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Challenge: no similarly efficient and adaptive estimator under privacy
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Said differently: any test of whether data is x or x’ based on M(x) has

2
P(Type I error) + P(Type II error) > 0

— 1+ ef




Basic mechanisms

e Have a function f : X — R we wish to estimate with global sensitivity
GSp:==  sup [f(z)— f(z')
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Basic mechanisms: Gaussian

» Have a function f(z) : X" — R% we wish to estimate with global sensitivity
GSyp:= sup | f(z) = f(a")ll,

dham (,’I),QZ’,)S].

» Gaussian mechanism (Dwork et al. 06b) is (e, 0)-differentially private:

2GS 1
M (x) = f(a;)+/\f<0, €2f log gl>

Utility

Note: scaling with dimension is minimax optimal [Steinke/Ullman 135]



Basic mechanisms: 1-dimensional mean

» Suppose data bounded in [-1, 1]

L GSf —

S | N

* For either Laplace or Gaussian mechanism,

O(1)

n2e?

3[(M () — Tn)?] <
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Basic mechanisms: 1-dimensional mean

e |f data is unbounded, truncate, then apply mechanism

I B I

* For either Laplace or Gaussian mechanism, when X has p moments

S[(M(2) ~ 7)) < O1) | 55 + s

Optimizing for B, this is minimax optimal [Barber/Duchi 14}



Basic mechanisms: d-dimensional mean

e Suppose data bounded in an ¢, -ball of radius O(y/¢) with identity covariance

Vd

* Global sensitivity GS; < —
T
and scaling ||z, = Vd

dlog%]

e Gaussian mechanism M(z) =%, + N (O, > 5
n“e

Utility

-l n 2
_HM(X1 ) — HHQ_




Goal: estimating adaptively to covariance

iid

e Sample X; ~ P with mean p = E[X] and covariance Cov(X;) = X

* [arget: a private mechanism ﬁ that with high probability achieves

d

~ 2
HM — MHE S

n

Statistical efficiency

O(1)

d2

n2e?

Minimax privacy lower bound
[Barber & Duchi 14, Steinke & Ullman 15]



Estimating a mean with known covariance
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* o Estimate truncated mean with sensitivity
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Estimating a mean with known covariance

e Remove data outside covariance ball

@ * Estimate truncated mean with sensitivity

R - 2 d
[ (@) — el S

®

e Add normal noise: o]
A O <
M(x) = pier () + N (O, ng 0 Z)

{z ]z —ply = Vd} Utility
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CoinPress: adapting to scale
Biswas, Dong, Kamath, Ulilman [2020]

 Repeatedly estimate mean In
truncated region, shrink
region (privately), repeat

* Delightfully practical

* Falls to adapt to covariance \ /
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Safe datasets (and test/release framework)

o “Good” datasets have most data near the mean

B) = {(x1,...,x CRd\Hazn—szZ < B, all i}
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Theorem [Brown et al. 21}
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Safe datasets (and test/release framework)

Theorem [Brown et al. 21}

This test/project/release framework, where one
adds Gaussian noise to a projected sample mean,
achieves

Accuracy:. If the data are Gaussian and
>, is full rank,

d d> 41

~ ) < I 1
L

Privacy: it is always (¢, 0 -differentially private

(More recent work improves this a bit)

* Exponential time algorithm
» (Essentially) requires Gaussianity



Two phase approach: covariance then mean

o Step 1: estimate covariance stably

e Step 2: add Gaussian noise with (estimated) covariance to a trimmed mean



Stable covariance estimation
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Stable mean estimation

» (Given putative covariance A, consider groups of indices, removing those with
large A-diameter, then add noise to the result

Random partition of indices O s,
S=(S.....8 © 5;
(_ : 2 O 53 O O
For each subset S, if
O
max ||z; — 2|4 > cexp(Zs) O O
’j O ‘~<a: A)
remove S: O .
Sim — Sim U S o
If number removed is small O o
- 1
n(r, A) = Z r; + N (0, A)

n — card(Sym) e



Ingredients for analysis

Define distributional closeness: X

d
—e,0 Y

Iff

Let 2, x’ be adjacent samples

Lemma

Let R be removed Inds, EA] covariance.
Thenfor S_;, =% — 1{i & R}7;2" /n

o~ X C
12 — X < . w.h.p.

Lemma

Compute R’ on input 2" Then

RE.s R

P(XeA) <ePYeA)+d
PY e A) <eP(X €A+
Lemma
C
If | A — BHOp < —then
(.CE A) —e,0 M(x B)
Lemma
For any A,
- d -
p(z, A) =<5 p(z’, A)
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Privacy guarantees

Theorem (D., Haque, Kuditipudi)
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Lemma

For any A,
ﬁ(xa A) 28,5 ﬁ(
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Accuracy Guarantees

Theorem (D., Hague, Kuditipudi)

Let f1(x, ) be the output of the stable mean procedure with
input covariance 2. estimated by the stable covariance procedure.

Assume

max || X; — MHE < M~
1<n

with high probabillity. Then ,
e ~ ) d Mzleg <

n2e?

Corollary. If the data are subgaussian, then w.h.p.

. oA d d(d+1 log® L
[ZES R i Chat LOLL 3

n2e?




Conclusions, extensions, next steps

* \We have a polynomial time private mean estimator adaptive to the covariance
with (up to logarithmic factors) minimax optimal covariance

* Algorithm is, unfortunately, still not completely practical
 Can adapt to data with fewer moments, though a bit subtle

* Connections between robustness and differential privacy may offer
substantial opportunities for practical (and theoretical) advances



