been no
work on non-smooth stochastic problems for which a
reduction in the variance of the stochastic subgradient
estimate gives an improvement in convergence rates.

The starting point for our approach is a convolution-
based smoothing technique amenable to non-smooth
stochastic optimization problems. Let µ be a density
and consider the smoothed objective function

fµ(x) :=

∫
f(x+ y)µ(y)dy = Eµ[f(x+ Z)], (5)

where Z is a random variable with density µ. The
function fµ is convex whenever f is convex, and fµ is
guaranteed to be differentiable (e.g. Bertsekas, 1973).
The important aspect of the convolution (5) to note is
that by Fubini’s theorem, we can write

fµ(x) =

∫
Eµ[F (x+ Z; ξ) | ξ]dP (ξ), (6)

so that samples of subgradients g ∈ ∂F (x + Z; ξ) for
Z ∼ µ and ξ ∼ P are unbiased gradient estimates of
fµ(x). By adding random perturbations, we do not
assume we know anything about the function F , and
the perturbations allow us to automatically smooth
even complex F for which finding a smooth proxy is
difficult (e.g. the structured prediction problem (4)).

The main contribution of our paper is to develop algo-
rithms for non-smooth stochastic optimization whose
convergence rate depends on the variance σ2 of the
stochastic (sub)gradient estimate. In particular, we
show that the ability to issue several queries to the
stochastic oracle for the original objective (2) can give
faster rates of convergence than a simple stochastic
oracle (to our knowledge, this is the first such result
for non-smooth optimization). Our theorems quan-
tify the above statement in terms of expected values
(Theorem 1) and, under an additional reasonable tail
condition, with high probability (Theorem 2). In ad-
dition, we give extensions to the strongly convex case
in Theorem 3. One consequence of our results is that a
procedure that queries the non-smooth stochastic or-
acle for m subgradients at iteration t achieves rate of
convergence O(RL0/

√
Tm) in expectation and with

high probability. (Here L0 is the Lipschitz constant
of the function and R is the ℓ2-radius of its domain.)
This convergence rate is optimal up to constant fac-
tors, and our algorithms have applications in statistics,
distributed optimization, and machine learning.

Notation For a parameter p ∈ [1,∞], we define
the ℓp ball Bp(x, u) := {y | ‖x− y‖p ≤ u}. Addition
of sets A and B is defined as the Minkowski sum
A + B = {x ∈ R

d | x = y + z, y ∈ A, z ∈ B}, and
multiplication of a set A by a scalar α is defined to
be αA := {αx | x ∈ A}. For any function f , we let
supp f := {x | f(x) 6= 0} denote its support. Given a
convex function f we use ∂f(x) to denote its subdiffer-
ential at the point x. We define the shorthand notation
‖∂f(x)‖ = sup{‖g‖ | g ∈ ∂f(x)}. The dual norm ‖·‖∗
of the norm ‖·‖ is defined as ‖z‖∗ := sup‖x‖≤1 〈z, x〉. A
function f is L0-Lipschitz with respect to the norm ‖·‖
over X if |f(x) − f(y)| ≤ L0 ‖x− y‖ for all x, y ∈ X .
The gradient of f is L1-Lipschitz continuous with re-
spect to the norm ‖·‖ over X if

‖∇f(x)−∇f(y)‖∗ ≤ L1 ‖x− y‖ for x, y ∈ X .
A function ψ is strongly convex with respect to a norm
‖·‖ over X if for all x, y ∈ X ,

ψ(y) ≥ ψ(x) + 〈∇ψ(x), y − x〉+ 1

2
‖x− y‖2 .

Given a convex and differentiable function ψ, the
associated Bregman divergence between x and y is
Dψ(x, y) := ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉. We write
drawing ξ from the distribution P as ξ ∼ P .

2. Algorithms and Main Results

We begin by describing our base algorithm, which
builds off of Tseng’s (2008) work on accelerated gradi-
ent methods. The method generates three sequences of
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points, denoted {xt, yt, zt} ∈ X 3. The algorithm also
requires a non-increasing sequence of smoothing pa-
rameters {ut} ⊂ R to control the perturbation and—as
is standard (Tseng, 2008; Lan, 2010; Xiao, 2010)—uses
a proximal function ψ strongly convex with respect to
the norm ‖·‖ to regularize the points. At iteration
t, the algorithm computes stochastic gradients at m
points drawn from a neighborhood around yt:

(i) Draw random variables {Zi,t}mi=1 i.i.d. according
to the distribution µ.

(ii) Compute m stochastic (sub)gradients at the
points yt + utZi,t for i = 1, 2, . . . ,m:

gi,t ∈ ∂F (yt + utZi,t, ξi,t),

where ξi,t ∼ P , for i = 1, 2, . . . ,m. (7)

(iii) Compute the average gt =
1
m

∑m
i=1 gi,t.

With the definition of the gradient sampling scheme,
we can give our update scheme. We require scalars
L1 and η to control step sizes, and as in Tseng’s
work assume the sequence {θt} ⊂ R satisfies θ0 = 1

and θt = 2/(1 +
√
1 + 4/θ2t−1). Starting from an ini-

tial point x0 ∈ X , we define the update recursions

yt = (1− θt)xt + θtzt (8a)

zt+1 = argmin
x∈X

{ t∑

τ=0

1

θτ
〈gτ , x〉+

t∑

τ=0

1

θτ
ϕ(x)

+
[L1

ut
+
η
√
t+ 1

θt+1

]
Dψ(x, x0)

}
(8b)

xt+1 = (1− θt)xt + θtzt+1. (8c)

In prior work on accelerated schemes for stochastic and
non-stochastic optimization (Tseng, 2008; Lan, 2010;
Xiao, 2010), the term L1 is set equal to the Lipschitz
constant of∇f ; we use L1/ut to allow varying amounts
of smoothness due to the shrinking sequence of ut; the
damping term η

√
t/θt provides control over the fluc-

tuations induced by the random vector gt.

2.1. Convergence Rates for Convex Objectives

We now state our main results on the convergence rate
of the randomized smoothing procedure (7) with ac-
celerated dual averaging updates (8a)–(8c), providing
proofs in the appendices. We begin with our main as-
sumption, which ensures that the smoothing operator
and smoothed function fµ are relatively well-behaved.

Assumption A (Smoothing). The random variable Z
is zero-mean with density µ and there are constants L0

and L1 such that for u > 0, E[f(x+uZ)] ≤ f(x)+L0u,
and E[f(x+uZ)] has L1

u -Lipschitz continuous gradient.

Since the function fµ = f ∗µ is smooth, Assumption A
ensures that fµ is close to f but not too “jagged.” We
elaborate on conditions under which Assumption A
holds after stating our first two theorems:

Theorem 1. Define ut = θtu and µt to be the density
of utZ. For any x∗ ∈ X

E[f(xT ) + ϕ(xT )]− [f(x∗) + ϕ(x∗)] ≤

6L1ψ(x
∗)

Tu
+

2ηψ(x∗)√
T

+
1

ηT

T∑

t=1

1√
t
E ‖et‖2∗ +

4L0u

T
,

where et := ∇fµt
(yt) − gt is the error in the gradient

estimate.

The preceding result, which provides convergence in
expectation, can be extended to bounds that hold with
high probability under suitable tail conditions on the
error et : = ∇fµ(yt) − gt. In particular, let Ft denote
the σ-field of the random variables gi,s, i = 1, . . . ,m
and s = 0, . . . , t. To obtain high-probability results,
we make the following assumption.

Assumption B (Sub-Gaussian errors). The error is
(‖·‖∗ , σ) sub-Gaussian, meaning that there exists a
constant σ > 0 such that

E[exp(‖et‖2∗ /σ2) | Ft−1] ≤ exp(1) for t ∈ N. (9)

Past work on smooth stochastic optimiza-
tion (Juditsky et al., 2008; Lan, 2010; Xiao, 2010) has
imposed this type of tail assumption, and Corollary 4
gives sufficient conditions for the assumption to hold.

Theorem 2. In addition to the conditions of Theo-
rem 1, suppose that X is compact with ‖x− x∗‖ ≤ R
for all x ∈ X and that Assumption B holds. With
probability at least 1− 2δ,

f(xT ) + ϕ(xT )− [f(x∗) + ϕ(x∗)] ≤

6L1ψ(x
∗)

Tu
+

4L0u

T
+

4ηψ(x∗)√
T

+
1

ηT

T∑

t=1

1√
t
E[‖et‖2∗]

+
4σ2 max

{
log 1

δ ,
√

3e log(T ) log 1
δ

}

ηT
+
σR

√
log 1

δ√
T

.

We now give two corollaries that help to explain the
bounds Theorem 1 provides. In each corollary we as-
sume that the point x∗ ∈ X satisfies ψ(x∗) ≤ R2, and

we use the proximal function ψ(x) = 1
2 ‖x‖

2
2.

Corollary 1. Let µ be uniform on {z | ‖z‖2 ≤ u} and

assume E[‖∂F (x; ξ)‖22] ≤ L2
0. If we set u = Rd1/4 and

η = L0/R
√
m, then

E[f(xT )+ϕ(xT )]−[f(x∗)+ϕ(x∗)] ≤ 10L0Rd
1/4

T
+
5L0R√
Tm

.
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Corollary 2. Let µ be the d-dimensional normal dis-
tribution with covariance u2I and assume F (·; ξ) is L0-
Lipschitz for ξ ∈ Ξ. With smoothing u = Rd−1/4,

E[f(xT )+ϕ(xT )]−[f(x∗)+ϕ(x∗)] ≤ 10L0Rd
1/4

T
+
5L0R√
Tm

.

There are several objectives f + ϕ with domains
X for which the natural geometry is non-Euclidean,
which motivates the mirror descent family of algo-
rithms (Nemirovski & Yudin, 1983). By using differ-
ent distributions µ for the random perturbations Zi,t
in (7), we can take advantage of non-Euclidean geom-
etry. Here we give an example that is quite useful for
problems in which the optimizer x∗ is sparse; for ex-
ample, the optimization set X may be a simplex or
ℓ1-ball, or ϕ(x) = λ ‖x‖1. The idea in this corollary
is that we achieve a pair of dual norms that may give
better performance than the ℓ2-ℓ2 pair above.

Corollary 3. Let µ be the uniform density on
B∞(0, u) and assume that F (·; ξ) is L0-Lipschitz con-
tinuous with respect to the ℓ1-norm over X +B∞(0, u)

for ξ ∈ Ξ. Use the prox function ψ(x) = 1
2(p−1) ‖x‖

2
p

for p = 1 + 1/ log d, set u = R
√
d log d and η =

L0/R
√
m log d. Then

E[f(xT ) + ϕ(xT )]− [f(x∗) + ϕ(x∗)]

= O
(
L0 ‖x∗‖1

√
d log d

T
+
L0 ‖x∗‖1 log d√

Tm

)
.

The dimension dependence of
√
d log d on the leading

1/T term in the corollary is weaker than the d1/4 de-
pendence in the earlier corollaries, so for very large m
the corollary is not as strong as one desires for prob-
lems with non-Euclidean geometry. But for large T ,
the 1/

√
Tm terms dominate the convergence rates.

Inspection of the above corollaries shows that we have
achieved our goal: we have convergence rates that
provably improve with the “mini-batch” (or gradient
sample) size m. Additionally, Agarwal et al. (2012)
give lower bounds for stochastic optimization that
show these rates are optimal: they cannot be improved
by more than constant factors.

Our final corollary specializes the high probability con-
vergence result in Theorem 2 by showing that the error
is sub-Gaussian (9). We state the corollary for prob-
lems with Euclidean geometry, but it is clear that sim-
ilar results hold for non-Euclidean geometry as above.

Corollary 4. Assume that F (·, ξ) is L0-Lipschitz with

respect to the ℓ2-norm. Let ψ(x) = 1
2 ‖x‖

2
2 and assume

that X is compact with ‖x− x∗‖2 ≤ R for x, x∗ ∈ X .
Using a smoothing distribution µ uniform on B2(0, u),

Algorithm 1 Epoch-based stochastic gradient

Input: strong convexity parameter λ, Lipschitz pa-
rameter L1, smoothing u, damping η
for i = 1 to k do

Set η(i) = η · 2i and u(i) = u · 2−i
Set t(i) = max{12η(i)/λ, 4

√
L1/u(i)λ}

Run updates (8a)–(8c) for t = t(i) timesteps with

• Damping parameter η(i)

• Gradients gt computed via the procedure (7)
with smoothing parameter u(i)

• Initial points x0 = x(i− 1) and z0 = x(i− 1)

Set x(i) to be the output of the previous step.
end for

Output: x(k)

smoothing parameter u = Rd1/4, and damping param-
eter η = L0/R

√
m, with probability at least 1− δ,

f(xT ) + ϕ(xT )− f(x∗)− ϕ(x∗) = O
(
L0Rd

1/4

T
+ · · ·

L0R√
Tm

+
L0R

√
log 1

δ√
Tm

+
L0Rmax{log 1

δ , log T}
T
√
m

)
.

2.2. Strongly Convex Optimization

When the objective f + ϕ is strongly convex—for ex-
ample, when the regularizer ϕ(x) = λ

2 ‖x‖22—it is
possible to attain rates of convergence faster than
1/
√
T (Hazan & Kale, 2010; Ghadimi & Lan, 2010).

Following the idea of Hazan and Kale, we apply the al-
gorithm (8a)–(8c) in a series of epochs. Let x(i) denote
the output of epoch i. Each epoch i consists of running
the accelerated algorithm (8a)–(8c) for t(i) iterations,
except we replace Dψ(x, x0) with Dψ(x, x(i − 1)). In
addition to Assumption A, we make

Assumption C (Strong convexity). The function f+
ϕ is λ-strongly convex over X : for any x, y ∈ X and
any f ′(x) ∈ ∂f(x) and ϕ′(x) ∈ ∂ϕ(x),

f(y) + ϕ(y)

≥ f(x) + ϕ(x) + 〈f ′(x) + ϕ′(x), y − x〉+ λ

2
‖y − x‖22 .

Now we describe the parameters and execution of the
algorithm. We perform the updates (7) and (8a)–(8c)
with the damping parameter η(i) and smoothing mag-
nitude ut = u(i) fixed within each epoch, and set them
to η(i) = 2i · η and u(i) = 2−i · u within epoch i. We
set number of iterations t(i) in epoch i to be

t(i) = max

{
4

√
L1

u(i)λ
,
12η(i)

λ

}
.
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See Algorithm 1 for pseudocode. We obtain

Theorem 3. Let x(k) be the output of the epoch-based
Algorithm 1 after k epochs, let σ2 be a bound on the
variance of the stochastic gradient estimate, and let
M ≥ f(x(0)) + ϕ(x(0)) − f(x∗) − ϕ(x∗). Then after
log2

M

ǫ epochs of Algorithm 1,

E[f(x(k)) + ϕ(x(k))]− [f(x∗) + ϕ(x∗)]

≤ ǫ+ 5 · ǫ
M

[
σ2

2η
+ L0u

]

and the number of updates (8a)–(8c) is bounded by

10

√
L1M

uλǫ
+ 24

Mη

λǫ
.

To translate Theorem 3 into a slightly more intuitive
bound, we set η = σ2/2M and u = M/L0. These
choices imply that after at most

10

√
L0L1

λǫ
+ 12

σ2

λǫ
(10)

updates (8a)–(8c), we obtain optimization error 11ǫ.

We can apply these bounds to the SVM (3) and struc-
tured prediction (4) problems described in the intro-
duction. The next corollary makes clear that comput-
ingm stochastic gradients in parallel (while employing
our randomized perturbation techniques) yields linear
speedup as a function of the batch size m:

Corollary 5. Let the regularizer ϕ(x) = λ
2 ‖x‖22.

Assume that ‖ξ‖2 ≤ L0 (in the SVM case) or
‖φ(ξ, ν)‖2 ≤ L0 (for the structured prediction prob-
lem). Then with m subgradient evaluations and µ ei-
ther the d-dimensional normal or uniform on B2(0, u),
Algorithm 1 outputs an x̂ with

E[f(x̂) + ϕ(x̂)]− [f(x∗) + ϕ(x∗)] = O(ǫ)

after at most

O
(
L0d

1/4

√
λǫ

+
L0

λmǫ

)

iterations of the method (8a)–(8c).

2.3. Robustness and Distributed Computing

In this final expository section, we give a few remarks
on the robustness of our algorithms to the choice of
stepsizes, and we describe techniques that allow paral-
lelization. For concreteness, we focus our remarks on
the strongly convex Algorithm 1, though essentially
identical results hold for Section 2.1’s procedures.

At first glance, Algorithm 1 appears to require knowl-
edge of many of the parameters of the stochastic opti-
mization problem (2). However, a closer inspection of
the convergence rates guaranteed by Theorem 3 shows
that the algorithm is robust to mis-specification of the
values. Indeed, the smoothness Lipschitz constant L1

appears in the algorithm only via L1/u(i)λ, and the
strong convexity parameter λ appears in η(i)/λ and
L1/u(i)λ. In both cases, we can write L1 and λ as
a function of the other inputs u and η: indeed, set
Cu = L1/λu and Cη = η/λ. The optimization er-
ror in Theorem 3 has linear dependence on η−1, and
the number of iterations (10) also has linear depen-
dence on Cη = η/λ, so the algorithm is robust to (and
the global rate of convergence does not change with)
mis-specification of η and λ. Similarly, Theorem 3’s
optimization error is linear in L0u, and the iteration
bound (10) grows as

√
Cu, or is linear in u−1/2. As

a consequence, the epoch based algorithm—similar to
Nemirovski et al.’s 2009 study of stochastic gradient
descent—is robust to mis-specification of its input pa-
rameters. See also our simulations in Section 3.

Now we turn to exploiting parallel computation to
achieve variance reductions, which yield convergence
rate improvements for our algorithms. As motivation,
note that Corollary 5 makes clear that the convergence
rate of Algorithm 1 to optimization accuracy ǫ linearly
improves with the number of samples m, at least until
m ≥ L0

d1/4
√
λǫ
. In our distributed setting, we assume

we have n processors and take as our objective

f(x) :=
1

n

n∑

i=1

fi(x) for fi(x) := EPi
[F (x; ξ)]. (11)

The distributed variant of Algorithm 1 is as follows: a
centralized processor executes Algorithm 1 while gra-
dient computation is distributed among several proces-
sors, each of which computes some number m of local
gradients that are then averaged across the network.
We replace the gradient sampling (7) at iteration t
with the following: each processor i draws m i.i.d.
samples Zi,j ∼ µ, j = 1, . . . ,m, then the sampling
scheme (7) is replaced with each processor i query-
ing its local oracle at the m points yt + Zi,j , yielding
stochastic gradients

gi,j ∈ ∂F (yt + Zi,j ; ξi,j) (12)

where ξi,j
i.i.d.∼ Pi for j ∈ {1, . . . ,m}.

The network then computes gt =
1
nm

∑n
i=1

∑m
j=1 gi,j .

We may analyze the run-time and convergence rate of
Algorithm 1 with the sampling scheme (12) using the
technique developed by Dekel et al. (2011). Assume
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one unit of time is required to sample and compute a
single gradient vector as in (12), and let c(n) be the
amount of time required to achieve consensus in an
n-node network. Then

Corollary 6. Under the conditions of Theorem 3,

O
(
max

{
(m+ c(n)) ·

√
L0L1

λǫ
,
m+ c(n)

m
· σ

2

nλǫ

})

units of time of the procedure (12) are sufficient for

E[f(x̂) + ϕ(x̂)]− [f(x∗) + ϕ(x∗)] ≤ ǫ.

Corollary 6 gives us our desired result: order-optimal
distributed optimization—i.e. linear speedup in the
number n of processors—so long as c(n) is at most
the order of m.

3. Experimental Results

Though the results we have presented thus far are
essentially theoretically unimprovable (Agarwal et al.,
2012), it is important to understand their practical
performance. In particular, we would like to under-
stand the robustness properties of the algorithms—
whether they still perform well under mis-specification
of problem parameters—and how they compare to
state-of-the-art stochastic optimization algorithms.

Robustness: We begin by studying the robustness
of Algorithm 1 as a function of the parameters L1, u,
and η: the Lipschitz continuity constant of the gra-
dient ∇fµ of the smoothed objective, the amount of
perturbation, and the damping stepsize. (For lack of
space, we omit robustness results for our other algo-
rithms.) As we discuss following Theorem 3, it is no
loss of generality to view estimating the constant L1 as
choosing 1/u, whence our robustness analysis reduces
to studying the effects of the choices for u and η.

For our experiment, we generate n = 1000 vectors
ai ∈ {−1, 0, 1}d with d = 200 dimensions, each entry
set to 0 with probability 1

2 and uniformly {±1} with
probability 1

2 . We set bi = sign(〈ai, w〉) for a random
vector w ∈ R

d distributed as N(0, Id×d) and flip the
signs of 10% of the bi, and solve the SVM problem

minimize
x∈Rd

1

n

n∑

i=1

[1− bi 〈ai, x〉]+ +
λ

2
‖x‖22 (13)

with λ = .1. By construction, the Lipschitz constant
L0 ≈ 10, so that we can estimate the values u and
η Corollary 5 specifies. We run Algorithm 1 for 2000
iterations of the updates (8a)–(8c), using m = 5 sam-
ples. We perform 50 such experiments.
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Figure 1. Optimality gap of the vector x̂ output by Al-
gorithm 1 for the SVM problem (13) plotted against the
inverse smoothing parameter 1/u and damping stepsize η.

In Figure 1, we plot the average optimality gap
of the point x̂ Algorithm 1 selects. From the fig-
ure, we see that the performance of the method
is nearly identical—achieving optimization accuracy
better than 10−2 after 2000 iterations—so long as
(η, 1/u) ∈ [1, 1000] × [.1, 100]. The method suffers
some performance degradation if η is too small, that is,
η ≤ 1 or so, or u is too small, that is, 1/u ≥ 100. Even
when these extreme settings of u or η occur, however,
the method still has optimization accuracy on the or-
der of 10−1. The breakdown points in the figure are
intuitive: if η is too small, the damping in the proximal
gradient update (8b) will not overcome the stochastic-
ity of the vectors gt; if u is too small, the perturbed
function E[F (x+ uZ; ξ)] is nearly non-smooth.

Metric Learning: Now we turn to showing the per-
formance benefits of parallelization and the random-
ized perturbation methods. We begin with experi-
ments based on a metric learning problem (Xing et al.,
2003). For points i, j = 1, . . . , n we are given a vec-
tor ai ∈ R

d, and a measure bij ≥ 0 of the similarity
between the vectors ai and aj . (Here bij = 0 means
that ai and aj are the same.) The goal is to learn a
matrix X such that 〈(ai − aj), X(ai − aj)〉 ≈ bij . One
method for doing so is to minimize the objective

f(X) =
1(
n
2

)
∑

i6=j

∣∣tr
(
X(ai − aj)(ai − aj)

⊤)− bij
∣∣

subject to tr(X) ≤ C, X � 0. (14)

A stochastic gradient for this problem is simple: given
a matrix X, choose a pair (i, j) uniformly at random,
then compute the subgradient

sign [〈(ai − aj), X(ai − aj)〉 − bij ] (ai − aj)(ai − aj)
⊤.

We solve ten random instances of the metric learning
problem (14) with d = 100 and n = 2000, yielding an



Randomized Smoothing for Stochastic Optimization

2 4 6 8 10
0

0.05

0.1

0.15

0.2

Time (s)

f
(X

t
)

-
f
(X

∗
)

 

 

m = 1
m = 2
m = 4
m = 8
m = 16
m = 32
m = 64
m = 128

Figure 2. Optimization error in the metric learning prob-
lem (14) versus time in seconds. Each line indicates error
when using m samples in the gradient estimate (7).
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Figure 3. Left: Optimality gap of Pegasos and the acceler-
ated strongly convex methods with {1, . . . , 4} threads ver-
sus time. Right: time to achieve optimality gap ǫ = .004
for accelerated methods versus number of threads.

objective with ≈ 2 ·106 terms. In Figure 2, we plot the
optimality gap f(Xt) − infX∗∈X f(X∗) as a function
of computation time. We plot several lines, each of
which captures the performance of the algorithm us-
ing a different number m of samples in the smoothing
step (7). Receiving more samples gives improvements
in convergence rate as a function of time. Our the-
ory also predicts that for m ≥ d, there should be no
improvement in time taken to minimize the objective.
Figure 2 suggests this is correct: the plots for m = 64
and m = 128 are essentially indistinguishable.

Support Vector Machines: For this experiment,
we investigate solving an SVM problem (3) using the
Reuters RCV1 dataset (Lewis et al., 2004), which con-
sists of 800,000 training examples for binary classifica-
tion tasks involving prediction of the topic of a news
document from the words it contains. We compare
Algorithm 1 to the state-of-the-art SVM solver Pe-
gasos (Shalev-Shwartz et al., 2007). In the left plot
of Fig. 3 we plot the optimality gap f(xt) + ϕ(xt) −
f(x∗) − ϕ(x∗) as a function of computation time for
Pegasos and our perturbation method with 1, 2, 3, and

4 worker threads (denoted Acc (i)). In the right plot,
we show the time in seconds required to achieve an
ǫ = .004 optimality gap for Algorithm 1 as a function
of the number of threads computing stochastic sub-
gradient estimates. The blue (top) line corresponds to
each worker thread using a batch of size m = 10 to
estimate a stochastic gradient, which is further aver-
aged, while the red (lower) line corresponds to each
worker using batches of size 20. We see improvement
of approximately 1/n for n workers, as we expect.

Structured Prediction: Our final experiment is
to learn feature weights for a probabilistic pars-
ing task using a hypergraph parser. Hypergraph
parsers (Klein & Manning, 2002) convert parsing
tasks—which require assigning the productions in
a probabilistic context-free grammar (PCFG) to a
sentence—to finding maximum-weight paths in hyper-
graphs. To learn the weights on the features, we min-
imize a loss of the form (4), where the datum ξ is a
sentence and the label ν is a parse tree, which corre-
sponds to a weighted path between a sentence node
and an initial sentential production node in the hy-
pergraph associated with the PCFG. We only sketch
our setup here. The important conditions we note are
that the feature function φ decomposes across edges
in the hypergraph, and we use standard lexical fea-
tures (Taskar et al., 2004). If we let v be a {0, 1} ma-
trix with entries for each edge in a hypergraph, where
vj,k = 1 means edge (j, k) is selected, then labels ν are
paths in the hypergraph and our loss is the Hamming
loss: ℓ(v, ν) =

∑
j,k 1(vj,k 6=νj,k). This loss decomposes

across edges of the hypergraph, meaning the objective

max
v∈V

[ℓ(v, ν) + 〈x, φ(ξ, v)〉 − 〈x, φ(ξ, ν)〉]+ =

max
v∈V

∑

j,k

(
1(vj,k 6=νj,k) + 〈x, φj,k(ξ, vj,k)− φj,k(ξ, νj,k)〉

)

is computable in time cubic in the length of the sen-
tence ξ (Klein & Manning, 2002). (Here we have used
φj,k to indicate the features associated with the edge
(j, k) in the hypergraph). The hypergraph represen-
tation we use is quite large: each word in a sen-
tence generates some 2002 different possible produc-
tions in the corresponding context free grammar, each
of which requires thousands of features, yielding bil-
lions of weights; moreover, each hypergraph requires
approximately 200kB of memory to store.

In Figure 4, we plot the results of 10 experiments
for minimizing the structured prediction loss (4) on
the Wall Street Journal portion of the Penn Tree-
bank (Marcus et al., 1994). We use ℓ2-regularization

ϕ(x) = (λ/2) ‖x‖22 with multiplier λ = .25. We plot
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Figure 4. Optimality gaps for hypergraph-based parsing
task (structured prediction). The legend for each plot gives
the number of threads used to compute stochastic subgra-
dients. Left: optimality gap versus number of iterations.
Right: optimality gap versus computation time.

Algorithm 1’s optimality gap as a function of the num-
ber of iterations (left) and the amount of time (right)
required by the method. The right plot in Figure 4
also shows the performance of the state-of-the-art reg-
ularized dual averaging (RDA) algorithm (Xiao, 2010).

The left plot evidences a striking benefit in the number
of iterations performed by the method as the number
of threads increases. As the right plot shows, it is
not trivial to translate this into improvements in ac-
tual running time. This is a consequence of the mem-
ory overhead engendered by multiple threads accessing
the same memory as well as synchronization among the
threads. Nonetheless, as the amount of time increases,
the benefit of using multiple threads—and thus reduc-
ing the variance of the stochastic gradient estimate via
the averaged gradient (12)—is clear. We also see the
perhaps surprising result that even when using a sin-
gle thread, the perturbation-based accelerated method
yields improved performance over prior algorithms.
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Appendix: Proofs

A. Proofs for Non-Strongly Convex
Optimization

In this section, we provide the proofs of Theorems 1
and 2, as well as Corollaries 1 through 4. We begin
with the proofs of the corollaries, after which we give
the full proofs of the theorems. In both cases, we defer
some of the more technical lemmas to appendices.

The general technique for the proof of each corollary
is as follows. First, we recognize that the randomly
smoothed function fµ(x) = Ef(x + Z) for Z ∼ µ has
Lipschitz continuous gradients and is uniformly close
to the original non-smooth function f . This allows us
to apply Theorem 1. The second step is to realize that
with the sampling procedure (7), the variance E ‖et‖2∗
decreases at a rate of approximately 1/m, the number
of gradient samples. Choosing the stepsizes appro-
priately in the theorems then completes the proofs.
Proofs of these corollaries require relatively tight con-
trol of the smoothness properties of the smoothing con-
volution (5), so we refer frequently to lemmas stated
in Appendix C.

A.1. Proof of Corollaries 1 and 2

We begin by proving Corollary 1. Recall the averaged
quantity gt = 1

m

∑m
i=1 gi,t, and that gi,t ∈ ∂F (yt +

Zi; ξi), where the random variables Zi are distributed
uniformly on the ball B2(0, u).

From Lemma 8 in Appendix C, the variance of gt as
an estimate of ∇fµ(yt) satisfies

σ2 : = E ‖et‖22 = E ‖gt −∇fµ(yt)‖22 ≤ L2
0

m
. (15)

Further, for Z distributed uniformly on B2(0, u), we
have the bound

f(x) ≤ E[f(x+ Z)] ≤ f(x) + L0u,

and moreover, the function fµ has L0

√
d/u-Lipschitz

continuous gradient. Thus, applying Lemma 8 and
Theorem 1 with the setting Lt = L0

√
d/uθt, we obtain

E[f(xT ) + ϕ(xT )]− [f(x∗) + ϕ(x∗)]

≤ 6L0R
2
√
d

Tu
+

2ηTR
2

T
+

1

T

T−1∑

t=0

1

ηt
· L

2
0

m
+

4L0u

T
,

where we have used the bound (15).

Now recall that ηt = L0

√
t+ 1/R

√
m by construction.

Coupled with the inequality

T∑

t=1

1√
t
≤ 1+

∫ T

1

1√
t
dt = 1+2(

√
T−1) ≤ 2

√
T , (16)

we use that 2
√
T + 1/T + 2/

√
T ≤ 5/

√
T to obtain

E[f(xT ) + ϕ(xT )]− [f(x∗) + ϕ(x∗)]

≤ 6L0R
2
√
d

Tu
+

5L0R√
Tm

+
4L0u

T
.

Plugging the specified setting of u = Rd1/4 completes
the proof.

The proof of Corollary 2 is essentially identical, differ-
ing only in the setting of u = Rd−1/4 and the applica-
tion of Lemma 9 instead of Lemma 8 in Appendix C.

A.2. Proof of Corollary 3

Under the stated conditions of the corollary, Lemma 6
implies that when µ is uniform on B∞(0, u), then the
function fµ(x) : = Eµf(x + Z) has a L0/u-Lipschitz
continuous gradient with respect to the ℓ1-norm, and
moreover it satisfies the upper bound fµ(x) ≤ f(x) +
L0du

2 .

Now, fix x ∈ X and let gi ∈ ∂F (x + Zi; ξi), with
g = 1

m

∑m
i=1 gi. We claim that the error satisfies

E
[
‖g −∇fµ(x)‖2∞

]
≤ C

L2
0 log d

m
(17)

for some universal constant C. Indeed Lemma 6
shows that E[g] = ∇fµ(x); moreover, component j
of the random vector gi is an unbiased estimator of
the jth component of ∇fµ(x). Since ‖gi‖∞ ≤ L0

and ‖∇fµ(x)‖∞ ≤ L0, the vector gi − ∇fµ(x) is a
d-dimensional random vector whose components are
sub-Gaussian with sub-Gaussian parameter 4L2

0. Con-
ditional on x, the gi are independent, so g − ∇fµ(x)
has sub-Gaussian components with parameter at most
4L2

0/m. Applying standard sub-Gaussian tail bounds
to the ℓ∞-norm bounded vectors gi−∇fµ(x) (we omit
the proof) yields the claim (17).

Now, as in the proof of Corollary 1, we can ap-
ply Theorem 1. Recall that 1

2(p−1) ‖x‖
2
p is strongly

convex over R
d with respect to the ℓp-norm for any
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p ∈ (1, 2] (e.g. Xiao, 2010). Thus, with the choice

ψ(x) = 1
2(p−1) ‖x‖

2
p for p = 1 + 1/ log d, it is clear

that the squared radius R2 of the set X is order
‖x∗‖2p log d ≤ ‖x∗‖21 log d. Essentially, all that remains
is to relate the Lipschitz constant L0 with respect to
the ℓ1 norm to that for the ℓp norm. Let q be con-
jugate to p, that is, 1/q + 1/p = 1. Under the as-
sumptions of the theorem, we have q = 1 + log d. For
any g ∈ R

d, we have ‖g‖q ≤ d1/q ‖g‖∞. Of course,

d1/(log d+1) ≤ d1/(log d) = exp(1), so ‖g‖q ≤ e ‖g‖∞.

Having shown that the Lipschitz constant L for the ℓp
norm satisfies L ≤ L0 exp(1), where L0 is the Lipschitz
constant with respect to the ℓ1 norm, we simply apply
Theorem 1 and the variance bound (17) to get the
result. Specifically, Theorem 1 implies

E[f(xT ) + ϕ(xT )]− [f(x∗) + ϕ(x∗)]

≤ 6L0R
2

Tu
+

2ηTR
2

T
+
C

T

T−1∑

t=0

1

ηt
· L

2
0 log d

m
+

4L0du

2T
.

Plugging in the values for u, ηt, and R ≤ ‖x∗‖1
√
log d

and using bound (16) completes the proof.

A.3. Proof of Corollary 4

The proof of this corollary requires an auxiliary result
showing that Assumption B holds under the stated
conditions. The following result (whose proof we omit)
can be shown using a Doob martingale construction
with norm-bounded random vectors. In stating it, we
recall the definition of the sigma field Ft from Assump-
tion B.

Lemma 1. Using the notation of Theorem 2, suppose
that F (·; ξ) is L0-Lipschitz continuous with respect to
the norm ‖·‖ over X + suppµ for P -a.e. ξ. Then

E

[
exp

(‖et‖2∗
σ2

)
| Ft−1

]
≤ exp(1),

where σ2 : = 2max

{
E[‖et‖2∗ | Ft−1],

16L2
0

m

}
.

Using this lemma, we now prove Corollary 4. When
µ is the uniform distribution on B2(0, u), Lemma 8
from Appendix C implies that ∇fµ is Lipschitz with

constant L1 = L0

√
d/u. As discussed previously,

Lemma 1 ensures that the error et satisfies Assump-
tion B. Noting the inequality

max{log(1/δ),
√

log T log(1/δ)} ≤ max{log(1/δ), log T}

and combining the bound in Theorem 2 with Lemma 1,

we see that with probability at least 1− 2δ

f(xT ) + ϕ(xT )− f(x∗)− ϕ(x∗)

≤ 6L0R
2
√
d

Tu
+

4L0u

T
+

4R2η√
T + 1

+
2L2

0

m
√
Tη

+ C
L2
0 max

{
log 1

δ , log(T + 1)
}

(T + 1)mη
+
L0R

√
log 1

δ√
Tm

for a universal constant C. Plugging in η = L0/R
√
m

and u = Rd1/4 gives the desired result.

A.4. Proof of Theorem 1

This proof is more involved than that of the above
corollaries. In We build on techniques used in the
work of Tseng (2008), Lan (2010), and Xiao (2010).
The changing smoothness of the stochastic objective—
which comes from changing the shape parameter of the
sampling distribution Z in the averaging step (7)—
adds some challenge. Essentially, the idea of the proof
is to define ft(x) := Eµf(x+utZ), where ut is the non-
increasing sequence of shape parameters in the averag-
ing scheme (7). We show that ft(x) ≤ ft−1(x) for all t,
which is intuitive because the variance of the sampling
scheme is decreasing, while Jensen’s inequality tells us
that f(x) ≤ ft(x). Then we apply the (stochastic) ac-
celerated gradient method (Tseng, 2008; Xiao, 2010)
to the sequence of functions ft decreasing to f , and by
allowing ut to decrease appropriately we achieve our
result. In the proof, we frequently use Lt as shorthand
for the quantity L1/ut. We also simply assume that
ψ(x) = Dψ(x, x0) for notational convenience.

We begin by stating two technical lemmas:

Lemma 2. Let ft be a sequence of functions such that
ft has Lt-Lipschitz continuous gradients with respect to
the norm ‖·‖ and assume that ft(x) ≤ ft−1(x) for any
x ∈ X . Let the sequence {xt, yt, zt} be generated ac-
cording to the updates (8a)–(8c), and define the error
term et = ∇ft(yt)− gt. Then for any x∗ ∈ X ,

1

θ2t
[ft(xt+1) + ϕ(xt+1)]

≤
t∑

τ=0

1

θτ
[fτ (x

∗) + ϕ(x∗)] +

(
Lt+1 +

ηt+1

θt+1

)
ψ(x∗)

+
t∑

τ=0

1

2θτητ
‖et‖2∗ +

t∑

τ=0

1

θτ
〈eτ , zτ − x∗〉 .

See Appendix A.6 for the proof of this claim.

Lemma 3. Let the sequence θt satisfy 1−θt
θ2t

= 1
θ2t−1

and θ0 = 1. Then θt ≤ 2
t+2 , and

∑t
τ=0

1
θτ

= 1
θ2t
.
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The second statement was proved by Tseng (2008);
the first follows by a straightforward induction.

We now proceed with the proof of the theorem. Defin-
ing ft(x) := E[f(x + utZ)], let us first verify that
ft(x) ≤ ft−1(x) for any x ∈ X and t so that Lemma 2
can be applied. Since ut ≤ ut−1, we may define a
random variable U with support on {0, 1} such that
P(U = 1) = ut

ut−1
∈ [0, 1]. Then

ft(x) = E[f(x+ utZ)] = E
[
f
(
x+ ut−1ZE[U ]

)]

≤ P[U = 1] E[f(x+ ut−1Z)] + P[U = 0] f(x),

where the inequality follows from Jensen’s inequality.
By a second application of Jensen’s inequality, we have
f(x) = f(x + ut−1EZ) ≤ Ef(x + ut−1Z) = ft−1(x).
Combined with the previous inequality, we conclude
that ft(x) ≤ E[f(x + ut−1Z)] = ft−1(x) as claimed.
Consequently, we have verified that the function ft
satisfies the assumptions of Lemma 2 where ∇ft has
Lipschitz parameter Lt = L1/ut and error term et =
∇ft(yt)− gt. We apply the lemma momentarily.

Using Assumption A that f(x) ≥ E[f(x + utZ)] −
L0ut = ft(x)− L0ut for all x ∈ X , Lemma 3 implies

1

θ2T−1

[f(xT ) + ϕ(xT )]−
1

θ2T−1

[f(x∗) + ϕ(x∗)]

=
1

θ2T−1

[f(xT ) + ϕ(xT )]−
T−1∑

t=0

1

θt
[f(x∗) + ϕ(x∗)]

≤ 1

θ2T−1

[fT−1(xT ) + ϕ(xT )] (18)

−
T−1∑

t=0

1

θt
[ft(x

∗) + ϕ(x∗)] +
T−1∑

t=0

L0ut
θt

,

which by the definition of ut is in turn bounded by

1

θ2T−1

[fT−1(xT )+ϕ(xT )]−
T−1∑

t=0

1

θt
[ft(x

∗)+ϕ(x∗)]+TL0u.

(19)
Now we apply Lemma 2 to the bound (19), which gives

1

θ2T−1

[f(xT ) + ϕ(xT )− f(x∗)− ϕ(x∗)]

≤ LTψ(x
∗) +

ηT
θT
ψ(x∗)

T−1∑

t=0

1

2θtηt
‖et‖2∗

+

T−1∑

t=0

1

θt
〈et, zt − x∗〉+ TL0u. (20)

The non-probabilistic bound (20) is the key to the re-
mainder of this proof, as well as the starting point for
the proof of Theorem 2 in the next section. What
remains is to take expectations in the bound (20).

Recall the filtration of σ-fields Ft so that xt, yt, zt ∈
Ft−1, that is, Ft contains the randomness in the
stochastic oracle to time t. Since gt is an unbi-
ased estimator of ∇ft(yt) by construction, we have
E[gt | Ft−1] = ∇ft(yt) and

E[〈et, zt − x∗〉] = E
[
E[〈et, zt − x∗〉 | Ft−1]

]

= E
[
〈E[et | Ft−1], zt − x∗〉

]
= 0,

where we have used the fact that zt is measurable with
respect to Ft−1. Now, recall from Lemma 3 that θt ≤
2

2+t and that (1− θt)/θ
2
t = 1/θ2t−1. Thus

θ2t−1

θ2t
=

1

1− θt
≤ 1

1− 2
2+t

=
2 + t

t
≤ 3

2
for t ≥ 4.

Furthermore, we have θt+1 ≤ θt, so by multiplying
both sides of our bound (20) by θ2T−1 and taking ex-
pectations over the random vectors gt,

E[f(xT ) + ϕ(xT )]− [f(x∗) + ϕ(x∗)]

≤ θ2T−1LTψ(x
∗) + θT−1ηTψ(x

∗) + θ2T−1TL0u

+ θT−1

T−1∑

t=0

1

2ηt
E ‖et‖2∗ + θT−1

T−1∑

t=0

E[〈et, zt − x∗〉]

≤ 6L1ψ(x
∗)

Tu
+

2ηTψ(x
∗)

T
+

1

T

T−1∑

t=0

1

ηt
E ‖et‖2∗ +

4L0u

T
,

where we used the fact that LT = L1/uT = L1/θTu.
This completes the proof of Theorem 1.

A.5. Proof of Theorem 2

An examination of the proof of Theorem 1 shows that
to control the probability of deviation from the ex-
pected convergence rate, we need to control two terms:
the squared error sequence

∑T−1
t=0

1
2ηt

‖et‖2∗ and the se-

quence
∑T−1
t=0

1
θt
〈et, zt − x∗〉. The next two lemmas

handle these terms.

Lemma 4. Let X be compact with ‖x− x∗‖ ≤ R for
all x ∈ X . Under Assumption B, we have

P

[
θ2T−1

T−1∑

t=0

1

θt
〈et, zt − x∗〉 ≥ ǫ

]
≤ exp

(
− Tǫ2

R2σ2

)
.

(21)
Consequently, with probability at least 1− δ,

θ2T−1

T−1∑

t=0

1

θt
〈et, zt − x∗〉 ≤ Rσ

√
log 1

δ

T
. (22)

Lemma 5. In the notation of Theorem 2 and under
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Assumption B, we have

logP

[ T−1∑

t=0

1

2ηt
‖et‖2∗ ≥

T−1∑

t=0

1

2ηt
E[‖et‖2∗] + ǫ

]

≤ max

{
− ǫ2

32eσ4
∑T−1
t=0

1
η2t

,− η0
4σ2

ǫ

}
. (23)

Consequently, with probability at least 1− δ,

T−1∑

t=0

1

2ηt
‖et‖2∗ ≤

T−1∑

t=0

1

2ηt
E[‖et‖2∗] (24)

+
4σ2

η
max

{
log

1

δ
,

√
2e log(T + 1) log

1

δ

}
.

The proofs of these probabilistic lemmas are tech-
nical and build off of concentration results for
sums of random variables similar to those used
by Nemirovski et al. (2009); we omit them as they
are somewhat lengthy and require several auxilary
statements on concentration of sub-Gaussian and sub-
exponential random variables. (We provide proofs in
the journal version of this paper.)

Equipped with these lemmas, we now prove Theo-
rem 2. Let us recall the deterministic bound (20) from
the proof of Theorem 1:

1

θ2T−1

[f(xT ) + ϕ(xT )− f(x∗)− ϕ(x∗)]

≤ LTψ(x
∗) +

ηT
θT
ψ(x∗) +

T−1∑

t=0

1

2θtηt
‖et‖2∗

+

T−1∑

t=0

1

θt
〈et, zt − x∗〉+ TL0u.

Noting that θT−1 ≤ θt for t ∈ {0, . . . , T −1}, Lemma 5
implies that with probability at least 1− δ

θT−1

T−1∑

t=0

1

2θtηt
‖et‖2∗ ≤

T−1∑

t=0

1

2ηt
E[‖et‖2∗]

+
4σ2

η
max

{
log(1/δ),

√
2e log(T + 1) log(1/δ)

}
.

Applying Lemma 4, we see that with probability at
least 1− δ

θ2T−1

T−1∑

t=0

1

θt
〈et, zt − x∗〉 ≤

Rσ
√
log 1

δ√
T

.

The terms remaining to control are deterministic, and
were bounded previously in the proof of Theorem 1;

in particular, we have θ2T−1LT ≤ 6L1

Tu ,
θ2T−1ηT
θT

≤ 4ηT
T+1 ,

and θ2T−1TL0u ≤ 4L0u
T+1 . Combining the above bounds

completes the proof.

A.6. Proof of Lemma 2

Define the linearized version of the cumulative objec-
tive

ℓt(z) :=

t∑

τ=0

1

θτ
[fτ (yτ ) + 〈gτ , z − yτ 〉+ ϕ(z)], (25)

and let ℓ−1(z) denote the indicator function of X . For
conciseness, we adopt the shorthand notation

α−1
t = Lt + ηt/θt and φt(x) = ft(x) + ϕ(x).

By the smoothness of ft, we have

ft(xt+1) + ϕ(xt+1)︸ ︷︷ ︸
φt(xt+1)

≤ ft(yt) + 〈∇ft(yt), xt+1 − yt〉

+
Lt
2

‖xt+1 − yt‖2 + ϕ(xt+1).

From the definition (8a)–(8c) of the triple (xt, yt, zt),
we obtain

φt(xt+1) ≤ ft(yt) + 〈∇ft(yt), θtzt+1 + (1− θt)xt〉

+
Lt
2

‖θtzt+1 − θtzt‖2 + ϕ(θtzt+1 + (1− θt)xt).

Finally, by convexity of the regularizer ϕ, we conclude

φt(xt+1) ≤ θt

[
ft(yt) + 〈∇ft(yt), zt+1 − yt〉+ ϕ(zt+1)

+
Ltθt
2

‖zt+1 − zt‖2
]

(26)

+ (1− θt)[ft(yt) + 〈∇ft(yt), xt − yt〉+ ϕ(xt)].

By the strong convexity of ψ, it is clear that we have
the lower bound

Dψ(x, y) ≥
1

2
‖x− y‖2 . (27)

On the other hand, by the convexity of ft, we have

ft(yt) + 〈∇ft(yt), xt − yt〉 ≤ ft(xt). (28)

Substituting inequalities (27) and (28) into the upper
bound (26) and simplifying yields

φt(xt+1) ≤ θt
[
ft(yt) + 〈∇ft(yt), zt+1 − yt〉+ ϕ(zt+1)

+ LtθtDψ(zt+1, zt)
]

+ (1− θt)[ft(xt) + ϕ(xt)].

We now re-write this upper bound in terms of the error
et = ∇ft(yt)− gt. In particular,

φt(xt+1)

≤ θt
[
ft(yt) + 〈gt, zt+1 − yt〉+ ϕ(zt+1)

+ LtθtDψ(zt+1, zt)
]

+ (1− θt)[ft(xt) + ϕ(xt)] + θt 〈et, zt+1 − yt〉
= θ2t [ℓt(zt+1)− ℓt−1(zt+1) + LtDψ(zt+1, zt)]

+ (1− θt)[ft(xt) + ϕ(xt)] + θt 〈et, zt+1 − yt〉 (29)
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Using the fact that zt minimizes ℓt−1(x)+
1
αt
ψ(x), the

first order conditions for optimality imply that for all

g ∈ ∂ℓt−1(zt), we have
〈
g + 1

αt
∇ψ(zt), x− zt

〉
≥ 0.

Thus, first-order convexity gives

ℓt−1(x)− ℓt−1(zt) ≥ 〈g, x− zt〉 ≥ − 1

αt
〈∇ψ(zt), x− zt〉

=
1

αt
ψ(zt)−

1

α
ψ(x) +

1

αt
Dψ(x, zt).

Adding ℓt(zt+1) to both sides of the above and substi-
tuting x = zt+1, we conclude

ℓt(zt+1)− ℓt−1(zt+1) ≤ ℓt(zt+1)− ℓt−1(zt)

− 1

αt
ψ(zt) +

1

αt
ψ(zt+1)−

1

αt
Dψ(zt+1, zt).

Combining this inequality with the bound (29) and
using the definition α−1

t = Lt + ηt/θt, we find

ft(xt+1) + ϕ(xt+1)

≤ θ2t

[
ℓt(zt+1)− ℓt(zt)−

1

αt
ψ(zt)

+
1

αt
ψ(zt+1)−

ηt
θt
Dψ(zt+1, zt)

]

+ (1− θt)[ft(xt) + ϕ(xt)] + θt 〈et, zt+1 − yt〉

≤ θ2t

[
ℓt(zt+1)− ℓt(zt)−

1

αt
ψ(zt)

+
1

αt+1
ψ(zt+1)−

ηt
θt
Dψ(zt+1, zt)

]

+ (1− θt)[ft(xt) + ϕ(xt)] + θt 〈et, zt+1 − yt〉

since α−1
t is non-decreasing. We now divide both

sides by θ2t and unwrap the recursion. Recall that
(1−θt)/θ2t = 1/θ2t−1 and ft ≤ ft−1 by construction, so
we obtain

1

θ2t
[ft(xt+1) + ϕ(xt+1)]

≤ 1− θt
θ2t

[ft(xt) + ϕ(xt)] + ℓt(zt+1)− ℓt(zt)−
1

αt
ψ(zt)

+
1

αt+1
ψ(zt+1)−

ηt
θt
Dψ(zt+1, zt) +

1

θt
〈et, zt+1 − yt〉

(i)
=

1

θ2t−1

[ft(xt) + ϕ(xt)] + ℓt(zt+1)− ℓt(zt)−
1

αt
ψ(zt)

+
1

αt+1
ψ(zt+1)−

ηt
θt
Dψ(zt+1, zt) +

1

θt
〈et, zt+1 − yt〉

(ii)

≤ 1

θ2t−1

[ft−1(xt) + ϕ(xt)] + ℓt(zt+1)− ℓt(zt)−
1

αt
ψ(zt)

+
1

αt+1
ψ(zt+1)−

ηt
θt
Dψ(zt+1, zt) +

1

θt
〈et, zt+1 − yt〉 .

The equality (i) follows since (1 − θt)/θ
2
t = 1/θ2t−1,

while the inequality (ii) is a consequence of the

fact that ft ≤ ft−1. By applying the three steps
above successively to [ft−1(xt) + ϕ(xt)]/θ

2
t−1, then to

[ft−2(xt−1) + ϕ(xt−1)]/θ
2
t−2, and so on until t = 0, we

find

1

θ2t
[ft(xt+1) + ϕ(xt+1)]

≤ 1− θ0
θ20

[f0(x0) + ϕ(x0)] + ℓt(zt+1) +
1

αt+1
ψ(zt+1)

−
t∑

τ=0

ητ
θτ
Dψ(zτ+1, zτ ) +

t∑

τ=0

1

θτ
〈eτ , zτ+1 − yτ 〉

− ℓ−1(z0)−
1

α0
ψ(z0).

By construction, θ0 = 1, we have ℓ−1(z0) = 0, and
zt+1 minimizes ℓt(x) +

1
αt+1

ψ(x) over X . Thus, for

any x∗ ∈ X , we have

1

θ2t
[ft(xt+1) + ϕ(xt+1)] ≤ ℓt(x

∗) +
1

αt+1
ψ(x∗)

−
t∑

τ=0

ητ
θτ
Dψ(zτ+1, zτ ) +

t∑

τ=0

1

θτ
〈eτ , zτ+1 − yτ 〉 .

Recalling the definition (25) of ℓt and noting that
ft(yt) + 〈∇ft(yt), x− yt〉 ≤ ft(x) by convexity, we ex-
pand ℓt and have

1

θ2t
[ft(xt+1) + ϕ(xt+1)]

≤
t∑

τ=0

1

θτ
[fτ (yτ ) + 〈gτ , x∗ − yτ 〉+ ϕ(x∗)] +

1

αt+1
ψ(x∗)

−
t∑

τ=0

ητ
θτ
Dψ(zτ+1, zτ ) +

t∑

τ=0

1

θτ
〈eτ , zτ+1 − yt〉

=

t∑

τ=0

1

θτ
[fτ (yτ ) + 〈∇fτ (yτ ), x∗ − yτ 〉+ ϕ(x∗)]

+
1

αt+1
ψ(x∗)

−
t∑

τ=0

ητ
θτ
Dψ(zτ+1, zτ ) +

t∑

τ=0

1

θτ
〈eτ , zτ+1 − x∗〉

≤
t∑

τ=0

1

θτ
[fτ (x

∗) + ϕ(x∗)] +
1

αt+1
ψ(x∗) (30)

−
t∑

τ=0

ητ
θτ
Dψ(zτ+1, zτ ) +

t∑

τ=0

1

θτ
〈eτ , zτ+1 − x∗〉 .

Now we use the Fenchel-Young inequality applied to
the conjugates 1

2 ‖·‖
2
and 1

2 ‖·‖
2
∗, which gives

〈et, zt+1 − x∗〉 = 〈et, zt − x∗〉+ 〈et, zt+1 − zt〉

≤ 〈et, zt − x∗〉+ 1

2ηt
‖et‖2∗ +

ηt
2
‖zt − zt+1‖2 .
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In particular,

−ηt
θt
Dψ(zt+1, zt) +

1

θt
〈et, zt+1 − x∗〉

≤ 1

2ηtθt
‖et‖2∗ +

1

θt
〈et, zt − x∗〉 .

Using this inequality and rearranging (30) gives the
statement of the lemma.

B. Proof of Theorem 3

In this section, we provide the promised proof of Theo-
rem 1. Our proof is based on the following proposition,
which shows the exponential decrease of the optimiza-
tion error as a function of the number of epochs.

Proposition 1. Let x(k) denote the output of Algo-
rithm 1 and let Assumptions A and C. In addition, let
M ≥ f(x(0))+ϕ(x(0))−f(x∗)−ϕ(x∗) denote an upper
bound on the initial optimality gap. Then

E[f(x(k)) + ϕ(x(k))]− [f(x∗) + ϕ(x∗)]

≤ 2−kM+ 5 · 2−k
[
σ2

2η
+ L0u

]
. (31)

Before proving Proposition 1, we give the proof of The-
orem 3. To that end, we compute the number of itera-
tions required to achieve a particular ǫ-accuracy for the
optimization error (31). We first note that by choos-
ing k = log2

M

ǫ , we can replace the expected optimality
gap (31) with

ǫ

M
M+ 5 · ǫ

M

[
σ2

2η
+ L0u

]
= ǫ+ 5 · ǫ

M

[
σ2

2η
+ L0u

]
.

What remains is to compute the number of iterations
of the three-series updates (8a)–(8c). To that end,
we compute the sum of t(i) as chosen across all the
epochs of Algorithm 1. Using that max{a, b} ≤ a + b
for a, b ≥ 0, we have

k∑

i=1

t(i) ≤ 4

k∑

i=1

√
L1

uλ
(
√
2)i + 12

k∑

i=1

2iη

λ

= 4(
√
2)k

√
L1

uλ

k∑

i=1

(
√
2)−i +

12η

λ
2k

k∑

i=1

2i−k

≤ 4√
2

√
L1

uλ
· 1

1−
√
2/2

(
√
2)k +

24η

λ
2k.

Plugging in the choice of k = log2(M/ǫ), we conclude
that

k∑

i=1

t(i) ≤ 4√
2− 1

√
L1

uλ
·
√

M

ǫ
+

24η

λ
· M
ǫ
,

which is the content of Theorem 1.

Proof of Proposition 1 We begin by recasting the
convergence guarantee of Lemma 2 in the necessary
epoch-based notation. Let xτ (i) denote the value of
xτ in epoch i, and similarly for zτ (i), gτ (i), and so
on. Let fi(x) = Eµ[f(x+ u(i)Z)] denote the mollified
function during epoch i, and define the error of the
gradient estimate gτ (i) at iteration τ of epoch i to be
eτ (i) = ∇fi(yτ (i)) − gτ (i). Since ψ(·) is 1-strongly
convex with respect to the norm ‖·‖, the output x(i)
of iteration i of Algorithm 1 satisfies

fi(x(i)) + ϕ(x(i))− [fi(x
∗) + ϕ(x∗)]

≤ θ2t(i)−1

(
L1

u(i)
+
η(i)

θt(i)

)
Dψ(x

∗, x(i− 1)) (32)

+ θ2t(i)−1

t(i)−1∑

τ=0

1

2θτη(i)
‖eτ (i)‖2∗

+ θ2t(i)−1

t(i)−1∑

τ=0

1

θτ
〈eτ (i), zτ (i)− x∗〉 .

Define the error factors

E(i) :=

t(i)−1∑

τ=0

1

2θτη(i)
‖eτ (i)‖2∗

+

t(i)−1∑

τ=0

1

θτ
〈eτ (i), zτ (i)− x∗〉 , (33)

and apply the smoothing assumption A to the single-
epoch bound (32) to see that

f(x(i)) + ϕ(x(i))− [f(x∗) + ϕ(x∗)]

≤ θ2t(i)−1

(
L1

u(i)
+
η(i)

θt(i)

)
Dψ(x

∗, x(i− 1))

+ θ2t(i)−1E(i) + L0u(i). (34)

Note that by our strong-convexity assumption C, for
any x ∈ X we have

Dψ(x
∗, x) ≤ 1

λ
[f(x) + ϕ(x)− f(x∗)− ϕ(x∗)] .

Define φ(x) = f(x) +ϕ(x) for notational convenience.
Then we can replace the upper bound (34) with

θ2t(i)−1

λ

(
L1

u(i)
+
η(i)

θt(i)

)
[φ(x(i− 1))− φ(x∗)]

+ θ2t(i)−1E(i) + L0u(i).

To simplify, we make the definitions of the multiplica-
tion factors M(i) and πk(i) as

M(i) :=
θ2t(i)−1

λ

(
L1

u(i)
+
η(i)

θt(i)

)
and πk(i) :=

k∏

j=i+1

M(j).

(35)
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Then recursively applying the bound (34), the defini-
tions (33), (35), and that of the joint function φ imply

f(x(k)) + ϕ(x(k))− f(x∗)− ϕ(x∗)

≤M(k)[f(x(k − 1)) + ϕ(x(k − 1))− f(x∗)− ϕ(x∗)]

+ θ2t(k)−1E(k) + L0u(k)

≤M(k)
(
M(k − 1) [φ(x(k − 2))− φ(x∗)]

+ θ2t(k−1)−1E(k − 1) + L0u(k − 1)
)

+ θ2t(k)−1E(k) + L0u(k)

≤
( k∏

i=1

M(i)

)
[f(x(0)) + ϕ(x(0))− f(x∗)− ϕ(x∗)]

+
k∑

i=1

( k∏

j=i+1

M(j)

)[
θ2t(i)−1E(i) + L0u(i)

]

≤
( k∏

i=1

M(i)

)
M+

k∑

i=1

πk(i)
[
θ2t(i)−1E(i) + L0u(i)

]

(36)

where in the last line (36) we recalled the definition
M ≥ f(x(0)) +ϕ(x(0))− [f(x∗) +ϕ(x∗)]. So if we can
choose η(i) and t(i) so that M(i) < 1

2 , we will have
bounds that decrease geometrically in the number of
epochs k, so very few epochs are necessary.

To that end, choose the iteration count specified in
Algorithm 1:

t(i) = max

{
4

√
L1

u(i)λ
,
12η(i)

λ

}
.

Noting that

θ2t−1

θt
=

θ2t
(1− θt)θt

=
θt

1− θt
≤

2
2+t

1− 2
2+t

=
2

t
,

this choice of t(i) yields the bound

M(i) =
θ2t(i)−1

λ

(
L1

u(i)
+
η(i)

θt(i)

)

≤ 4L1

λu(i)t(i)2
+

2η(i)

λt(i)
≤ 1

4
+

2

12
=

5

12
<

1

2

on the multipliers M(i). So after k epochs, the
bound (36) tells us that

f(x(k)) + ϕ(x(k))− f(x∗)− ϕ(x∗)

≤ 2−kM+
k∑

i=1

πk(i)θ
2
t(i)−1E(i) + L0

k∑

i=1

πk(i)u(i).

Now we take expectations of the error terms E(i). Re-
calling that E[eτ (i) | Fτ−1(i)] = 0, since the draws of
Z and ξ are independent in each iteration, we have

E[E(i)] ≤
t(i)−1∑

τ=0

σ2

2θτη(i)
=

σ2

2i+1θ2t(i)−1η

by the definition of the recursion for the θt (recall
Lemma 3). Consequently, we use the choices η(i) =
η · 2i and u(i) = u · 2−i in Algorithm 1, and we have

E[f(x(k)) + ϕ(x(k))− f(x∗)− ϕ(x∗)]

≤ 2−kM+
σ2

2η

k∑

i=1

πk(i)2
−i + L0u

k∑

i=1

πk(i)2
−i

≤ 2−kM+

[
σ2

2η
+ L0u

] k∑

i=1

(
5

12

)k−i
2−i

= 2−kM+ 2−k
[
σ2

2η
+ L0u

] k∑

i=1

(
5

6

)k−i

≤ 2−kM+ 5 · 2−k
[
σ2

2η
+ L0u

]
.

The bound above is evidently our desired re-
sult (31).

C. Smoothing Properties

In this section, we discuss the analytic properties of
the smoothed function fµ from the convolution (5).
We simply state the results, preferring to avoid length-
ening the already lengthy theoretical treatment, and
referring the reader to Yousefian et al. (2010) for one
example proof, excepting the sharpness argument (the
other proofs are similar). We assume throughout that
functions are sufficiently integrable without bothering
with measurability conditions (since F (·; ξ) is convex,
this is no real loss of generality (Bertsekas, 1973)). By
Fubini’s theorem, we have

fµ(x) =

∫

Ξ

∫

Rd

F (y; ξ)µ(x− y)dydP (ξ)

=

∫

Ξ

Fµ(x; ξ)dP (ξ).

Here Fµ(x; ξ) = (F (·; ξ) ∗ µ)(x). We begin with the
observation that since µ is a density with respect to
Lebesgue measure, the function fµ is in fact differ-
entiable (Bertsekas, 1973). So we have already made
our problem somewhat smoother, as it is now differen-
tiable; for the remainder, we consider finer properties
of the smoothing operation. In particular, we will show
that under suitable conditions on µ, F (·; ξ), and P , the
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function fµ is uniformly close to f over X and ∇fµ is
Lipschitz continuous.

A remark on notation before proceeding: since f is
convex, it is almost-everywhere differentiable, and we
can abuse notation and take its gradient inside of inte-
grals and expectations with respect to Lebesgue mea-
sure. Similarly, F (·; ξ) is almost everywhere differen-
tiable with respect to Lebesgue measure, so we use the
same abuse of notation for F and write ∇F (x+Z; ξ),
which exists with probability 1.

Lemma 6. Let µ be the uniform density on the ℓ∞-
ball of radius u. Assume that E[‖∂F (x; ξ)‖2∞] ≤ L2

0 for
all x ∈ X +B∞(0, u) Then

(i) f(x) ≤ fµ(x) ≤ f(x) + L0d
2 u

(ii) fµ is L0-Lipschitz with respect to the ℓ1-norm
over X .

(iii) fµ is continuously differentiable; moreover, its
gradient is L0

u -Lipschitz continuous with respect
to the ℓ1-norm.

(iv) Let Z ∼ µ. Then E[∇F (x+Z; ξ)] = ∇fµ(x) and
E[‖∇fµ(x)−∇F (x+ Z; ξ)‖2∞] ≤ 4L2

0.

There exist functions for which each of the estimates
(i)–(iii) are tight simultaneously, and (iv) is tight at
least to a factor of 1/4.

Remark: Note that the hypothesis of this lemma is
satisfied if for any fixed ξ ∈ Ξ, the function F (·; ξ) is
L0-Lipschitz with respect to the ℓ1-norm.

The following lemma provides bounds for uniform
smoothing of functions Lipschitz with respect to the
ℓ2-norm while sampling from an ℓ∞-ball.

Lemma 7. Let µ be the uniform density on B∞(0, u)

and assume that E[‖∂F (x; ξ)‖22] ≤ L2
0 for x ∈ X +

B∞(0, u). Then

(i) The function f satisfies the upper bound f(x) ≤
fµ(x) ≤ f(x) + L0u

√
d

(ii) The function fµ is L0-Lipschitz over X .

(iii) The function fµ is continuously differentiable;

moreover, its gradient is 2
√
dL0

u Lipschitz contin-
uous.

(iv) For random variables Z ∼ µ and ξ ∼ P , we have

E[∇F (x+ Z; ξ)] = ∇fµ(x)

and

E[‖∇fµ(x)−∇F (x+ Z; ξ)‖22] ≤ L2
0.

The latter estimate is tight.

A similar lemma can be proved when µ is the den-
sity of the uniform distribution on B2(0, u). In this
case, Yousefian et al. (2010) give (i)–(iii) of the follow-
ing lemma.

Lemma 8 (Yousefian, Nedić, Shanbhag). Let fµ be
defined as in (5) where µ is the uniform density on the

ℓ2-ball of radius u. Assume that E[‖∂F (x; ξ)‖22] ≤ L2
0

for x ∈ X +B2(0, u). Then

(i) f(x) ≤ fµ(x) ≤ f(x) + L0u

(ii) fµ is L0-Lipschitz over X .

(iii) fµ is continuously differentiable; moreover, its

gradient is L0

√
d

u -Lipschitz continuous.

(iv) Let Z ∼ µ. Then E[∇F (x + Z; ξ)] = ∇fµ(x),
and E[‖∇fµ(x)−∇F (x+ Z; ξ)‖22] ≤ L2

0.

In addition, there exists a function f for which each of
the bounds (i)–(iv) cannot be improved by more than
a constant factor.

Lastly, for situations in which F (·; ξ) is L0-Lipschitz
with respect to the ℓ2-norm over all of Rd and for P -
a.e. ξ, we can use the normal distribution to perform
smoothing of the expected function f . In the next
lemma, we study continuity properties with respect to
the ℓ2-norm.

Lemma 9. Let µ be the N(0, u2Id×d) distribution.
Assume that F (·; ξ) is L0-Lipschitz with respect to the
ℓ2-norm—that is

sup{‖g‖2 | g ∈ ∂F (x; ξ), x ∈ X} ≤ L0 for P -a.e. ξ.

Then the following properties hold:

(i) f(x) ≤ fµ(x) ≤ f(x) + L0u
√
d

(ii) fµ is L0-Lipschitz with respect to the ℓ2 norm

(iii) fµ is continuously differentiable; moreover, its
gradient is L0

u -Lipschitz continuous with respect
to the ℓ2-norm.

(iv) Let Z ∼ µ. Then E[∇F (x + Z; ξ)] = ∇fµ(x),
and E[‖∇fµ(x)−∇F (x+ Z; ξ)‖22] ≤ L2

0.

In addition, there exists a function f for which each of
the bounds (i)–(iv) cannot be improved by more than
a constant factor.


