Estimating a mean, privately

Also mostly optimally

John Duchi Based on joint work with Rohith Kuditipudi and Saminul Haque Stanford University

Problem in this talk: estimating a mean

- Sample $X_i \overset{\mathrm{iid}}{\sim} P$ with mean $\mu = \mathbb{E}[X] \in \mathbb{R}^d$ and covariance $\mathrm{Cov}(X_i) = \Sigma$
- Measure error with respect to norm $\|v\|_{\Sigma}^2 \coloneqq v^T \Sigma^{-1} v$ covariance induces
- Sample mean is efficient: for $\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$

$$\mathbb{E}\left[\left\|\widehat{\mu} - \mu\right\|_{\Sigma}^{2}\right] = \mathbb{E}\left[\left(\widehat{\mu} - \mu\right)^{T} \Sigma^{-1} (\widehat{\mu} - \mu)\right] = \frac{d}{n}$$

Obvious comment: adaptive to covariance, whatever it is

Problem in this talk: estimating a mean

- Sample $X_i \overset{\mathrm{iid}}{\sim} P$ with mean $\mu = \mathbb{E}[X] \in \mathbb{R}^d$ and covariance $\mathrm{Cov}(X_i) = \Sigma$
- Measure error with respect to norm $\|v\|_{\Sigma}^2 \coloneqq v^T \Sigma^{-1} v$ covariance induces
- Sample mean is efficient: for $\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$

$$\mathbb{E}\left[\left\|\widehat{\mu} - \mu\right\|_{\Sigma}^{2}\right] = \mathbb{E}\left[\left(\widehat{\mu} - \mu\right)^{T} \Sigma^{-1} (\widehat{\mu} - \mu)\right] = \frac{d}{n}$$

Obvious comment: adaptive to covariance, whatever it is

Challenge: no similarly efficient and adaptive estimator under privacy

Differential Privacy

Dwork, McSherry, Nissim, Smith 06 (Dwork et al. 06b)

Setting: sample x of size n, and randomized mechanism M for releasing data

Mechanism M is (ε, δ) -differentially private if for all sets A

$$\mathbb{P}(\mathsf{M}(x) \in A) \le e^{\varepsilon} \mathbb{P}(\mathsf{M}(x') \in A) + \delta$$

whenever $x, x' \in \mathcal{X}^n$ differ in only a single element

Differential Privacy

Dwork, McSherry, Nissim, Smith 06 (Dwork et al. 06b)

Setting: sample x of size n, and randomized mechanism M for releasing data

Mechanism M is (ε, δ) -differentially private if for all sets A

$$\mathbb{P}(\mathsf{M}(x) \in A) \le e^{\varepsilon} \mathbb{P}(\mathsf{M}(x') \in A) + \delta$$

whenever $x, x' \in \mathcal{X}^n$ differ in only a single element

Said differently: any test of whether data is x or x' based on M(x) has

$$\mathbb{P}(\text{Type I error}) + \mathbb{P}(\text{Type II error}) \geq \frac{2}{1 + e^{\varepsilon}} - \delta$$

Basic mechanisms

• Have a function $f:\mathcal{X}^n o \mathbb{R}$ we wish to estimate with *global sensitivity*

$$GS_f := \sup_{d_{\text{ham}}(x,x') \le 1} |f(x) - f(x')|$$

• Laplace mechanism (Dwork et al. 06):

$$M(x) := f(x) + \frac{GS_f}{\varepsilon} Lap(1)$$

Basic mechanisms

• Have a function $f:\mathcal{X}^n o\mathbb{R}$ we wish to estimate with *global sensitivity*

$$GS_f := \sup_{d_{\text{ham}}(x,x') \le 1} |f(x) - f(x')|$$

Laplace mechanism (Dwork et al. 06):

$$M(x) := f(x) + \frac{GS_f}{\varepsilon} Lap(1)$$

Privacy (when sensitivity is 1):

$$\frac{\mathbb{P}(M(x) \in A)}{\mathbb{P}(M(x') \in A)} = \frac{\int_{A} \exp(-\varepsilon |f(x) - w|) dw}{\int_{A} \exp(-\varepsilon |f(x') - w|) dw}$$
$$\leq \sup_{w} \frac{\exp(-\varepsilon |f(x) - w|)}{\exp(-\varepsilon |f(x') - w|)}$$
$$\leq \exp(\varepsilon |f(x) - f(x')|) \leq \exp(\varepsilon)$$

Basic mechanisms

• Have a function $f:\mathcal{X}^n o \mathbb{R}$ we wish to estimate with *global sensitivity*

$$GS_f := \sup_{d_{\text{ham}}(x,x') \le 1} |f(x) - f(x')|$$

• Laplace mechanism (Dwork et al. 06):

$$M(x) := f(x) + \frac{GS_f}{\varepsilon} Lap(1)$$

Privacy (when sensitivity is 1):

$$\frac{\mathbb{P}(M(x) \in A)}{\mathbb{P}(M(x') \in A)} = \frac{\int_{A} \exp(-\varepsilon |f(x) - w|) dw}{\int_{A} \exp(-\varepsilon |f(x') - w|) dw}$$

$$\leq \sup_{w} \frac{\exp(-\varepsilon |f(x) - w|)}{\exp(-\varepsilon |f(x') - w|)}$$

$$\leq \exp(\varepsilon |f(x) - f(x')|) \leq \exp(\varepsilon)$$

Utility

$$\mathbb{E}[(M(x) - f(x))^2] = \frac{GS_f^2}{\varepsilon^2}$$

Basic mechanisms: Gaussian

• Have a function $f(x):\mathcal{X}^n o \mathbb{R}^d$ we wish to estimate with *global sensitivity*

$$GS_f := \sup_{d_{\text{ham}}(x,x') \le 1} ||f(x) - f(x')||_2$$

• Gaussian mechanism (Dwork et al. 06b) is (ε, δ) -differentially private:

$$M(x) \coloneqq f(x) + \mathcal{N}\left(0, \frac{2GS_f^2}{\varepsilon^2} \log \frac{1}{\delta}I\right)$$

Utility

$$\mathbb{E}\left[\left\|M(x) - f(x)\right\|_{2}^{2}\right] = 2GS_{f}^{2} \cdot \frac{d}{\varepsilon^{2}}\log\frac{1}{\delta}$$

Note: scaling with dimension is minimax optimal [Steinke/Ullman 15]

Suppose data bounded in [-1, 1]

$$f(x) = \overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i \qquad GS_f = \frac{2}{n}$$

• For either Laplace or Gaussian mechanism,

$$\mathbb{E}[(M(x) - \overline{x}_n)^2] \le \frac{O(1)}{n^2 \varepsilon^2}$$

• If data is unbounded, truncate, then apply mechanism

• If data is unbounded, truncate, then apply mechanism

• If data is unbounded, truncate, then apply mechanism

For either Laplace or Gaussian mechanism, when X has p moments

$$\mathbb{E}[(M(x) - \overline{x}_n)^2] \le O(1) \left[\frac{B^2}{n^2 \varepsilon^2} + \frac{1}{B^{2p-2}} \right]$$

• If data is unbounded, truncate, then apply mechanism

For either Laplace or Gaussian mechanism, when X has p moments

$$\mathbb{E}[(M(x) - \overline{x}_n)^2] \le O(1) \left[\frac{B^2}{n^2 \varepsilon^2} + \frac{1}{B^{2p-2}} \right]$$

Optimizing for B, this is minimax optimal [Barber/Duchi 14]

- Suppose data bounded in an ℓ_2 -ball of radius $O(\sqrt{d})$ with identity covariance
- Global sensitivity $\mathrm{GS}_f \asymp \frac{\sqrt{d}}{n}$ and scaling $\|x\|_2 = \sqrt{d}$

$$\mathbb{E}\left[\left\|\mathsf{M}(X_1^n) - \mu\right\|_2^2\right] = \frac{d}{n} + \frac{d^2 \log \frac{1}{\delta}}{n^2 \varepsilon^2}$$

Goal: estimating adaptively to covariance

- Sample $X_i \overset{\mathrm{iid}}{\sim} P$ with mean $\mu = \mathbb{E}[X]$ and covariance $\mathrm{Cov}(X_i) = \Sigma$
- Target: a private mechanism $\widetilde{\mu}$ that with high probability achieves

$$\|\widetilde{\mu} - \mu\|_{\Sigma}^{2} \lesssim \frac{d}{n} + \widetilde{O}(1) \frac{d^{2}}{n^{2} \varepsilon^{2}}$$

Statistical efficiency

Minimax privacy lower bound [Barber & Duchi 14, Steinke & Ullman 15]

- Remove data outside covariance ball
- Estimate truncated mean with sensitivity

$$\|\widehat{\mu}_{\mathrm{tr}}(x) - \widehat{\mu}_{\mathrm{tr}}(x')\|_{\Sigma}^{2} \lesssim \frac{d}{n^{2}}$$

- Remove data outside covariance ball
- Estimate truncated mean with sensitivity

$$\|\widehat{\mu}_{\mathrm{tr}}(x) - \widehat{\mu}_{\mathrm{tr}}(x')\|_{\Sigma}^{2} \lesssim \frac{d}{n^{2}}$$

- Remove data outside covariance ball
- Estimate truncated mean with sensitivity

$$\|\widehat{\mu}_{\mathrm{tr}}(x) - \widehat{\mu}_{\mathrm{tr}}(x')\|_{\Sigma}^{2} \lesssim \frac{d}{n^{2}}$$

• Add normal noise:

$$\mathsf{M}(x) \coloneqq \widehat{\mu}_{\mathrm{tr}}(x) + \mathcal{N}\left(0, \frac{d\log\frac{1}{\delta}}{n^2}\Sigma\right)$$

- Remove data outside covariance ball
- Estimate truncated mean with sensitivity

$$\|\widehat{\mu}_{\mathrm{tr}}(x) - \widehat{\mu}_{\mathrm{tr}}(x')\|_{\Sigma}^{2} \lesssim \frac{d}{n^{2}}$$

Add normal noise:

$$\mathsf{M}(x) \coloneqq \widehat{\mu}_{\mathrm{tr}}(x) + \mathcal{N}\left(0, \frac{d\log\frac{1}{\delta}}{n^2}\Sigma\right)$$

Utility

$$\mathbb{E}\left[\left\|\mathsf{M}(X) - \mu\right\|_{\Sigma}^{2}\right] = \frac{d}{n} + O(1) \frac{d^{2} \log \frac{1}{\delta}}{n^{2} \varepsilon^{2}}$$

CoinPress: adapting to scale

Biswas, Dong, Kamath, Ullman [2020]

- Repeatedly estimate mean in truncated region, shrink region (privately), repeat
- Delightfully practical
- Fails to adapt to covariance

CoinPress: adapting to scaleBiswas, Dong, Kamath, Ullman [2020]

- Repeatedly estimate mean in truncated region, shrink region (privately), repeat
- Delightfully practical
- Fails to adapt to covariance

CoinPress: adapting to scaleBiswas, Dong, Kamath, Ullman [2020]

- Repeatedly estimate mean in truncated region, shrink region (privately), repeat
- Delightfully practical
- Fails to adapt to covariance

CoinPress: adapting to scaleBiswas, Dong, Kamath, Ullman [2020]

- Repeatedly estimate mean in truncated region, shrink region (privately), repeat
- Delightfully practical
- Fails to adapt to covariance

"Good" datasets have most data near the mean

$$\mathcal{G}(B) := \{(x_1, \dots, x_n) \subset \mathbb{R}^d \mid ||\overline{x}_n - x_i||_{\Sigma_n} \leq B, \text{ all } i\}$$

"Good" datasets have most data near the mean

$$\mathcal{G}(B) \coloneqq \left\{ (x_1, \dots, x_n) \subset \mathbb{R}^d \mid ||\overline{x}_n - x_i||_{\Sigma_n} \leq B, \text{ all } i \right\}$$

• Hamming distance is 1-Lipschitz, so *T* is private:

$$T = d_{\text{hamming}}((x_i)_{i=1}^n, \mathcal{G}(B)) + \text{Lap}(1/\varepsilon)$$

"Good" datasets have most data near the mean

$$\mathcal{G}(B) := \{(x_1, \dots, x_n) \subset \mathbb{R}^d \mid ||\overline{x}_n - x_i||_{\Sigma_n} \leq B, \text{ all } i\}$$

• Hamming distance is 1-Lipschitz, so *T* is private:

$$T = d_{\text{hamming}}((x_i)_{i=1}^n, \mathcal{G}(B)) + \text{Lap}(1/\varepsilon)$$

"Good" datasets have most data near the mean

$$\mathcal{G}(B) := \{(x_1, \dots, x_n) \subset \mathbb{R}^d \mid ||\overline{x}_n - x_i||_{\Sigma_n} \leq B, \text{ all } i\}$$

• Hamming distance is 1-Lipschitz, so *T* is private:

$$T = d_{\text{hamming}}((x_i)_{i=1}^n, \mathcal{G}(B)) + \text{Lap}(1/\varepsilon)$$

Release noisy mean if T is small enough:

$$(z_i)_{i=1}^n = \underset{z \in \mathcal{G}(B)}{\operatorname{argmin}} d_{\operatorname{hamming}}(z, x)$$

"Good" datasets have most data near the mean

$$\mathcal{G}(B) := \{(x_1, \dots, x_n) \subset \mathbb{R}^d \mid ||\overline{x}_n - x_i||_{\Sigma_n} \leq B, \text{ all } i\}$$

• Hamming distance is 1-Lipschitz, so *T* is private:

$$T = d_{\text{hamming}}((x_i)_{i=1}^n, \mathcal{G}(B)) + \text{Lap}(1/\varepsilon)$$

Release noisy mean if T is small enough:

$$(z_{i})_{i=1}^{n} = \underset{z \in \mathcal{G}(B)}{\operatorname{argmin}} d_{\operatorname{hamming}}(z, x)$$
$$\widetilde{\mu} = \overline{z}_{n} + \mathcal{N}\left(0, O(1) \frac{d \log \frac{1}{\delta}}{n\varepsilon^{2}} \widehat{\operatorname{Cov}}((z_{i})_{i=1}^{n})\right)$$

Theorem [Brown et al. 21]

This test/project/release framework, where one adds Gaussian noise to a projected sample mean, achieves

Accuracy: If the data are Gaussian and Σ is full rank,

$$\|\widetilde{\mu} - \mu\|_{\Sigma}^2 \lesssim \frac{d}{n} + \frac{d^2}{n^2 \varepsilon^4} \log^6 \frac{1}{\delta}$$

Privacy: it is always (ε, δ) -differentially private

Theorem [Brown et al. 21]

This test/project/release framework, where one adds Gaussian noise to a projected sample mean, achieves

Accuracy: If the data are Gaussian and Σ is full rank,

$$\|\widetilde{\mu} - \mu\|_{\Sigma}^2 \lesssim \frac{d}{n} + \frac{d^2}{n^2 \varepsilon^4} \log^6 \frac{1}{\delta}$$

Privacy: it is always (ε, δ) -differentially private

(More recent work improves this a bit)

Theorem [Brown et al. 21]

This test/project/release framework, where one adds Gaussian noise to a projected sample mean, achieves

Accuracy: If the data are Gaussian and Σ is full rank,

$$\|\widetilde{\mu} - \mu\|_{\Sigma}^2 \lesssim \frac{d}{n} + \frac{d^2}{n^2 \varepsilon^4} \log^6 \frac{1}{\delta}$$

Privacy: it is always (ε, δ) -differentially private

(More recent work improves this a bit)

- Exponential time algorithm
- (Essentially) requires Gaussianity

Two phase approach: covariance then mean

- Step 1: estimate covariance stably
- Step 2: add Gaussian noise with (estimated) covariance to a trimmed mean

Stable covariance estimation

Iteratively shrink covariance until it is stable:

Initialize
$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} \widetilde{x}_i \widetilde{x}_i^T \qquad Z_i \overset{\text{iid}}{\sim} \frac{C}{\varepsilon} \text{Laplace}(1)$$

Until no changes occur, do:

for any indices i satisfying

$$\widetilde{x}_i^T \Sigma^{\dagger} \widetilde{x}_i > c \exp(Z_i - Z_0)$$

add them to the removed indices

$$R \leftarrow R \cup \{i\}$$

re-estimate covariance

$$\Sigma \leftarrow \frac{1}{n} \sum_{i \notin R} \widetilde{x}_i \widetilde{x}_i^T$$

Stable covariance estimation

Iteratively shrink covariance until it is stable:

$$\widetilde{x}_i \coloneqq x_i - x_{n/2+i}$$

Initialize
$$\Sigma = \frac{1}{n} \sum_{i=1}^n \widetilde{x}_i \widetilde{x}_i^T \qquad Z_i \overset{\text{iid}}{\sim} \frac{C}{\varepsilon} \text{Laplace}(1) \quad \mathbf{O}$$

Until no changes occur, do:

for any indices i satisfying

$$\widetilde{x}_i^T \Sigma^{\dagger} \widetilde{x}_i > c \exp(Z_i - Z_0)$$

add them to the removed indices

$$R \leftarrow R \cup \{i\}$$

re-estimate covariance

$$\Sigma \leftarrow \frac{1}{n} \sum_{i \notin R} \widetilde{x}_i \widetilde{x}_i^T$$

Stable covariance estimation

Iteratively shrink covariance until it is stable:

$$\widetilde{x}_i := x_i - x_{n/2+i}$$

Initialize
$$\Sigma = \frac{1}{n} \sum_{i=1}^n \widetilde{x}_i \widetilde{x}_i^T \qquad Z_i \overset{\text{iid}}{\sim} \frac{C}{\varepsilon} \text{Laplace}(1) \quad \mathbf{O}$$

Until no changes occur, do:

for any indices i satisfying

$$\widetilde{x}_i^T \Sigma^{\dagger} \widetilde{x}_i > c \exp(Z_i - Z_0)$$

add them to the removed indices

$$R \leftarrow R \cup \{i\}$$

re-estimate covariance

$$\Sigma \leftarrow \frac{1}{n} \sum_{i \notin R} \widetilde{x}_i \widetilde{x}_i^T$$

Stable covariance estimation

Iteratively shrink covariance until it is stable:

$$\widetilde{x}_i := x_i - x_{n/2+i}$$

Initialize
$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} \widetilde{x}_i \widetilde{x}_i^T \qquad Z_i \overset{\text{iid}}{\sim} \frac{C}{\varepsilon} \text{Laplace}(1)$$

Until no changes occur, do:

for any indices i satisfying

$$\widetilde{x}_i^T \Sigma^{\dagger} \widetilde{x}_i > c \exp(Z_i - Z_0)$$

add them to the removed indices

$$R \leftarrow R \cup \{i\}$$

re-estimate covariance

$$\Sigma \leftarrow \frac{1}{n} \sum_{i \notin R} \widetilde{x}_i \widetilde{x}_i^T$$

Stable covariance estimation

Iteratively shrink covariance until it is stable:

$$\widetilde{x}_i := x_i - x_{n/2+i}$$

Initialize
$$\Sigma = \frac{1}{n} \sum_{i=1}^n \widetilde{x}_i \widetilde{x}_i^T \qquad Z_i \overset{\text{iid}}{\sim} \frac{C}{\varepsilon} \text{Laplace}(1)$$

Until no changes occur, do:

for any indices i satisfying

$$\widetilde{x}_i^T \Sigma^{\dagger} \widetilde{x}_i > c \exp(Z_i - Z_0)$$

add them to the removed indices

$$R \leftarrow R \cup \{i\}$$

re-estimate covariance

$$\Sigma \leftarrow \frac{1}{n} \sum_{i \notin R} \widetilde{x}_i \widetilde{x}_i^T$$

Stable covariance estimation

Iteratively shrink covariance until it is stable:

$$\widetilde{x}_i \coloneqq x_i - x_{n/2+i}$$

Initialize
$$\Sigma = \frac{1}{n} \sum_{i=1}^n \widetilde{x}_i \widetilde{x}_i^T \qquad Z_i \overset{\text{iid}}{\sim} \frac{C}{\varepsilon} \text{Laplace}(1)$$

Until no changes occur, do:

for any indices i satisfying

$$\widetilde{x}_i^T \Sigma^{\dagger} \widetilde{x}_i > c \exp(Z_i - Z_0)$$

add them to the removed indices

$$R \leftarrow R \cup \{i\}$$

re-estimate covariance

$$\Sigma \leftarrow \frac{1}{n} \sum_{i \notin R} \widetilde{x}_i \widetilde{x}_i^T$$

• Given putative covariance A, consider groups of indices, removing those with large A-diameter, then add noise to the result

 Given putative covariance A, consider groups of indices, removing those with large A-diameter, then add noise to the result

Random partition of indices

$$\mathcal{S} = (S_1, \dots, S_k)$$

• Given putative covariance A, consider groups of indices, removing those with large A-diameter, then add noise to the result

Random partition of indices

$$\bigcirc$$
 S_1

$$\mathcal{S} = (S_1, \dots, S_k)$$

For each subset S, if

$$\max_{i,j \in S} \|x_i - x_j\|_A > c \exp(Z_S)$$

remove S:

$$S_{\rm rm} \leftarrow S_{\rm rm} \cup S$$

• Given putative covariance A, consider groups of indices, removing those with large A-diameter, then add noise to the result

Random partition of indices

$$\mathcal{S} = (S_1, \dots, S_k)$$

 \bigcirc S_1

$$\bigcirc$$
 S_2

 \bigcirc S_3

For each subset S, if

$$\max_{i,j \in S} \|x_i - x_j\|_A > c \exp(Z_S)$$

remove S:

$$S_{\rm rm} \leftarrow S_{\rm rm} \cup S$$

• Given putative covariance A, consider groups of indices, removing those with large A-diameter, then add noise to the result

Random partition of indices

$$\bigcirc$$
 S_1

$$\mathcal{S} = (S_1, \dots, S_k)$$

For each subset S, if

$$\max_{i,j \in S} \|x_i - x_j\|_A > c \exp(Z_S)$$

remove S:

$$S_{\rm rm} \leftarrow S_{\rm rm} \cup S$$

If number removed is small

$$\widetilde{\mu}(x,A) = \frac{1}{n - \operatorname{card}(S_{\operatorname{rm}})} \sum_{i \in [n] \setminus S_{\operatorname{rm}}} x_i + \mathcal{N}(0,A)$$

Ingredients for analysis

 $X \stackrel{d}{=}_{\varepsilon,\delta} Y \quad \text{iff} \quad \Pr(X \in A) \leq e^{\varepsilon} \mathbb{P}(Y \in A) + \delta$ Define distributional closeness: $\mathbb{P}(Y \in A) \le e^{\varepsilon} \mathbb{P}(X \in A) + \delta$

Let x, x' be adjacent samples

Lemma

Let R be removed inds, $\widehat{\Sigma}$ covariance.

Then for
$$\widehat{\Sigma}_{-i} = \widehat{\Sigma} - 1\{i \not\in R\}\widetilde{x}_i\widetilde{x}_i^T/n$$

$$\|\widehat{\Sigma}_{-i} - \widehat{\Sigma}\| \leq \frac{C}{n}$$
 w.h.p.

Lemma If $\|A - B\|_{\operatorname{op}} \le \frac{C}{n}$ then

$$\widetilde{\mu}(x,A) \stackrel{d}{=}_{\varepsilon,\delta} \widetilde{\mu}(x,B)$$

Lemma

Compute R' on input x'. Then

$$R \stackrel{d}{=}_{\varepsilon,\delta} R'$$

Lemma

$$\widetilde{\mu}(x,A) \stackrel{d}{=}_{\varepsilon,\delta} \widetilde{\mu}(x',A)$$

Let R be removed inds, $\widehat{\Sigma}$ covariance.

Then for
$$\widehat{\Sigma}_{-i} = \widehat{\Sigma} - 1\{i \not\in R\}\widetilde{x}_i\widetilde{x}_i^T/n$$

$$\|\widehat{\Sigma}_{-i} - \widehat{\Sigma}\| \leq \frac{C}{n}$$
 w.h.p.

Lemma

Compute R' on input x'. Then

$$R \stackrel{d}{=}_{\varepsilon,\delta} R'$$

Lemma $\| \|A - B\|_{\mathrm{op}} \leq \frac{C}{n} \text{ then }$ $\widetilde{\mu}(x,A) \stackrel{d}{=}_{\varepsilon,\delta} \widetilde{\mu}(x,B)$

Lemma

$$\widetilde{\mu}(x,A) \stackrel{d}{=}_{\varepsilon,\delta} \widetilde{\mu}(x',A)$$

Privacy guarantees

Theorem (D., Haque, Kuditipudi)

Let $\widetilde{\mu}(x,\widehat{\Sigma})$ be the output of the stable mean procedure with input covariance $\widehat{\Sigma}$ estimated by the stable covariance procedure.

Assume

$$n \ge \frac{d}{\varepsilon^2} \log^2 \frac{1}{\delta}$$

Then

$$\widetilde{\mu}(x,\widehat{\Sigma})$$
 is $(arepsilon,\delta)$ -differentially private

Let R be removed inds, $\widehat{\Sigma}$ covariance.

Then for
$$\widehat{\Sigma}_{-i} = \widehat{\Sigma} - 1\{i \not\in R\}\widetilde{x}_i\widetilde{x}_i^T/n$$

$$\|\widehat{\Sigma}_{-i} - \widehat{\Sigma}\| \leq \frac{C}{n}$$
 w.h.p.

Lemma

Compute R' on input x'. Then

$$R \stackrel{d}{=}_{\varepsilon,\delta} R'$$

Lemma $\| \|A - B\|_{\mathrm{op}} \leq \frac{C}{n} \text{ then }$ $\widetilde{\mu}(x,A) \stackrel{d}{=}_{\varepsilon,\delta} \widetilde{\mu}(x,B)$

Lemma

$$\widetilde{\mu}(x,A) \stackrel{d}{=}_{\varepsilon,\delta} \widetilde{\mu}(x',A)$$

Let R be removed inds, $\widehat{\Sigma}$ covariance.

Then for
$$\widehat{\Sigma}_{-i} = \widehat{\Sigma} - 1\{i \not\in R\}\widetilde{x}_i\widetilde{x}_i^T/n$$

$$\|\widehat{\Sigma}_{-i} - \widehat{\Sigma}\| \leq \frac{C}{n}$$
 w.h.p.

Let R be removed inds, $\widehat{\Sigma}$ covariance.

Then for
$$\widehat{\Sigma}_{-i} = \widehat{\Sigma} - 1\{i \not\in R\}\widetilde{x}_i\widetilde{x}_i^T/n$$

$$\|\widehat{\Sigma}_{-i} - \widehat{\Sigma}\| \leq \frac{C}{n}$$
 w.h.p.

Lemma

Compute R' on input x'. Then

$$R \stackrel{d}{=}_{\varepsilon,\delta} R'$$

Lemma $\| \|A - B\|_{\mathrm{op}} \leq \frac{C}{n} \text{ then }$ $\widetilde{\mu}(x,A) \stackrel{d}{=}_{\varepsilon,\delta} \widetilde{\mu}(x,B)$

Lemma

$$\widetilde{\mu}(x,A) \stackrel{d}{=}_{\varepsilon,\delta} \widetilde{\mu}(x',A)$$

Compute R' on input x'. Then

$$R \stackrel{d}{=}_{\varepsilon,\delta} R'$$

Let R be removed inds, $\widehat{\Sigma}$ covariance.

Then for
$$\widehat{\Sigma}_{-i} = \widehat{\Sigma} - 1\{i \not\in R\}\widetilde{x}_i\widetilde{x}_i^T/n$$

$$\|\widehat{\Sigma}_{-i} - \widehat{\Sigma}\| \leq \frac{C}{n}$$
 w.h.p.

Lemma

Compute R' on input x'. Then

$$R \stackrel{d}{=}_{\varepsilon,\delta} R'$$

Lemma $\| \|A - B\|_{\mathrm{op}} \leq \frac{C}{n} \text{ then }$ $\widetilde{\mu}(x,A) \stackrel{d}{=}_{\varepsilon,\delta} \widetilde{\mu}(x,B)$

Lemma

$$\widetilde{\mu}(x,A) \stackrel{d}{=}_{\varepsilon,\delta} \widetilde{\mu}(x',A)$$

Lemma If
$$\|A-B\|_{\mathrm{op}} \leq \frac{C}{n}$$
 then

$$\widetilde{\mu}(x,A) \stackrel{d}{=}_{\varepsilon,\delta} \widetilde{\mu}(x,B)$$

Let R be removed inds, $\widehat{\Sigma}$ covariance.

Then for
$$\widehat{\Sigma}_{-i} = \widehat{\Sigma} - 1\{i \not\in R\}\widetilde{x}_i\widetilde{x}_i^T/n$$

$$\|\widehat{\Sigma}_{-i} - \widehat{\Sigma}\| \leq \frac{C}{n}$$
 w.h.p.

Lemma

Compute R' on input x'. Then

$$R \stackrel{d}{=}_{\varepsilon,\delta} R'$$

Lemma $\| \|A - B\|_{\mathrm{op}} \leq \frac{C}{n} \text{ then }$ $\widetilde{\mu}(x,A) \stackrel{d}{=}_{\varepsilon,\delta} \widetilde{\mu}(x,B)$

Lemma

$$\widetilde{\mu}(x,A) \stackrel{d}{=}_{\varepsilon,\delta} \widetilde{\mu}(x',A)$$

For any
$$A$$
,
$$\widetilde{\mu}(x,A) \stackrel{d}{=}_{\varepsilon,\delta} \widetilde{\mu}(x',A)$$

Accuracy Guarantees

Theorem (D., Haque, Kuditipudi)

Let $\widetilde{\mu}(x,\widehat{\Sigma})$ be the output of the stable mean procedure with input covariance $\widehat{\Sigma}$ estimated by the stable covariance procedure.

Assume

$$\max_{i \le n} \|X_i - \mu\|_{\Sigma}^2 \le M^2$$

with high probability. Then

$$\|\widetilde{\mu}(x,\widehat{\Sigma}) - \mu\|_{\Sigma}^{2} \lesssim \frac{d}{n} + \frac{M^{2}d\log^{2}\frac{1}{\delta}}{n^{2}\varepsilon^{2}}$$

Corollary. If the data are subgaussian, then w.h.p.

$$\|\widetilde{\mu}(x,\widehat{\Sigma}) - \mu\|_{\Sigma}^{2} \lesssim \frac{d}{n} + \frac{d(d + \log n)\log^{2}\frac{1}{\delta}}{n^{2}\varepsilon^{2}}$$

Conclusions, extensions, next steps

- We have a polynomial time private mean estimator adaptive to the covariance with (up to logarithmic factors) minimax optimal covariance
- Algorithm is, unfortunately, still not completely practical
- Can adapt to data with fewer moments, though a bit subtle
- Connections between robustness and differential privacy may offer substantial opportunities for practical (and theoretical) advances