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Abstract

We study statistical risk minimization problems under a version of privacy in
which the data is kept confidential even from the learner. In this local privacy
framework, we establish sharp upper and lower bounds on the convergence rates
of statistical estimation procedures. As a consequence, we exhibit a precise trade-
off between the amount of privacy the data preserves and the utility, measured by
convergence rate, of any statistical estimator.

1 Introduction

There are natural tensions between learning and privacy that arise whenever a learner must aggregate
data across multiple individuals. The learner wishes to make optimal use of each data point, but the
providers of the data may wish to limit detailed exposure, either to the learner or to other individuals.
It is of great interest to characterize such tensions in the form of quantitative tradeoffs that can be
both part of the public discourse surrounding the design of systems that learn from data and can be
employed as controllable degrees of freedom whenever such a system is deployed.

We approach this problem from the point of view of statistical decision theory. The decision-
theoretic perspective offers a number of advantages. First, the use of loss functions and risk functions
provides a compelling formal foundation for defining “learning,” one that dates back to Wald [28] in
the 1930’s, and which has seen continued development in the context of research on machine learn-
ing over the past two decades. Second, by formulating the goals of a learning system in terms of
loss functions, we make it possible for individuals to assess whether the goals of a learning system
align with their own personal utility, and thereby determine the extent to which they are willing to
sacrifice some privacy. Third, an appeal to decision theory permits abstraction over the details of
specific learning procedures, providing (under certain conditions) minimax lower bounds that apply
to any specific procedure. Finally, the use of loss functions, in particular convex loss functions, in
the design of a learning system allows powerful tools of optimization theory to be brought to bear.

In more formal detail, our framework is as follows. Given a compact convex set Θ ⊂ R
d, we

wish to find a parameter value θ ∈ Θ achieving good average performance under a loss function
ℓ : X ×R

d → R+. Here the value ℓ(X, θ) measures the performance of the parameter vector θ ∈ Θ
on the sample X ∈ X , and ℓ(x, ·) : Rd → R+ is convex for x ∈ X . We measure the expected
performance of θ ∈ Θ via the risk function

R(θ) := E[ℓ(X, θ)]. (1)

In the standard formulation of statistical risk minimization, a method M is given n samples
X1, . . . , Xn, and outputs an estimate θn approximately minimizing R(θ). Instead of allowing M
access to the samples Xi, however, we study the effect of giving only a perturbed view Zi of each
datum Xi, quantifying the rate of convergence of R(θn) to infθ∈Θ R(θ) as a function of both the
number of samples n and the amount of privacy Zi provides for Xi.
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There is a long history of research at the intersection of privacy and statistics, where there is a natural
competition between maintaining the privacy of elements in a dataset {X1, . . . , Xn} and the output
of statistical procedures. Study of this issue goes back at least to the 1960s, when Warner [29]
suggested privacy-preserving methods for survey sampling. Recently, there has been substantial
work on privacy—focusing on a measure known as differential privacy [12]—in statistics, computer
science, and other fields. We cannot hope to do justice to the large body of related work, referring
the reader to the survey by Dwork [10] and the statistical framework studied by Wasserman and
Zhou [30] for background and references.

In this paper, we study local privacy [13, 17], in which each datum Xi is kept private from the

method M. The goal of many types of privacy is to guarantee that the output θ̂n of the method M
based on the data cannot be used to discover information about the individual samples X1, . . . , Xn,
but locally private algorithms access only disguised views of each datum Xi. Local algorithms
are among the most classical approaches to privacy, tracing back to Warner’s work on randomized
response [29], and rely on communication only of some disguised view Zi of each true sample Xi.
Locally private algorithms are natural when the providers of the data—the population sampled to
give X1, . . . , Xn—do not trust even the statistician or statistical method M, but the providers are
interested in the parameters θ∗ minimizing R(θ). For example, in medical applications, a participant
may be embarrassed about his use of drugs, but if the loss ℓ is able to measure the likelihood of
developing cancer, the participant has high utility for access to the optimal parameters θ∗. In essence,
we would like the statistical procedure M to learn from the data X1, . . . , Xn but not about it.

Our goal is to understand the fundamental tradeoffs between maintaining privacy while still retain-
ing the utility of the statistical inference method M. Though intuitively there must be some tradeoff,
quantifying it precisely has been difficult. In the machine learning literature, Chaudhuri et al. [7]
develop differentially private empirical risk minimization algorithms, and Dwork and Lei [11] and
Smith [26] analyze similar statistical procedures, but do not show that there must be negative effects
of privacy. Rubinstein et al. [24] are able to show that it is impossible to obtain a useful parameter
vector θ that is substantially differentially private; it is unclear whether their guarantees are improv-
able. Recent work by Hall et al. [15] gives sharp minimax rates of convergence for differentially
private histogram estimation. Blum et al. [5] also give lower bounds on the closeness of certain
statistical quantities computed from the dataset, though their upper and lower bounds do not match.
Sankar et al. [25] provide rate-distortion theorems for utility models involving information-theoretic
quantities, which has some similarity to our risk-based framework, but it appears challenging to
map their setting onto ours. The work most related to ours is probably that of Kasiviswanathan et al.
[17], who show that that locally private algorithms coincide with concepts that can be learned with
polynomial sample complexity in Kearns’s statistical query (SQ) model. In contrast, our analysis
addresses sharp rates of convergence, and applies to estimators for a broad class of convex risks (1).

2 Main results and approach

Our approach to local privacy is based on a worst-case measure of mutual information, where we
view privacy preservation as a game between the providers of the data—who wish to preserve
privacy—and nature. Recalling that the method sees only the perturbed version Zi of Xi, we adopt
a uniform variant of the mutual information I(Zi;Xi) between the random variables Xi and Zi

as our measure for privacy. This use of mutual information is by no means original [13, 25], but
because standard mutual information has deficiencies as a measure of privacy [e.g. 13], we say the
distribution Q generating Z from X is private only if I(X;Z) is small for all possible distributions
P on X (possibly subject to constraints). This is similar to the worst-case information approach of
Evfimievski et al. [13], which limits privacy breaches. (In the long version of this paper [9] we also
consider differentially private algorithms.)

The central consequences of our main results are, under standard conditions on the loss functions ℓ,
sharp upper and lower bounds on the possible convergence rates for estimation procedures when we
wish to guarantee a level of privacy I(Xi;Zi) ≤ I∗. We show there are problem dependent constants
a(Θ, ℓ) and b(Θ, ℓ) such that the rates of convergence of all possible procedures are lower bounded

by a(Θ, ℓ)/
√
nI∗ and that there exist procedures achieving convergence rates of b(Θ, ℓ)/

√
nI∗,

where the ratio b(Θ, ℓ)/a(Θ, ℓ) is upper bounded by a universal constant. Thus, we establish and
quantify explicitly the tradeoff between statistical estimation and the amount of privacy.
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We show that stochastic gradient descent is one procedure that achieves the optimal convergence
rates, which means additionally that our upper bounds apply in streaming and online settings, re-
quiring only a fixed-size memory footprint. Our subsequent analysis builds on this favorable prop-
erty of gradient-based methods, whence we focus on statistical estimation procedures that access
data through the subgradients of the loss functions ∂ℓ(X, θ). This is a natural restriction. Gradients
of the loss ℓ are asymptotically sufficient [18] (in an asymptotic sense, gradients contain all of the
statistical information for risk minimization problems), stochastic gradient-based estimation proce-
dures are (sample) minimax optimal and Bahadur efficient [23, 1, 27, Chapter 8], many estimation
procedures are gradient-based [20, 6], and distributed optimization procedures that send gradient
information across a network to a centralized procedure M are natural [e.g. 3]. Our mechanism
gives M access to a vector Zi that is a stochastic (sub)gradient of the loss evaluated on the sample
Xi at a parameter θ of the method’s choosing:

E[Zi | Xi, θ] ∈ ∂ℓ(Xi, θ), (2)

where ∂ℓ(Xi, θ) denotes the subgradient set of the function θ 7→ ℓ(Xi, θ). In a sense, the unbiased-
ness of the subgradient inclusion (2) is information-theoretically necessary [1].

To obtain upper and lower bound on the convergence rate of estimation procedures, we provide a
two-part analysis. One part requires studying saddle points of the mutual information I(X;Z) (as a
function of the distributions P of X and Q(· | X) of Z) under natural constraints that allow inference
of the optimal parameters θ∗ for the risk R. We show that for certain classes of loss functions ℓ and
constraints on the communicated version Zi of the data Xi, there is a unique distribution Q(· | Xi)
that attains the smallest possible mutual information I(X;Z) for all distributions on X . Using this
unique distribution, we can adapt information-theoretic techniques for obtaining lower bounds on
estimation [31, 1] to derive our lower bounds. The uniqueness results for the conditional distribution
Q show that no algorithm guaranteeing privacy between M and the samples Xi can do better. We
can obtain matching upper bounds by application of known convergence rates for stochastic gradient
and mirror descent algorithms [20, 21], which are computationally efficient.

3 Optimal learning rates and tradeoffs

Having outlined our general approach, we turn in this section to providing statements of our main
results. Before doing so, we require some formalization of our notions of privacy and error measures,
which we now provide.

3.1 Optimal Local Privacy

We begin by describing in slightly more detail the communication protocol by which information
about the random variables X is communicated to the procedure M. We assume throughout that
there exist two d-dimensional compact sets C,D, where C ⊂ intD ⊂ R

d, and we have that
∂ℓ(x, θ) ⊂ C for all θ ∈ Θ and x ∈ X . We wish to maximally “disguise” the random variable
X with the random variable Z satisfying Z ∈ D. Such a setting is natural; indeed, many online
optimization and stochastic approximation algorithms [34, 21, 1] assume that for any x ∈ X and
θ ∈ Θ, if g ∈ ∂ℓ(x, θ) then ‖g‖ ≤ L for some norm ‖·‖. We may obtain privacy by allowing a
perturbation to the subgradient g so long as the perturbation lives in a (larger) norm ball of radius
M ≥ L, so that C = {g ∈ R

d : ‖g‖ ≤ L} ⊂ D = {g ∈ R
d : ‖g‖ ≤ M}.

Now let X have distribution P , and for each x ∈ X , let Q(· | x) denote the regular conditional
probability measure of Z given that X = x. Let Q(·) denote the marginal probability defined by
Q(A) = EP [Q(A | X)]. The mutual information between X and Z is the expected Kullback-
Leibler (KL) divergence between Q(· | X) and Q(·):

I(P,Q) = I(X;Z) := EP [Dkl (Q(· | X)||Q(·))] . (3)

We view the problem of privacy as a game between the adversary controlling P and the data owners,
who use Q to obscure the samples X . In particular, we say a distribution Q guarantees a level of
privacy I∗ if and only if supP I(P,Q) ≤ I∗. (Evfimievski et al. [13, Definition 6] present a similar
condition.) Thus we seek a saddle point P ∗, Q∗ such that

sup
P

I(P,Q∗) ≤ I(P ∗, Q∗) ≤ inf
Q

I(P ∗, Q), (4)
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where the first supremum is taken over all distributions P on X such that ∇ℓ(X, θ) ∈ C with
P -probability 1, and the infimum is taken over all regular conditional distributions Q such that if
Z ∼ Q(· | X), then Z ∈ D and EQ[Z | X, θ] = ∇ℓ(X, θ). Indeed, if we can find P ∗ and Q∗

satisfying the saddle point (4), then the trivial direction of the max-min inequality yields

sup
P

inf
Q

I(P,Q) = I(P ∗, Q∗) = inf
Q

sup
P

I(P,Q).

To fully formalize this idea and our notions of privacy, we define two collections of probability
measures and associated losses. For sets C ⊂ D ⊂ R

d, we define the source set

P (C) := {Distributions P such that suppP ⊂ C} (5a)

and the set of regular conditional distributions (r.c.d.’s), or communicating distributions,

Q (C,D) :=
{

r.c.d.’s Q s.t. suppQ(· | c) ⊂ D and

∫

D

zdQ(z | c) = c for c ∈ C
}
. (5b)

The definitions (5a) and (5b) formally define the sets over which we may take infima and suprema
in the saddle point calculations, and they capture what may be communicated. The condi-
tional distributions Q ∈ Q (C,D) are defined so that if ∇ℓ(x, θ) ∈ C then EQ[Z | X, θ] :=∫
D
zdQ (z | ∇ℓ(x, θ)) = ∇ℓ(x, θ). We now make the following key definition:

Definition 1. The conditional distribution Q∗ satisfies optimal local privacy for the sets
C ⊂ D ⊂ R

d at level I∗ if

sup
P

I(P,Q∗) = inf
Q

sup
P

I(P,Q) = I∗,

where the supremum is taken over distributions P ∈ P (C) and the infimum is taken over regular
conditional distributions Q ∈ Q (C,D).

If a distribution Q∗ satisfies optimal local privacy, then it guarantees that even for the worst possible
distribution on X , the information communicated about X is limited. In a sense, Definition 1
captures the natural competition between privacy and learnability. The method M specifies the
set D to which the data Z it receives must belong; the “teachers,” or owners of the data X , choose
the distribution Q to guarantee as much privacy as possible subject to this constraint. Using this
mechanism, if we can characterize a unique distribution Q∗ attaining the infimum (4) for P ∗ (and
by extension, for any P ), then we may study the effects of privacy between the method M and X .

3.2 Minimax error and loss functions

Having defined our privacy metric, we now turn to our original goal: quantification of the effect
privacy has on statistical estimation rates. Let M denote any statistical procedure or method (that
uses n stochastic gradient samples) and let θn denote the output of M after receiving n such samples.
Let P denote the distribution according to which samples X are drawn. We define the (random) error
of the method M on the risk R(θ) = E[ℓ(X, θ)] after receiving n sample gradients as

ǫn(M, ℓ,Θ, P ) := R(θn)− inf
θ∈Θ

R(θ) = EP [ℓ(X, θn)]− inf
θ∈Θ

EP [ℓ(X, θ)]. (6)

In our settings, in addition to the randomness in the sampling distribution P , there is additional
randomness from the perturbation applied to stochastic gradients of the objective ℓ(X, ·) to mask X
from the statistitician. Let Q denote the regular conditional probability—the channel distribution—
whose conditional part is defined on the range of the subgradient mapping ∂ℓ(X, ·). As the output
θn of the statistical procedure M is a random function of both P and Q, we measure the expected
sub-optimality of the risk according to both P and Q. Now, let L be a collection of loss functions,
where L(P ) denotes the losses ℓ : suppP ×Θ → R belonging to L. We define the minimax error

ǫ∗n(L,Θ) := inf
M

sup
ℓ∈L(P ),P

EP,Q[ǫn(M, ℓ,Θ, P )], (7)

where the expectation is taken over the random samples X ∼ P and Z ∼ Q(· | X). We characterize
the minimax error (7) for several classes of loss functions L(P ), giving sharp results when the
privacy distribution Q satisfies optimal local privacy.

We assume that our collection of loss functions obey certain natural smoothness conditions, which
are often (as we see presently) satisfied. We define the class of losses as follows.
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Definition 2. Let L > 0 and p ≥ 1. The set of (L, p)-loss functions are those measurable functions
ℓ : X ×Θ → R such that x ∈ X , the function θ 7→ ℓ(x, θ) is convex and

|ℓ(x, θ)− ℓ(x, θ′)| ≤ L ‖θ − θ′‖q (8)

for any θ, θ′ ∈ Θ, where q is the conjugate of p: 1/p+ 1/q = 1.

A loss ℓ satisfies the condition (8) if and only if for all θ ∈ Θ, we have the inequality ‖g‖p ≤ L for

any subgradient g ∈ ∂ℓ(x, θ) (e.g. [16]). We give a few standard examples of such loss functions.
First, we consider finding a multi-dimensional median, in which case the data x ∈ R

d and ℓ(x, θ) =
L ‖θ − x‖1. This loss is L-Lipschitz with respect to the ℓ1 norm, so it belongs to the class of (L,∞)
losses. A second example includes classification problems, using either the hinge loss or logistic
regression loss. In these cases, the data comes in pairs x = (a, b), where a ∈ R

d is the set of
regressors and b ∈ {−1, 1} is the label; the losses are

ℓ(x, θ) = [1− b 〈a, θ〉]+ or ℓ(x, θ) = log (1 + exp(−b 〈a, θ〉))

By computing (sub)gradients, we may verify that each of these belong to the class of (L, p)-losses
if and only if the data a satisfies ‖a‖p ≤ L, which is a common assumption [7, 24].

The privacy-guaranteeing channel distributions Q∗ we construct in Section 4 are motivated by our
concern with the (L, p) families of loss functions. In our model of computation, the learning method
M queries the loss ℓ(Xi, ·) at the point θ; the owner of the datum Xi then computes the subgradient
∂ℓ(Xi, θ) and returns a masked version Zi with the property that E[Zi | Xi, θ] ∈ ∂ℓ(Xi, θ). In
the following two theorems, we give lower bounds on ǫ∗n for the (L,∞) and (L, 1) families of loss
functions under the constraint that the channel distribution Q must guarantee that a limited amount
of information I(Xi;Zi) is communicated: the channel distribution Q satisfies our Definition 1 of
optimal local privacy.

3.3 Main theorems

We now state our two main theorems, deferring proofs to Appendix B. Our first theorem applies to
the class of (L,∞) loss functions (recall Definition 2). We assume that the set to which the perturbed
data Z must belong is [−M∞,M∞]d, where M∞ ≥ L. We state two variants of the theorem, as one
gives sharper results for an important special case.

Theorem 1. Let L be the collection of (L,∞) loss functions and assume the conditions of the
preceding paragraph. Let Q satisfy be optimally private for the collection L. Then

(a) If Θ contains the ℓ∞ ball of radius r,

ǫ∗n(L,Θ) ≥ 1

163
· M∞rd√

n
.

(b) If Θ = {θ ∈ R
d : ‖θ‖1 ≤ r},

ǫ∗n(L,Θ) ≥ rM∞

√
log(2d)

17
√
n

.

For our second theorem, we assume that the loss functions L consist of (L, 1) losses, and that the
perturbed data must belong to the ℓ1 ball of radius M1, i.e., Z ∈ {z ∈ R

d | ‖z‖1 ≤ M1}. Setting
M = M1/L, we define (these constants relate to the optimal local privacy distribution for ℓ1-balls)

γ := log

(
2d− 2 +

√
(2d− 2)2 + 4(M2 − 1)

2(M − 1)

)
, and ∆(γ) :=

eγ − e−γ

eγ + e−γ + 2(d− 1)
. (9)

Theorem 2. Let L be the collection of (L, 1) loss functions and assume the conditions of the pre-
ceding paragraph. Let Q be optimally locally private for the collection L. Then

ǫ∗n(L,Θ) ≥ 1

163
· rL

√
d√

n∆(γ)
.
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Remarks We make two main remarks about Theorems 1 and 2. First, we note that each result
yields a minimax rate for stochastic optimization problems when there is no random distribution Q.
Indeed, in Theorem 1, we may take M∞ = L, in which case (focusing on the second statement of

the theorem) we obtain the lower bound rL
√

log(2d)/17
√
n when Θ = {θ ∈ R

d : ‖θ‖1 ≤ r}.
Mirror descent algorithms [20, 21] attain a matching upper bound (see the long version of this
paper [9, Sec. 3.3] for more substantial explanation). Moreover, our analysis is sharper than previous
analyses [1, 20], as none (to our knowledge) recover the logarithmic dependence on the dimension
d, which is evidently necessary. Theorem 2 provides a similar result when we take M1 ↓ L, though
in this case stochastic gradient descent attains the matching upper bound.

Our second set of remarks are somewhat more striking. In these, we show that the lower bounds in
Theorems 1 and 2 give sharp tradeoffs between the statistical rate of convergence for any statistical
procedure and the desired privacy of a user. We present two corollaries establishing this tradeoff. In
each corollary, we look ahead to Section 4 and use one of Propositions 1 or 2 to derive a bijection
between the size M∞ or M1 of the perturbation set and the amount of privacy—as measured by the
worst case mutual information I∗—provided. We then combine Theorems 1 and 2 with results on
stochastic approximation to demonstrate the tradeoffs.

Corollary 1. Let the conditions of Theorem 1(b) hold, and assume that M∞ ≥ 2L. Assume Q∗

satisfies optimal local privacy at information level I∗. For universal constants c ≤ C,

c · rL
√
d log d√
nI∗

≤ ǫ∗n(L,Θ) ≤ C · rL
√
d log d√
nI∗

.

Proof Since Θ ⊆ {θ ∈ R
d : ‖θ‖1 ≤ r}, mirror descent [2, 21, 20, Chapter 5], using n un-

biased stochastic gradient samples whose ℓ∞ norms are bounded by M∞, obtains convergence
rate O(M∞r

√
log d/

√
n). This matches the second statement of Theorem 1. Now fix our desired

amount of mutual information I∗. From the remarks following Proposition 1, if we must guarantee
that I∗ ≥ supP I(P,Q) for any distribution P and loss function ℓ whose gradients are bounded in
ℓ∞-norm by L, we must (by the remarks following Proposition 1) have

I∗ ≍ dL2

M2
∞

.

Up to higher-order terms, to guarantee a level of privacy with mutual information I∗, we must allow

gradient noise up to M∞ = L
√

d/I∗. Using the bijection between M∞ and the maximal allowed

mutual information I∗ under local privacy that we have shown, we substitute M∞ = L
√
d/

√
I∗

into the upper and lower bounds that we have already attained.

Similar upper and lower bounds can be obtained under the conditions of part (a) of Theorem 1,
where we need not assume Θ is an ℓ1-ball, but we lose a factor of

√
log d in the lower bound. Now

we turn to a parallel result, but applying Theorem 2 and Proposition 2.

Corollary 2. Let the conditions of Theorem 2 hold and assume that M1 ≥ 2L. Assume that Q∗

satisfies optimal local privacy at information level I∗. For universal constants c ≤ C,

c · rLd√
nI∗

≤ ǫ∗n(L,Θ) ≤ C · rLd√
nI∗

.

Proof By the conditions of optimal local privacy (Proposition 2 and Corollary 3), to have I∗ ≥
supP I(P,Q) for any loss ℓ whose gradients are bounded in ℓ1-norm by L, we must have

I∗ ≍ dL2

2M2
1

,

using Corollary 3. Rewriting this, we see that we must have M1 = L
√
d/2I∗ (to higher-order

terms) to be able to guarantee an amount of privacy I∗. As in the ℓ∞ case, we have a bijection
between the multiplier M1 and the amount of information I∗ and can apply similar techniques.
Indeed, stochastic gradient descent (SGD) enjoys the following convergence guarantees (e.g. [21]).
Let Θ ⊆ R

d be contained in the ℓ∞ ball of radius r and the gradients of the loss ℓ belong to the

ℓ1-ball of radius M1. Then SGD has ǫ∗n(L,Θ) ≤ CM1r
√
d/

√
n. Now apply the lower bound

provided by Theorem 2 and substitute for M1.
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4 Saddle points, optimal privacy, and mutual information

In this section, we explore conditions for a distribution Q∗ to satisfy optimal local privacy, as given
by Definition 1. We give characterizations of necessary and sufficient conditions based on the com-
pact sets C ⊂ D for distributions P ∗ and Q∗ to achieve the saddle point (4). Our results can be
viewed as rate distortion theorems [14, 8] (with source P and channel Q) for certain compact al-
phabets, though as far as we know, they are all new. Thus we sometimes refer to the conditional
distribution Q, which is designed to maintain the privacy of the data X by communication of Z, as
the channel distribution. Since we wish to bound I(X;Z) for arbitrary losses ℓ, we must address the
case when ℓ(X, θ) = 〈θ,X〉, in which case ∇ℓ(X, θ) = X; by the data-processing inequality [14,
Chapter 5] it is thus no loss of generality to assume that X ∈ C and that E[Z | X] = X .

We begin by defining the types of sets C and D that we use in our characterization of privacy. As
we see in Section 3, such sets are reasonable for many applications. We focus on the case when the
compact sets C and D are (suitably symmetric) norm balls:

Definition 3. Let C ⊂ R
d be a compact convex set with extreme points ui ∈ R

d, i ∈ I for some
index set I . Then C is rotationally invariant through its extreme points if ‖ui‖2 = ‖uj‖2 for each
i, j, and for any unitary matrix U such that Uui = uj for some i 6= j, then UC = C.

Some examples of convex sets rotationally invariant through their extreme points include ℓp-norm
balls for p = 1, 2,∞, though ℓp-balls for p 6∈ {1, 2,∞} are not. The following theorem gives
a general characterization of the minimax mutual information for rotationally invariant norm balls
with finite numbers of extreme points by providing saddle point distributions P ∗ and Q∗. We provide
the proof of Theorem 3 in Section A.1.

Theorem 3. Let C be a compact, convex, polytope rotationally invariant through its extreme points
{ui}mi=1 and D = (1 + α)C for some α > 0. Let Q∗ be the conditional distribution on Z | X that
maximizes the entropy H(Z | X = x) subject to the constraints that

EQ[Z | X = x] = x

for x ∈ C and that Z is supported on (1 + α)ui for i = 1, . . . ,m. Then Q∗ satisfies Definition 1,
optimal local privacy, and Q∗ is (up to measure zero sets) unique. Moreover, the distribution P ∗

uniform on {ui}mi=1 uniquely attains the saddle point (4).

Remarks: While in the theorem we assume that Q∗(· | X = x) maximizes the entropy for each
x ∈ C, this is not in fact essential. In fact, we may introduce a random variable X ′ between X and
Z: let X ′ be distributed among the extreme points {ui}mi=1 of C in any way such that E[X ′ | X] =
X , then use the maximum entropy distribution Q∗(· | ui) defined in the theorem when X ∈ {ui}mi=1
to sample Z from X ′. The information processing inequality [14, Chapter 5] guarantees the Markov
chain X → X ′ → Z satisfies the minimax bound I(X;Z) ≤ infQ supP I(P,Q).

With Theorem 3 in place, we can explicitly characterize the distributions achieving optimal local
privacy (recall Definition 1) for ℓ1 and ℓ∞ balls. We present the propositions in turn, providing
some discussion here and deferring proofs to Appendices A.2 and A.3.

First, consider the case where X ∈ [−1, 1]d and Z ∈ [−M,M ]d. For notational convenience, we
define the binary entropy h(p) = −p log p− (1− p) log(1− p). We have

Proposition 1. Let X ∈ [−1, 1]d and Z ∈ [−M,M ]d be random variables with M ≥ 1 and
E[Z | X] = X almost surely. Define Q∗ to be the conditional distribution on Z | X such that the
coordinates of Z are independent, have range {−M,M}, and

Q∗(Zi = M | X) =
1

2
+

Xi

2M
and Q∗(Zi = −M | X) =

1

2
− Xi

2M
.

Then Q∗ satisfies Definition 1, optimal local privacy, and moreover,

sup
P

I(P,Q∗) = d− d · h
(
1

2
+

1

2M

)
.

Before continuing, we give a more intuitive understanding of Proposition 1. Concavity implies that
for a, b > 0, log(a) ≤ log b+ b−1(a− b), or − log(a) ≥ − log(b) + b−1(b− a), so in particular

h

(
1

2
+

1

2M

)
≥ −

(
1

2
+

1

2M

)(
− log 2− 1

M

)
−
(
1

2
− 1

2M

)(
− log 2 +

1

M

)
= log 2− 1

M2
.
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That is, we have for any distribution P on X ∈ [−1, 1]d that (in natural logarithms)

I(P,Q∗) ≤ d

M2
and I(P,Q∗) =

d

M2
+O(M−3).

We now consider the case when X ∈
{
x ∈ R

d | ‖x‖1 ≤ 1
}

and Z ∈
{
z ∈ R

d | ‖z‖1 ≤ M
}

. Here
the arguments are slightly more complicated, as the coordinates of the random variables are no
longer independent, but Theorem 3 still allows us to explicitly characterize the saddle point of the
mutual information.

Proposition 2. Let X ∈ {x ∈ R
d | ‖x‖1 ≤ 1} and Z ∈ {z ∈ R

d | ‖z‖1 ≤ M} be random
variables with M > 1. Define the parameter γ as in Eq. (9), and let Q∗ be the distribution on Z | X
such that Z is supported on {±Mei}di=1, and

Q∗(Z = Mei | X = ei) =
eγ

eγ + e−γ + (2d− 2)
, (10a)

Q∗(Z = −Mei | X = ei) =
e−γ

eγ + e−γ + (2d− 2)
, (10b)

Q∗(Z = ±Mej | X = ei, j 6= i) =
1

eγ + e−γ + (2d− 2)
. (10c)

(For X 6∈ {±ei}, define X ′ to be randomly selected in any way from among {±ei} such that
E[X ′ | X] = X , then sample Z conditioned on X ′ according to (10a)–(10c).) Then Q∗ satisfies
Definition 1, optimal local privacy, and

sup
P

I(P,Q∗) = log(2d)−log
(
eγ + e−γ + 2d− 2

)
+γ

eγ

eγ + e−γ + 2d− 2
−γ

e−γ

eγ + e−γ + 2d− 2
.

We remark that the additional sampling to guarantee that X ′ ∈ {±ei} (where the conditional
distribution Q∗ is defined) can be accomplished simply: define the random variable X ′ so that
X ′ = ei sign(xi) with probability |xi|/ ‖x‖1. Evidently E[X ′ | X] = x, and X → X ′ → Z
for Z distributed according to Q∗ defines a Markov chain as in our remarks following Theorem 3.
Additionally, an asymptotic expansion allows us to gain a somewhat clearer picture of the values of
the mutual information, though we do not derive upper bounds as we did for Proposition 1. We have
the following corollary, proved in Appendix E.1.

Corollary 3. Let Q∗ denote the conditional distribution in Proposition 2. Then

sup
P

I(P,Q∗) =
d

2M2
+Θ

(
min

{
d3

M4
,
log4(d)

d

})
.

5 Discussion and open questions

This study leaves a number open issues and areas for future work. We study procedures that access
each datum only once and through a perturbed view Zi of the subgradient ∂ℓ(Xi, θ), which allows
us to use (essentially) any convex loss. A natural question is whether there are restrictions on the loss
function so that a transformed version (Z1, . . . , Zn) of the data are sufficient for inference. Zhou
et al. [33] study one such procedure, and nonparametric data releases, such as those Hall et al. [15]
study, may also provide insights. Unfortunately, these (and other) current approaches require the
data be aggregated by a trusted curator. Our constraints on the privacy-inducing channel distribution
Q require that its support lie in some compact set. We find this restriction useful, but perhaps it
possible to achieve faster estimation rates under other conditions. A better understanding of general
privacy-preserving channels Q for alternative constraints to those we have proposed is also desirable.

These questions do not appear to have easy answers, especially when we wish to allow each provider
of a single datum to be able to guarantee his or her own privacy. Nevertheless, we hope that our view
of privacy and the techniques we have developed herein prove fruitful, and we hope to investigate
some of the above issues in future work.
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A Proofs of minimax mutual information results

In this section, we provide the proofs of the major results from Section 4. The proofs follow a
broadly similar outline. We begin by providing a result, Lemma 2, that allows us to guarantee that
any conditional distribution Q minimizing the mutual information I(P,Q) must be supported on
the extreme points of the set D. This key result allows us to reduce computing maximal entropies
and minimal mutual information values to finite dimensional convex optimization problems, whose
optimality we can check using results from convex analysis and optimization.

A.1 Proof of Theorem 3

Before providing the proof of the theorem proper, we state two auxiliary lemmas that make our strat-
egy cleaner. The first result is the data-processing inequality, which holds for essentially arbitrary
random variables [14, Chapter 5].

Lemma 1 (Data processing). Let X → Z → Y be a Markov chain. Then I(X;Y ) ≤ I(X;Z).
Equality is attained if and only if X is conditionally independent of Y given Z.

Coupled with Carathéodory and Minkowski’s finite-dimensional version of the Krein-Milman the-
orem [e.g. 16], Lemma 1 nearly implies that regardless of P , any Q minimizing I(P,Q) must
supported on the extreme points of D (up to sets of measure 0). The next lemma, whose (technical)
proof we defer to Appendix C, makes this precise (and addresses measurability issues involved in
the choice of the extreme points).

Lemma 2. Let C ⊂ D ⊂ R
d be compact convex sets. Let Q(· | x) be a regular conditional

distribution defined for x ∈ C with support contained in D such that for Z ∼ Q(· | X = x),
E[Z | X] = X . Let P be a distribution supported on C. If there exists a set A ⊂ C with P (A) > 0
and a set B ⊂ D \ Ext(D) with Q(B | X = x) > 0 for x ∈ A, there exists a regular conditional
probability distribution Q′ where Q′(· | x) has support contained in Ext(D) satisfying

I(P,Q) > I(P,Q′) and EQ′ [Z | X] = X.

Paraphrasing Lemma 2 slightly, we have that any conditional distribution Q minimizing I(P,Q)
must (outside of a set of measure zero) be completely supported on the extreme points Ext(D).
Now we proceed to the proof of the theorem.

Proof of Theorem 3 We first consider maximizing the entropy H(Z | X = x) for a fixed
x = ui, where Z is supported on the extreme points (1 + α)ui (which we know must be the case
from Lemma 2). Now let q(z | x) denote the probability mass function of Z | X = x. For a fixed
x, consider the finite dimensional entropy maximization problem

minimize
q

∑

z

q(z | x) log q(z | x) (11)

subject to
∑

z

zq(z | x) = x,
∑

z

q(z | x) = 1, q(z | x) ≥ 0 for all z.

We have the following lemma, which guarantees the form of the solution to the problem (11). See
Appendix E.2 for the standard proof.

Lemma 3. The p.m.f. q(· | x) solving problem (11) is given by

q(z | x) = exp(−µ⊤z)∑
z′ exp(−µ⊤z′)

, (12)

where µ ∈ R
d is any vector chosen to satisfy the constraint

∑
z zq(z | x) = x. Such a µ ∈ R

d

exists.

Having abstractly described the maximum entropy solution (12), we turn to the saddle point I(P,Q).
Setting Q∗ as in the statement of the theorem, we begin by considering supP I(P,Q∗). Since the
support of Q∗ is finite (there are m extreme points of D), we have

I(P,Q∗) = I(X;Z) = H(Z)−H(Z | X) ≤ log(m)−H(Z | X)

= log(m)−
∫

H(Z | X = x)dP (x).
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For any distribution P on the set C and for any x ∈ suppP , we can write x =
∑

i λi(x)ui, where
λi(x) ≥ 0 and

∑
i λi(x) = 1 (using the Krein-Milman theorem). Define the individual probability

mass functions qi to be the maximum entropy p.m.f. (12) for each of the extreme points ui of C.
Then we can define the conditional probability mass function by

q(· | x) =
∑

i

λi(x)q
i(·).

(Without loss of generality, we may assume that the λi are continuous, since the set of extreme
points is finite, and thus q(· | x) can be viewed as a regular conditional probability. We can make
this completely formal using the techniques in the proof of Lemma 2.) Denoting H(q(· | x)) :=
H(Z | X = x), we can use the convexity of the negative entropy to see that

I(P,Q∗) ≤ log(m)−
∫ ∑

i

λi(x)H(qi(·))dP (x). (13)

By symmetry, the entropy H(qi(·)) = H(Q∗(· | X = ui)) is a constant determined by the maxi-
mum entropy distribution (12), and thus

I(P,Q∗) ≤ log(m)−H(Q∗(· | X = ui)). (14)

Equality in the upper bound (14) is attained by taking P ∗ to be the uniform distribution on the
extreme points {ui} of C.

What remains is to argue the identical lower bound for I(P ∗, Q) over all conditional distributions
Q satisfying the constraints of the theorem statement. We know from Lemma 2 that Q must be
supported on (1 + α)ui for i = 1, . . . ,m. Denoting by q(z | x) the p.m.f. of Q conditional on
x (for x in the finite set of extreme points of C that make up the support suppP ∗), we can write
minimizing the mutual information as the parametric convex optimization problem

minimize
q

∑

z

(
∑

x

q(z | x)p(x)
)
log

(
∑

x

q(z | x)p(x)
)

−
∑

x

p(x)
∑

z

p(z | x) log p(z | x)

(15)

subject to
∑

z

p(z | x) = 1 for all x,
∑

z

zp(z | x) = x for all x, p(z | x) ≥ 0 for all x, z.

In the problem (15), the sums over x and z are over the extreme points of C and D, respectively
and p is the uniform distribution with p(x) = 1/m. Mutual information is convex in the conditional
distribution q [8]. Moreover, an inspection of Cover and Thomas’s proof of this fact shows that
mutual information is strictly convex except when q(z | x) =∑x′ q(z | x′)p(x′) for all x, z; since
Q∗ does not satisfy this equality, the uniqueness of Q∗ as the minimizer of I(P ∗, Q∗) will follow if
we show that Q∗ is a minimizer at all.

We proceed to solve the problem (15). Writing I(p, q) as a shorthand for the mutual information,
we introduce Lagrange multiplers θ(x) ∈ R for the normalization constraints, µ(x) ∈ R

d for the
conditional expectation constraints, and λ(x, z) ≥ 0 for the nonnegativity constraints. This yields
the Lagrangian

L(q, µ, λ, θ)

= I(p, q)−
∑

x,z

λ(x, z)q(z | x) +
∑

x

µ(x)⊤
(∑

z

zq(z | x)− x

)
+
∑

x

θ(x)

(∑

z

q(z | x)− 1

)
.

If we can satisfy the Karush-Kuhn-Tucker (KKT) conditions (see, e.g., [6]) for optimality of the
problem (15), we will be done. Taking derivatives with respect to q(z | x), we see

∂

∂q(z | x)L(q, µ, λ, θ) = p(x) [log(q(z | x)) + 1]− p(x) log

(∑

x′

q(z | x′)p(x′)

)

− q(z) · 1

q(z)
p(x)− λ(z, x) + θ(x) + µ(x)⊤z

= p(x) log q(z | x)− p(x) log

(∑

x′

q(z | x′)p(x′)

)
− λ(z, x) + θ(x) + µ(x)⊤z,
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where we set q(z) =
∑

x′ q(z | x′)p(x′) for shorthand. Now, we use symmetry to note that since
we have chosen q to be the maximum entropy distribution (12) for each x in the extreme points {ui}
of C, the marginal q(z) =

∑
x′ q(z | x′)p(x′) = 1/m is uniform by the symmetry of the set D and

since p is uniform. In addition, since q(z | x) > 0 strictly, we have λ(z, x) = 0 by complimentarity.
Thus, at q chosen to be the maximum entropy distribution, we can rewrite the derivative of the
Lagrangian

∂

∂q(z | x)L(q, µ, λ, θ) =
1

m
log q(z | x)− 1

m
log

1

m
+ θ(x) + µ(x)⊤z.

Recalling the definition (12) of q(z | x), and denoting the maximum entropy parameters µ there by
µ∗(x), we have

∂

∂q(z | x)L(q, µ, λ, θ) = − 1

m
µ∗(x)⊤z+

1

m
log

(
∑

z′

exp(−µ∗(x)⊤z′)

)
− 1

m
log

1

m
+θ(x)+µ(x)⊤z.

Now, by inspection we may set

θ(x) =
1

m
log

1

m
− 1

m
log

(
∑

z′

exp(−µ∗(x)⊤z′)

)
and µ(x) =

1

m
µ∗(x),

and we satisfy the KKT conditions for the mutual information minimization problem (15).

Summarizing, the conditional distribution Q∗ specified in the statement of the theorem as the maxi-
mum entropy distribution (12) satisfies

inf
Q

I(P ∗, Q) ≥ I(P ∗, Q∗),

which, when combined with the first part of the proof, gives the saddle point inequality

sup
P

I(P,Q∗) ≤ log(m)−H(q(· | X = ui)) = I(P ∗, Q∗) ≤ inf
Q

I(P ∗, Q).

This is the desired saddle-point (4).

Remarks: In the proof of the theorem, we have defined Q∗(· | x) as a conditional distribution
only for x ∈ Ext(C), the extreme points of C. This can easily be remedied: simply take Q∗(· | x)
to be the distribution maximizing the entropy H(Z | X = x) for each x ∈ C under the constraint
that the support of Z be contained in Ext(D). This is equivalent to—for each x ∈ C—choosing
Z = zi for zi ∈ Ext(D), i = 1, . . . ,m, with probability qi, where q ∈ R

m solves the entropy
maximization problem

maximize
q∈Rm

−
∑

i

qi log qi subject to
∑

i

ziqi = x,
∑

i

qi = 1, qi ≥ 0.

Inspecting the proof of Theorem 3 (see the bound (13)) shows that this choice can only decrease
the mutual information I(X;Z). Additionally, the strong convexity of the entropy over the simplex
guarantees that the solutions to this optimization problem are continuous—even Lipschitz—in x (see
Chapter X of Hiriart-Urruty and Lemaréchal [16]) so this distribution q(· | x) defines a measurable
random variable as desired.

Additionally, though Theorem 3 assumes that the sets C and D satisfy D = (1+α)C for some α >
0, inspection of the proof yields a somewhat stronger result. Assume the distribution Q maximizing
the entropy H(Z | X = x) for satisfies H(Q(· | X = x)) = H(Q(· | X = x′)) for each extreme
point x of C and additionally satisfies that for each extreme point z of D the sum

∑
x Q(Z = z |

X = x) is a constant (the sum is over extreme points x of C). Then the upper bound (14) is attained
with equality, and a similar calculation yields that Q solves the mtual information problem (15).
Thus, as long as C and D are suitably jointly symmetric, Z should be chosen to maximize the
entropy H(Z | X = x) for each x ∈ C.
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A.2 Proof of Proposition 1

Using Theorem 3 (and the remarks immediately following its proof), we can focus on maximizing
the entropy of the random variable Z conditional on X = x for each fixed x ∈ [−1, 1]d. Let Zi

denote the ith coordinate of the random vector Z; we take the conditional distribution of Zi to be
independent of Zj and let Z be distributed as

Zi | X =

{
M w.p. 1

2 + Xi

2M

−M w.p. 1
2 − Xi

2M .
(16)

We verify that the distribution (16) maximizes the entropy H(Z | X = x). Indeed, ignoring the
conditioning we write the entropy maximization problem

minimize
q

−H(q) subject to
∑

z

q(z) = 1, q(z) ≥ 0,
∑

z

zq(z) = x. (17)

Here all sums are over z ∈ Ext([−M,M ]d) = {−M,M}d. Writing the Lagrangian for the prob-
lem (17), we introduce Lagrange multipliers µ ∈ R

d, λ(z) ≥ 0, and θ ∈ R and have

L(q, µ, λ, θ) = −H(q)−
∑

z

λ(z)q(z) + µ⊤

(∑

z

zq(z)− x

)
+ θ

(∑

z

q(z)− 1

)
.

To find the infimum of the Lagrangian with respect to q, we take derivatives (since we make the

identification q ∈ R
2d ). We see that

∂

∂q(z)
L(q, µ, λ, θ) = log(q(z)) + 1− λ(z) + θ + µ⊤z.

With the definition (16) of the probability mass function q (that zi are independent Bernoulli random
variables with parameters 1

2 + xi/2M ), the coordinate conditional distributions are

q(zi | xi) =

(
1

2
+

1

2M

) 1

2
+

xizi
2M
(
1

2
− 1

2M

) 1

2
−

xizi
2M

.

Theorem 3 says that without loss of generality we may assume that x ∈ {−1, 1}d, the full probability
mass function q can be written

q(z) =

(
1

2
+

1

2M

) d
2
+ x⊤z

2M
(
1

2
− 1

2M

) d
2
− x⊤z

2M

. (18)

Plugging the conditional (18) results in

∂

∂q(z)
L(q, µ, λ, θ)

=

(
d

2
+

x⊤z

2M

)
log

(
1

2
+

1

2M

)
+

(
d

2
− x⊤z

2M

)
log

(
1

2
− 1

2M

)
+ 1− λ(z) + θ + µ⊤z

=
d

2

[
log

(
1

2
+

1

2M

)
+ log

(
1

2
− 1

2M

)]
+

x⊤z

2M

[
log

(
1

2
+

1

2M

)
− log

(
1

2
− 1

2M

)]

+ 1− λ(z) + θ + µ⊤z.

Performing a few algebraic manipulations with the logarithmic terms, the final equality becomes

d log

(√
(M + 1)(M − 1)

M

)
+

x⊤z

M
log

(√
M + 1

M − 1

)
+ 1− λ(z) + θ + µ⊤z.

The complimentarity conditions for optimality [6] imply that λ(z) = 0, and since the equality
constraints in the problem (17) are satisfied, we can choose θ and µ arbitrarily. Taking

θ = −d log

(√
(M + 1)(M − 1)

M

)
− 1 and µ = −x

1

M
log

(√
M + 1

M − 1

)

yields that the partial derivatives of L are 0, which shows that our choice of Q∗ is optimal.
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A.3 Proof of Proposition 2

The proof outline is similar to that for the ℓ∞ case: we compute the maximum entropy distribution
of H(Z) under the constraint that E[Z] = x for some x ∈ R

d with ‖x‖1 ≤ 1, and Z must be
supported on the extreme points ±Mei of the ℓ1-ball of radius M (here ei are the standard basis
vectors). According to Theorem 3, to find the minimax mutual information, we need only consider
the cases where x = ±ei for some i ∈ {1, . . . , d}.

Following this plan, we recall the entropy maximization problem (17), where now x = ±ei and the
sums are over z ∈ M{±ei}di=1. As in the proof of Proposition 1, we can write the Lagrangian and
take its derivatives, finding that for z = ±Mei we have

∂

∂q(z)
L(q, µ, λ, θ) = log(q(z)) + 1− λ(z) + θ − µ⊤z.

Solving for q(z), we find that

q(z) = exp(λ(z)− 1− θ) exp(µ⊤z),

but complimentarity [6] guarantees that λ(z) = 0 since q(z) > 0, and normalizing we may write
q(z) = exp(−µ⊤z)/ exp(−µ⊤

∑
z′ z′), where the sum is over the extreme points of the ℓ1-ball

of radius M . In particular, q(Mei) ∝ e−µi and q(−Mei) ∝ eµi . Without loss of generality, let
x = ei. Symmetry suggests we take (and we verify this to be true)

q(z) = exp(−1− θ)

{
exp(µi) if z = Mei
exp(−µi) if z = −Mei
exp(0) otherwise.

(19)

Indeed, with the choice (19) of q, we have q(Mej)− q(−Mej) = 0 for j 6= i, while (setting γ = µi

and normalizing appropriately)

q(Mei)− q(−Mei) =
eγ

e−γ + eγ + 2(d− 1)
− e−γ

e−γ + eγ + 2(d− 1)
.

Thus, if we can solve Mq(Mei)−Mq(−Mei) = 1, we will be nearly done. To that end, we write

eγ − e−γ

eγ + e−γ + 2(d− 1)
=

1

M
or β − β−1 =

1

M

(
β + β−1 + 2(d− 1)

)
,

where we identified β = eγ . Multiplying both sides by β, we have a quadratic equation in β:

β2 − 1 =
1

M

(
β2 + 2β(d− 1) + 1

)
or (M − 1)β2 − 2(d− 1)β − (M + 1) = 0,

whose solution is the positive root of

β =
2d− 2±

√
(2d− 2)2 + 4(M2 − 1)

2(M − 1)
or γ = log

(
2d− 2 +

√
(2d− 2)2 + 4(M2 − 1)

2(M − 1)

)
.

By our construction, with γ so defined, we satisfy the constraints that M [q(Mei)− q(−Mei)] = 1
and q(Mej)− q(−Mej) = 0 for j 6= i. Since q belongs to the exponential family and satisfies the
constraints, it maximizes the entropy H(Z) as desired [8].

Algebraic manipulations and the computation of the conditional entropy H(Z | X = ei) give the
remainder of the statement of the proposition.

B Proofs of statistical rates

In this section, we prove Theorems 1 and 2. Our proofs build on classical information-theoretic
techniques from statistical minimax theory [31, 32] while more closely paralleling recent techniques
due to Agarwal et al. [1]. At a very high level, our approach is as follows. We begin with a finite
set V , and to each member α ∈ V we assign a risk functional Rα. We construct the collection
{Rα}α∈V so that they “separate” points in the set V well in the sense that any θ nearly minimizing
Rα cannot minimize Rβ for β 6= α. Then we can argue that statistical estimation implies the
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existence of a testing procedure that distinguishes α for β 6= α. By applying known lower bounds
(Fano’s inequality) for statistical hypothesis testing and careful argument of the mutual information
between the random variable Xi and the vector Zi communicated, we can then argue that the testing
problem—and hence the estimation problem—are difficult.

Before continuing, we give a slightly more detailed outline of our arguments. The first step in our
proof parallels Agarwal et al.’s construction of “difficult” risk functionals, which allow us (roughly)
to show that minimization of the risk functional R is equivalent to being able to estimate the bias
of d biased coins. Our starting point is the formulation of classes of loss functions ℓ that make
optimization somewhat difficult. To begin, we assume we have a finite index set V that induces a
set of risk functionals Rα for α ∈ V (we specify the mapping and the sets V later). One key insight
of Agarwal et al. [1] is to define a discrepancy measure between functionals based on how well
minimizers of one risk behave on another from the collection. Thus we let θ∗α ∈ argminθ∈Θ Rα(θ)
and define the discrepancy measure between two risk functionals as

ρ(Rα, Rβ) := inf
θ∈Θ

[
Rα(θ) +Rβ(θ)−Rα(θ

∗
α)−Rβ(θ

∗
β)
]
. (20)

We define the minimal discrepancy, which we call the ρ-separation of the set V , to be

ρ⋆(V) := min {ρ(Rα, Rβ) : α, β ∈ V, α 6= β} . (21)

When the set V is clear from context, we use ρ⋆ for shorthand. The key to the definition (21) is that
the separation allows us to lower bound the expected optimality gap of a statistical method M by
the probability of error in a hypothesis test. First, note that for any θ ∈ Θ, there is at most one α ∈ V
such that Rα(θ)−Rα(θ

∗
α) < ρ⋆/2. Indeed, if this inequality holds for both α and β 6= α,

ρ⋆(V) ≤ Rα(θ) +Rβ(θ)−Rα(θ
∗
α)−Rβ(θ

∗
β) < ρ⋆(V),

a contradiction. We obtain the following lemma, a variant of Agarwal et al.’s Lemma 2.

Lemma 4 (Agarwal et al. [1]). Let P be a joint distribution over X ∈ R
d and A ∈ V such that X

are i.i.d. given A and
EP [ℓ(X, θ) | A = α] = Rα(θ).

Let Q be the conditional distribution of Z given the subgradients ∂ℓ(X, ·). For any minimization
procedure M, one may construct a hypothesis test α̂(M) : (Z1, . . . , Zn) → V such that

EP,Q [ǫn(M, ℓ,Θ, P )] ≥ ρ⋆(V)
2

PP,Q [α̂ 6= A] .

In particular, if we can bound the probability of error of any hypothesis test for identifying A based
on stochastic subgradient samples Z1, . . . , Zn, then we have lower bounded the rate at which it is
possible to minimize the risk R.

To the end of providing a lower bound on the error of a hypothesis testing problem, we apply Fano’s
inequality [8]. Let A ∈ V be chosen uniformly at random from V . If a procedure observes random
variables Z1, . . . , Zn, Fano’s inequality gives that for any estimate α̂ of A—that is, any measurable
function α̂ of Z1, . . . , Zn—we have

P(α̂(Z1, . . . , Zn) 6= A) ≥ 1− I(Z1, . . . , Zn;A) + log 2

log |V| . (22)

Using the lower bound provided by Lemma 4 and Fano’s inequality (22), the structure of our re-
maining proofs becomes more apparent. Each lower bound argument proceeds in three steps:

1. We construct a collection of loss functions satisfying Definition 2, computing the minimal sepa-
ration (21) so that we may apply Lemma 4. (See Sections B.1.1–B.1.3.)

2. To be able to apply Fano’s inequality (22), we provide an upper bound on the mutual information
I(Z1, . . . , Zn;A) for our specific choice of loss from step 1. To do so, we use the fact that for
each of Theorems 1 and 2, we used a distribution Q that satisfies our Definition 1 of optimal
local privacy, necessitating some subtlety in providing the bound. (See Lemmas 8, 9, and 10 in
Section B.2.)

3. The final step is to apply Fano’s inequality (22) and Lemma 4 by using the results of steps 1
and 2, which will yield the theorems.

We provide the formal proofs of Theorems 1 and 2 in Sections B.3 and B.4, respectively, in the next
two sections performing steps 1 and 2.
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B.1 Collections of loss functions

In this section, we construct three example sets of functions, each yielding a different collection of
risks, enumerating their separation properties to be able to apply Lemma 4.

B.1.1 Linear Losses

Our first collection of risk functionals is somewhat simpler than our second, and it is not quite so
general. Nonetheless, it yields sharper lower bounds than the losses in the sequel for some choices
of the set Θ. We assume that the random variables X ∈ R

d, and we use the linear loss functions

ℓ(X, θ) := 〈θ,X〉 . (23)

For this collection of loss functions, we let V = {±ei}di=1, where the vectors ei are the standard

basis vectors in R
d, whence |V| = 2d. We also fix a δ ∈ (0, 1/4], which we specify later, and choose

the distribution P on X so that the final risk is equal to

Rα(θ) = EP [〈θ,X〉] = cδ

d
〈α, θ〉 . (24)

We choose the constant c so that the linear loss functions (24) belong to the appropriate loss class.

To construct a risk of the form (24), we draw the random vector X ∈ R
d conditional on the parameter

α, choosing X from among the 2d vectors in the scaled hypercube {−c, c}d:

choose X ∈ {−c, c}d with independent coordinates, where Xj =

{
c/d w.p.

1+δαj

2

−c/d w.p.
1−δαj

2 .
(25)

Under the sampling strategy (25), when α = ±ei, the coordinate Xj is independent and uniformly
chosen from {−c/d, c/d} for j 6= i. Additionally, we have that E[ℓ(X, θ)] = Rα(θ), and we obtain

Lemma 5. In the sampling scheme (25), take c = Ld. Then

(a) The loss (23) is L-Lipschitz with respect to the p = ∞-norm.

(b) Let Θ = {θ ∈ R
d : ‖θ‖1 ≤ r}. The ρ-separation of the set V = {±ei}di=1 is ρ⋆(V) = Lrδ.

Proof The first statement of the lemma is immediate. For the second, we compute minimizers.
Indeed, by definition of the dual norm, we see that for α ∈ V ,

inf
‖θ‖

1
≤r

Rα(θ) = inf
‖θ‖

1
≤r

cδ

d
〈α, θ〉 = −cδ

d
r ‖α‖∞ = −Lδr,

and the minimizer is uniquely attained at θ∗α = −rα. Then we have for any β 6= α that

inf
‖θ‖

1
≤1

[〈α+ β, θ〉] + ‖α‖∞ + ‖β‖∞ = −‖α+ β‖∞ + ‖α‖∞ + ‖β‖∞ ≥ −1 + 1 + 1 = 1,

since no identical coordinates of α and β have the same sign. Multiply the result by Lrδ.

B.1.2 Hinge (SVM) Losses

We use the set of losses we construct here to study convergence rates of procedures that receive
stochastic subgradients bounded in ℓ1-norm, though the construction is not so simple as that in the
previous section. Let V ⊂ {−1, 1}d be a subset of the hypercube {−1, 1}d chosen such that for any
α, α′ ∈ V with α 6= α′, we have ‖α− α′‖1 ≥ d/2 (this is equivalent to ‖α− α′‖0 ≥ d/4). From
the Gilbert-Varshamov bound (e.g. [32, Lemma 4]), there are sets of this form with cardinality at
least card(V) ≥ exp(d/8). Let δ ∈ (0, 1/4], and let us assume that Θ contains the ℓ∞ ball of radius
r. Fix c > 0 and define the risk

Rα(θ) :=
c

d

d∑

j=1

1 + δαj

2
[r − 〈ej , θ〉]+ +

c

d

d∑

j=1

1− δαj

2
[r + 〈ej , θ〉]+ . (26)
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The (unique) minimizer of the risk is

θ∗α := argmin
θ∈Θ

Rα(θ) = rα ∈ r{−1, 1}d ⊂ Θ.

To construct the risk (26) as the expectation of a loss, for x ∈ R
d we define the hinge loss

ℓ(x, θ) = c [r − 〈x, θ〉]+ . (27)

As our sampling process for the data, we choose X from among the 2d positive and negative standard
basis vectors ±ej :

choose index j ∈ {1, . . . , d} uniformly at random, set X =

{
ej w.p.

1+δαj

2

−ej w.p.
1−δαj

2 .
(28)

By inspection, the sampling strategy (28) yields Rα(θ) = E[ℓ(X, θ)]. Moreover, we have

Lemma 6. Assume that Θ contains [−r, r]d and let Rα be defined by the risk (26). Then

(a) For P with support suppP ⊆ {x ∈ R
d : ‖x‖1 ≤ 1}, the loss function ℓ(x, θ) = c [1− 〈θ, x〉]+

is c-Lipschitz with respect to the ℓ1-norm.

(b) If α, β ∈ V with α 6= β, the discrepancy ρ(Rα, Rβ) ≥ rcδ/2.

Proof The first statement of the lemma is immediate (e.g. [16]), since ‖∂ℓ(x, θ)‖1 ≤ c ‖x‖1 ≤ c.
For the second statement of the lemma, we see that the minimum of

Rα(θ) +Rβ(θ)

=
c

d

d∑

j=1

(
[r − 〈ej , θ〉]+ + [r + 〈ej , θ〉]+

)
+

cδ

d

∑

j:αj=βj

(
αj [r − 〈ej , θ〉]+ − αj [r + 〈ej , θ〉]+

)

is attained by any θ ∈ R
d with θj ∈ [−r, r] for j such that αj 6= βj and θj = rαj for j such that

αj = βj . Thus we have

inf
θ∈Θ

{Rα(θ) +Rβ(θ)} −Rα(θ
∗
α)−Rβ(θ

∗
β) =

c

d

d∑

j=1

2r − 2c

d

∑

j:αj=βj

rδ − cr(1− δ)− cr(1− δ)

= 2cr − 2cr + 2crδ − 2crδ

d
(d− ‖α− β‖0) =

2crδ

d
‖α− β‖0 .

Since ‖α− β‖0 ≥ d/4 by construction, we have ρ(Rα, Rβ) ≥ rcδ/2, as desired.

B.1.3 Median-type Losses

The set of losses we now construct is more generally applicable than the linear losses of Sec. B.1.1,
though the resulting lower bounds are somewhat weaker. As in Sec. B.1.2, let V ⊂ {−1, 1}d be a
d/4-packing of the hypercube in ℓ0-norm. Let δ ∈ (0, 1/4], and let us assume that Θ contains the
ℓ∞ ball of radius r. Define the risk

Rα(θ) :=
c

d

d∑

j=1

1 + δαj

2
|θ − r|+ 1− δαj

2
|θ + r| = c

d

(
1 + δ

2
‖θ − rα‖1 +

1− δ

2
‖θ + rα‖1

)
.

(29)
Notably, the (unique) minimizer of the risk is

θ∗α := argmin
θ∈Θ

Rα(θ) = rα ∈ r{−1, 1}d ⊂ Θ.

Our sampling strategy to yield the risk (29) begins by sampling the 2d vectors of {−r, r}d:

choose X ∈ r{−1, 1}d with independent coordinates, where Xj =

{
r w.p.

1+δαj

2

−r w.p.
1−δαj

2 .
(30a)
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In this sampling scheme, we use the loss

ℓ(X, θ) =
c

d
‖X − θ‖1 . (30b)

By inspection, the loss (30b) yields the risk Rα through the expectation Rα(θ) = E[ℓ(X, θ)] when
we use the sampling strategy (30a). The following lemma, due to Agarwal et al. [1], captures the
separation properties of the collection {Rα}α∈V of risk functionals:

Lemma 7. Assume that Θ contains [−r, r]d and let Rα be defined by the risk (29). If α, β ∈ V with
α 6= β, the discrepancy ρ(Rα, Rβ) ≥ rcδ/2.

As a final remark, for random variables X ∈ R
d, then the loss function (30b) satisfies the Lipschitz

continuity bound (8) (for appropriate choice of c) for any distribution P on X . Specifically, the
subgradient set ∂ℓ(x, θ) = (c/d) sign(θ− x), where the sign function sign(·) is defined coordinate-

wise. Thus, taking c = Ld1/q , where 1/q+1/p = 1, yields a member of the collection of (L, p)-loss
functions.

B.2 Mutual information bounds and hypothesis testing

Let Z1, . . . , Zn be unbiased subgradient estimates of the loss θ 7→ ℓ(Xi, θ), where Xi are indepen-
dent samples according to a distribution P (· | A). We assume that the samples Zi are conditionally
independent of A given Xi and the parameters θ, which is natural as Z is a random function of
∂ℓ(Xi, θ). Our goal is to upper bound the mutual information between the sequence Z1, . . . , Zn of
observed (stochastic) gradients and the random element A ∈ V .

From Propositions 1 and 2, we know that the channel distributions Q guaranteeing privacy are
supported on a finite set: in the case of p = 1, on (a multiple) of the standard basis vectors {±ei}di=1,

and for p = ∞, on (a multiple of) the corners of the hypercube {−1, 1}d. Thus, we can decompose
the mutual information using the chain rule for mutual information [8]

I(Z1, . . . , Zn;A) =
n∑

i=1

I(Zi;A | Z1, . . . , Zi−1)

=

n∑

i=1

[H(Zi | Z1, . . . , Zi−1)−H(Zi | A,Z1, . . . , Zi−1)] .

If we let θi denote the estimator that the procedure M uses to query the ith gradient, by inspection
we must have θi ∈ σ(Z1, . . . , Zi−1). Since Zi is conditionally independent of Z1, . . . , Zi−1 given
A and θi and conditioning decreases entropy, we have

H(Zi | Z1, . . . , Zi−1)−H(Zi | A,Z1, . . . , Zi−1)

= H(Zi | Z1, . . . , Zi−1)−H(Zi | A, θi) ≤ H(Zi | θi)−H(Zi | A, θi) = I(Zi;A | θi).
In particular, letting Fi denote the distribution of θi, we have

I(Z1, . . . , Zn;A) ≤
n∑

i=1

∫

Θ

I(Zi;A | θ)dFi(θ) ≤
n∑

i=1

sup
θ∈Θ

I(Zi;A | θ). (31)

We now state three lemmas, each bounding the mutual information between observed subgradients
Zi and the random variable A, for different choices of loss function ℓ and conditional distribution
Q. The proof of each lemma begins by using the bound (31) to reduce the problem to estimating
the mutual information I(Z;A | θ) for a single randomized gradient sample Z. Then, careful
calculaion of the distribution of Z | A yields the final inequalities. As the proofs are somewhat long
and technical, we defer them to Appendix D.

Lemma 8. Let A be drawn uniformly at random from V = {±ei}di=1. Let X have the distribu-
tion (25) conditional on A = α and let the loss function ℓ(X, θ) = 〈X, θ〉. Let Z be constructed
according to the conditional distribution specified by Proposition 1 given a subgradient ∂ℓ(Xi; θ)
with Z ∈ [−M∞,M∞]d, where M∞ ≥ c/d. Then

I(Z1, . . . , Zn;A) ≤ n
δ2c2

M2
∞d2

.
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See Appendix D.1 for a proof of Lemma 8.

Lemma 9. Let A be drawn uniformly at random from a set V ⊂ {−1, 1}d. Define the distribution
P (· | A) on X to be such that the jth coordinate Xj = rAj with probability (1 + δ)/2 and
Xj = −rAj with probability (1− δ)/2, each coordinate independent of the others, where r > 0 is
a constant. Let the loss function

ℓ(X, θ) =
c

d
‖θ −X‖1 .

Let Z be constructed according to the distribution specified by Proposition 1 conditional on a sub-
gradient ∂ℓ(Xi; θ), where Z ∈ [−M∞,M∞]d and M∞ ≥ c/d. Then

I(Z1, . . . , Zn;A) ≤ n
δ2c2

M2
∞d

.

See Appendix D.2 for a proof of Lemma 9.

Lemma 10. Let A be drawn uniformly at random from a set V ⊂ {−1, 1}d. Define the distribution
P (· | A) on X as in the random sampling scheme (28) and use the loss (27). Let Z be constructed
according to the conditional distribution specified by Proposition 2, where Z ∈ {z ∈ R

d : ‖z‖1 ≤
M1}. Define M = M1/c and the constants

γ := log

(
2d− 2 +

√
(2d− 2)2 + 4(M2 − 1)

2(M − 1)

)
and ∆(γ) :=

eγ − e−γ

eγ + e−γ + 2(d− 1)
.

Then
I(Z1, . . . , Zn;A) ≤ nδ2∆(γ)2

We provide the proof of the lemma in Appendix D.3.

In the proof of Theorems 1 and 2, we require one additional result for the cases when the dimension d
is small; we apply the result instead of Fano’s inequality. Specifically, we use Le Cam’s method [19,
32], which provides lower bounds on the probability of error in binary hypothesis testing problems.
In this setting, assume that V = {−1, 1} has two elements, and let A ∈ V be chosen uniformly at
random from V . If a procedure observes random variables Z1, . . . , Zn distributed according to Qn

1
if A = 1 and Qn

−1 if A = −1, then any estimate α̂ of A satisfies the lower bound

P (α̂(Z1, . . . , Zn) 6= A) ≥ 1

2
− 1

2

∥∥Qn
1 −Qn

−1

∥∥
TV

. (32)

See, for example, Yu [32, Lemma 1] and Le Cam [19, Section 2]. Moreover, we have the following
lemma.

Lemma 11. Let Q1 and Q−1 be distributions on {−1, 1}, where

Q1(Z = z) =
1

2
+

1

2
·
{
δ if z = 1

−δ otherwise
and Q−1(Z = z) =

1

2
+

1

2
·
{
−δ if z = 1

δ otherwise.

Let Qn
i denote the n-fold product distribution of Qi. Then for δ ∈ [0, 1/3],

∥∥Qn
1 −Qn

−1

∥∥
TV

≤ δ
√
(3/2)n.

We provide the proof of the lemma in Appendix D.4.

B.3 Proof of Theorem 1

We break the proof of Theorem 1 into three parts. In the first, we prove part (a) of the theorem as-
suming that the dimension d ≥ 9. Next, we show part (a) for smaller values of the dimension, which
requires Le Cam’s bounding technique (32). Finally, we prove part (b). Roughly, our strategy is to
apply Lemma 4 and one of Lemmas 8 or 9 to achieve a lower bound on the rate of convergence of
any estimation procedure. We first recall the beginning of the previous section, stating the following
application of Lemma 4 and Fano’s inequality (22):

2

ρ⋆(V)EP,Q [ǫn(M, ℓ,Θ, P )] ≥ PP,Q (α̂(M) 6= A) ≥ 1− I(Z1, . . . , Zn;A) + log 2

log |V| . (33)
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Now we give the proof of the first statement of the theorem in the case that d ≥ 9. Applying
Lemmas 7 and 9, we immediately have the following specialization of the inequality (33):

4

rcδ
EP,Q [ǫn(M, ℓ,Θ, P )] ≥ 1− log 2

log |V| − n
δ2c2

M2
∞d log |V| .

Taking the set V ⊂ {−1, 1}d to be a d/4 packing of the hypercube {−1, 1}d satisfying |V| ≥
exp(d/8), as described in Sections B.1.2 and B.1.3, we see that

4

rcδ
EP,Q [ǫn(M, ℓ,Θ, P )] ≥ 1− 8 log 2

d
− n

8δ2c2

M2
∞d2

.

By the remarks following Lemma 7, we may take L = c/d. The numerical inequality 8 log 2 < 6
coupled with the preceding bound implies

4

rdLδ
EP,Q [ǫn(M, ℓ,Θ, P )] > 1− 6

d
− 8n

δ2L2

M2
∞

.

By our assumption that d ≥ 9, if we choose δ = M∞/8L
√
n, then we are guaranteed the lower

bound 4
rdLδEP,Q [ǫn(M, ℓ,Θ, P )] > 1

5 , or equivalently

EP,Q [ǫn(M, ℓ,Θ, P )] >
rdLδ

20
=

1

160
· M∞rd√

n
.

When d < 9, we may reduce to the case that d = 1, since a lower bound in this setting extends to
higher dimensions (though we may lose dimension dependence). For this case, we use the packing
set V = {−1, 1} with the linear loss function from Lemma 5, which has ρ⋆(V) = Lrδ. In this case,
the marginal distribution Q(· | A) is given by

Q(Z = z | A = 1) =
1

2
+

{
δL
2M if z = M

− δL
2M otherwise, i.e. if z = −M.

Now, let Qn(· | A) denote the distribution of Z1, . . . , Zn conditional on A. Then applying Lemma 4
and Le Cam’s lower bound (32), we obtain the inequality

2

rLδ
EP,Q[ǫn(M, ℓ,Θ, P )] ≥ PP,Q (α̂(M) 6= A) ≥ 1

2
−1

2
‖Qn(· | A = 1)−Qn(· | A = −1)‖TV .

By inspection, the distributions Qn place us precisely in the conditions Lemma 11 specifies, so if
δ ≤ M/(3L), we have the bound

2

rLδ
EP,Q[ǫn(M, ℓ,Θ, P )] ≥ 1

2
−

√
3n

2
√
2
· δL
M

. (34)

Multiplying both sides by rLδ, then setting δ = M/(3L
√
n) ≤ M/(3L), we have

EP,Q[ǫn(M, ℓ,Θ, P )] ≥ (3
√
2−

√
3)rM

36
√
2n

≥ rM

20.3
√
n
.

In turn, for any d ≤ 8, we immediately find that 1/20.3 ≥ d/163, which completes the proof of
Theorem 1(a).

For the second statement of the theorem, we use the linear losses of Section B.1.1 and apply Lem-
mas 5 and 8 with the choice V = {±ei}di=1. Note that the case d = 1 was proved above, so we
may assume d ≥ 2. Since we are in the (L,∞)-Lipschitz class of loss functions, we take c = Ld in
the sampling scheme (25). In this case, the lower bound (33) and Lemma 5’s separation guarantee
imply that

2

Lrδ
EP,Q [ǫn(M, ℓ,Θ, P )] ≥ 1− log 2

log(2d)
− I(Z1, . . . , Zn;A)

log(2d)
.

By assumption that d ≥ 2, we have log 2/ log(2d) ≤ 1/2, which, after an application of Lemma 8,
yields

2

Lrδ
EP,Q [ǫn(M, ℓ,Θ, P )] ≥ 1

2
− n

δ2L2

M2
∞ log(2d)

.
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If we choose δ = M∞

√
log(2d)/2L

√
n, we see that we have

2

Lrδ
EP,Q [ǫn(M, ℓ,Θ, P )] ≥ 1

4
,

which is equivalent in this case to

EP,Q [ǫn(M, ℓ,Θ, P )] ≥ rLδ

8
=

1

16
· M∞r

√
log(2d)√
n

.

B.4 Proof of Theorem 2

The proof of Theorem 2 is quite similar to that of Theorem 1, except that we apply Lemma 10 in
place of Lemmas 8 or 9. Indeed, following identical steps to those in the proof of Theorem 1, we
see that with the packing V{−1, 1}d of size |V| ≥ exp(d/8), we have

4

rLδ
EP,Q[ǫn(M, ℓ,Θ, P )] ≥ 1− log 2

log |V| − n
δ2∆(γ)2

log |V|

≥ 1− 6

d
− 8n

δ2∆(γ)2

d
.

Consequently, if we choose δ =
√
d/(8∆(γ)

√
n), then for all d ≥ 9, we have the lower bound

4
rLδEP,Q[ǫn(M, ℓ,Θ, P )] ≥ 1

5 , or equivalently

EP,Q[ǫn(M, ℓ,Θ, P )] ≥ rLδ

20
=

1

160
· rL

√
d√

n∆(γ)
,

which completes the proof (as the case d ≤ 8 is identical to that in Theorem 1).

C Conditional Probabilities and Measurability

In this appendix, we present some basic lemmas on conditional independence and regular condi-
tional probabilities that will be useful. We begin with a precise definition of a regular conditional
probability.

Definition 4. Let (Ω,F) and (T, σ(T )) be measurable spaces. A regular conditional probability,
also known as a Markov kernel or transition probability, is a function ν : T ×F → [0, 1] such that

t 7→ ν(t, A) is measurable for all A ∈ F
ν(t, ·) : F → [0, 1] is a probability measure for all t ∈ T.

Any Markov chain has a transition probability; conversely, any set of consistent transition probabil-
ities define a Markov chain [4].

Proof of Lemma 2 Some difficulties with measurability arise in constructing the appropriate
Markov chain for our setting. To deal with them, we use results from Choquet theory, which extend
Krein-Milman theorems to integral representations [22]. We begin our proof by stating a measurable
selection theorem [22, Theorem 11.4], though we restrict the theorem’s statement to subsets of finite
dimensional space.

Proposition 3. Let D ⊂ R
d be a compact convex set. For each x, there exists a probability measure

µx supported on Ext(D) such that
∫
D
ydµx(y) = x. Moreover, the mapping x 7→ µx can be taken

to be measurable.

In Proposition 3, measurability is taken with respect to the σ-field generated by the topology of weak
convergence. As a consequence of the proposition, however, it is clear that since for any continuous
function f the mapping x 7→

∫
fdµx is measurable, we have that for relatively open sets A ⊂ C the

mapping x 7→ µx(A) is measurable, whence for any measurable set A ⊂ C the mapping x 7→ µx(A)
is measurable. That is, we can define the Markov kernel ν : Rd × σ(C) → [0, 1] according to the
mapping specified by Proposition 3 (we take ν(x, ·) = µx) with the additional properties that

∫

D

yν(x, dy) = x and ν(x,D \ Ext(D)) = 0 for all x ∈ D.
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Now suppose the conditions of the lemma: that Y is distributed according to Q (conditional on
X) and there exists a set A ⊂ C of positive P -measure and a set B ⊂ D \ Ext(D) for which
Q(B | X = x) > 0 for all x ∈ A. For any y ∈ D, Proposition 3 guarantees that we can
represent y as the (regular conditional) measure ν(y, ·). Thus we can define a random variable Zy

distributed according to ν(y, ·), whose existence we are guaranteed by standard constructions [4]
with regular conditional probability. Then E[Zy] =

∫
D
zν(y, dz) = y, and moreover, we can define

the measurable version of the conditional expectation E[ZY | Y ] via

E[ZY | Y ] =

∫

D

zν(Y, dz) = Y

so we have the (almost sure) chain of equalities

E[ZY | X] = E[E[ZY | Y ] | X] =

∫

D

E[ZY | Y = y]dQ(y | X = x)

=

∫

D

∫

D

zν(y, dz)dQ(y | X = x) =

∫

D

ydQ(y | X = x) = x.

By construction, X → Y → Z is a valid Markov chain, and since the sets A and B satisfy
P (A) > 0 and

∫
A
Q(B | X = x)dP (x) > 0, we see that I(X;Y ) > I(X;Z) by Lemma 1.

D Calculation of the mutual information for sampling strategies

This section contains the proofs of Lemma 8, Lemma 9, and Lemma 10. The proofs of the latter two
require a minor lemma, which we present here before giving the proofs proper.

Lemma 12. Let 1 > p > δ > 0 and p+ δ ≤ 1. Then

(p+ δ) log(p+ δ) + (p− δ) log(p− δ) > 2p log p.

Proof Since the function p 7→ f(p) = p log p is strictly convex over [0,∞), we may apply
convexity. Indeed, p = 1

2 (p+ δ) + 1
2 (p− δ), so

p log p = f

(
1

2
(p+ δ) +

1

2
(p− δ)

)
<

1

2
f(p+ δ) +

1

2
f(p− δ),

which is the desired result.

D.1 Proof of Lemma 8

It is clear that the subgradient set ∂ℓ(Xi; θ) is independent of θ, so we may use the inequality (31)
to bound the mutual information of A and a single sample Z. Define M = M∞d/c. Since the
sampling scheme (25) is independent per-coordinate, we see immediately that if Zj denotes the jth
coordinate of Z then

I(Z;A) = H(Z)−H(Z | A) ≤ d log(2)−
d∑

j=1

H(Zj | A).

Since A is uniformly chosen from one of 2d vectors, we additionally find that

I(Z;A) ≤ d

[
log 2− 1

2d

∑

α∈V

H(Z | A = α)

]
.

By the choice of our sampling scheme for X and Z, we see that H(Z | A = α) is identical for each
α ∈ V , and we have

Q(Zj = M∞ | Aj = αj = 0) =
1

2
, and Q(Zj = −M∞ | Aj = αj = 0) =

1

2
.
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On the other hand, by our definition of M and choice of sampling scheme, for the “on” index in A,
we have

Q(Zj = M∞ | Aj = αj = 1)

= Q(Zj = M∞ | Xj = c/d)P (Xj = c/d | Aj = αj = 1)

+Q(Zj = M∞ | Xj = −c/d)P (Xj = −c/d | Aj = αj = 1)

=

(
M + 1

2M

)(
1 + δ

2

)
+

(
M − 1

2M

)(
1− δ

2

)
=

1

2
+

δ

2M
.

Consequently, we see that if we define h(p) = p log p+ (1− p) log(1− p), then

I(Z;A) ≤ d

[
log 2− 1

2d

[
(2d− 2) log 2 + 2h

(
1

2
+

δ

2M

)]]

= log 2 +

(
1

2
+

δ

2M

)
log

(
1

2
+

δ

2M

)
+

(
1

2
− δ

2M

)
log

(
1

2
− δ

2M

)
.

The concavity of the function p 7→ log(p) yields that log(1/2 + p) ≤ log(1/2) + 2p, so

I(Z;A) ≤ log 2 +

(
1

2
+

δ

2M

)(
− log 2 +

δ

M

)
+

(
1

2
− δ

2M

)(
− log 2− δ

M

)
=

δ2

M2
.

Making the substitution M = M∞d/c completes the proof.

D.2 Proof of Lemma 9

By using the inequality (31), a bound on the mutual information I(Z;A | θ) implies a bound on the
joint information in the statement of the lemma, so we focus on bounding the mutual information of
a single sample Z. In addition, it is no loss of generality to assume that r = 1.

Define M = M∞d/c to be the multiple of the ℓ∞-norm of the subgradients that we take, and let Zj

denote the jth coordinate of Z. Using the coordinate-wise independence of the sampling, we have

I(Z;A | θ) = H(Z | θ)−H(Z | A, θ) ≤ d log(2)−
d∑

j=1

H(Zj | Aj , θj).

Now consider the distribution of Zj given Aj and θj . Since the distribution has identical entropy
(by symmetry) for any value of Aj , we can without loss of generality fix A = α and assume αj = 1.
Then for θj ∈ (−1, 1), the jth component of the subgradient ∂ℓ(X; θ) is −Xj , whence we see that

Q(Zj = M∞ | αj = 1, θj)

= Q(Zj = M∞ | Xj = 1, θj)P (Xj = M∞ | αj = 1) +Q(Zj = M∞ | Xj = −1, θj)P (Xj = −1 | αj = 1)

=

(
M − 1

2M

)(
1 + δ

2

)
+

(
M + 1

2M

)(
1− δ

2

)
=

2M − 2δ

4M
=

1

2
− δ

2M
.

Similarly, Q(Zj = −M∞ | αj = 1, θj) =
1
2 + δ

2M . If θj ≥ 1, then we have that the subgradient
∂|θj −Xj | = 1 with probability 1, and thus

Q(Zj = M∞ | αj = 1, θj) =

(
M + 1

2M

)(
1 + δ

2

)
+

(
M + 1

2M

)(
1− δ

2

)
=

1

2
,

which increases the entropy H(Zj | Aj , θj) by Lemma 12. Thus we see that θj ∈ (−1, 1), yielding

the Bernoulli marginal ( 12+δ/2M, 1
2−δ/2M) on Zj | Aj , has the smallest entropy H(Zj | Aj , θj).

Summarizing, we have

I(Z;A | θ) ≤ d log(2) + d

[(
1

2
+

δ

2M

)
log

(
1

2
+

δ

2M

)
+

(
1

2
− δ

2M

)
log

(
1

2
− δ

2M

)]
.

As in the proof of Lemma 8, we use the concavity of log to see that

I(Z;A | θ) ≤ d log(2) + d

[(
1

2
+

δ

2M

)
(− log(2) + δ/M) +

(
1

2
− δ

2M

)
(− log(2)− δ/M)

]

= d

(
1

2
+

δ

2M

)(
δ

M

)
+ d

(
1

2
− δ

2M

)(
− δ

M

)
=

dδ2

M2
.

Applying the bound (31) and replacing M = M∞d/c completes the proof.
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D.3 Proof of Lemma 10

Letting Z denote a single subgradient sample using the conditional distrubtion Q specified by Propo-
sition 2, we prove that for any θ ∈ R

d, we have

I(Z;A | θ) ≤ δ2∆(γ)2 (35)

Recall our construction of the SVM risk (26) using the indivial hinge losses (27), where we see that
if X = ei, the loss is equal to c [r − θi]+. We have

∂ℓ(ei, θ) = c

{
0 if θi > r
−ei otherwise

and ∂ℓ(−ei, θ) = c

{
0 if θi < −r
ei otherwise.

For the remainder of this proof, we use the shorthand

D := eγ + e−γ + 2(d− 2)

for the denominator in many of our expressions. By the construction in Proposition 2, we have

Q(Z = M1ei | X = ei, θ) =

{
e−γ

D if θi ≤ r
1
2d if θi > r

(36)

and similarly we have for j 6= i that

Q(Z = M1ej | X = ei, θ) =

{
1
D if θi ≤ r
1
2d if θi > r.

(37)

For X = −ei, we have the conditional distribution parallel to (36):

Q(Z = M1ei | X = −ei, θ) =

{
eγ

D if θi ≥ −r
1
D if θi < −r.

For any given θ, we have that

I(Z;A | θ) = H(Z | θ)−H(Z | A, θ) ≤ log(2d)− 1

|V|
∑

α∈V

H(Z | θ,A = α) (38)

since the choice of A is uniform and Z takes on at most 2d values. We thus use the conditional
distributions (36) and (37) to compute the entropy H(Z | θ,A) (specifically, the minimal such
entropy across all values of θ). To do this, we compute the marginal distribution Q(z | α), arguing
that H(Z | θ,A) is minimal for θ ∈ int[−r, r]d. When θj ∈ (−r, r) for all j, we have

Q(Z = M1ei | A = α, θ) =

d∑

j=1

Q(Z = M1ei | X = ej , θ)P (X = ej | A = α)

+

d∑

j=1

Q(Z = M1ei | X = −ej , θ)P (X = −ej | A = α).

When αi = 1, we thus have that

Q(Z = M1ei | A = α, θ) =
1 + δ

2d

e−γ

D
+

1− δ

2d

eγ

D
+
∑

j 6=i

1

D

(
1 + δαj

2d
+

1− δαj

2d

)

=
eγ + e−γ + δ(e−γ − eγ)

2dD
+

d− 1

dD
=

1

2d
+

δ(e−γ − eγ)

2dD
, (39a)

and under the same condition,

Q(Z = −M1ei | A = α, θ) =
eγ + e−γ + δ(eγ + e−γ)

2dD
+

d− 1

dD
=

1

2d
+

δ(eγ − e−γ)

2dD
. (39b)

If for any (possibly multiple) indices j we have θj 6∈ (−r, r), then via a bit of algebra and the
conditional distributions (36) and (37), we see that there exists an ǫ ∈ (0, 1) such that

Q(Z = M1ei | A = α, θ) = ǫ
1

2d
+ (1− ǫ)

(
1

2d
+

δ(e−γ − eγ)

2dD

)
.
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Lemma 12 then implies that if θ ∈ int[−r, r]d while θ′ 6∈ int[−r, r]d, then

H(Z | θ,A = α) < H(Z | θ′, A = α).

Since we seek an upper bound on the mutual information, we may thus assume without loss of
generality that θ ∈ int[−r, r]d.

Now we compute the entropy H(Z | θ, α) using the marginal conditional distributions (39a)
and (39b), which describe Z | A when θ ∈ int[−r, r]d. Indeed, recall the definition in the statement
of the lemma of the difference ∆(γ). If we define the relation z ∼ α for z ∈ {±M1ej}dj=1 to mean
that if z = M1ei, then αi = 1 and if z = −M1ei then αi = −1, then we see that the entropy is

H(Z | θ,A = α) = −
∑

z∼α

Q(z | α, θ) logQ(z | α, θ)−
∑

z 6∼α

Q(z | α, θ) logQ(z | α, θ)

= −d

(
1

2d
+

δ∆(γ)

2d

)
log

(
1

2d
+

δ∆(γ)

2d

)
− d

(
1

2d
− δ∆(γ)

2d

)
log

(
1

2d
− δ∆(γ)

2d

)
.

As in the proofs of Lemmas 8 and 9, we use the concavity of log(·) to see that

−H(Z | θ,A = α) =

(
1

2
+

δ∆(γ)

2

)
log

(
1

2d
+

δ∆(γ)

2d

)
+

(
1

2
− δ∆(γ)

2

)
log

(
1

2d
− δ∆(γ)

2d

)

≤
(
1

2
+

δ∆(γ)

2

)
(− log(2d) + δ∆(γ)) +

(
1

2
− δ∆(γ)

2

)
(− log(2d)− δ∆(γ))

= − log(2d) + δ2∆(γ)2.

Invoking the earlier bound (38) and adding log(2d) to the above expression completes the proof of
the claim (35).

D.4 Proof of Lemma 11

Recall that for any two probability distributions P,Q, Pinsker’s inequality [8] asserts that the to-

tal variation norm is bounded as ‖P −Q‖TV ≤
√
Dkl (P ||Q) /2. Applying this inequality in our

setting, we find that

∥∥Qn
1 −Qn

−1

∥∥
TV

≤
√

1

2
Dkl

(
Qn

1 ||Qn
−1

)
=

1√
2

√
nDkl (Q1||Q−1),

where we have exploited the product nature of Qn
i . Now we note that by the concavity of the log,

we have (via the first-order inequality) that log 1+δ
1−δ ≤ 2δ/(1− δ), so

1 + δ

2
log

1+δ
2

1−δ
2

+
1− δ

2
log

1−δ
2

1+δ
2

=
1 + δ

2
log

1 + δ

1− δ
+

1− δ

2
log

1− δ

1 + δ
= δ log

1 + δ

1− δ
≤ 2δ2

1− δ
.

Assuming that δ ≤ 1/3, the final term is upper bounded by 3δ2. But of course by definition of Q1

and Q−1, we have

Dkl (Q1||Q−1) =
1 + δ

2
log

1+δ
2

1−δ
2

+
1− δ

2
log

1−δ
2

1+δ
2

≤ 3δ2,

which completes the proof.

E Technical Lemmas

E.1 Proof of Corollary 3

First, we claim that as γ → 0, the following expansion holds:

log(2d)−log
(
eγ + e−γ + 2d− 2

)
+γ

eγ

eγ + e−γ + 2d− 2
−γ

e−γ

eγ + e−γ + 2d− 2
=

γ2

2d
+Θ

(
γ4

d

)
.

(40)
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Before proving this, we use the expansion (40) to prove Corollary 3. Noting that

2d− 2 +
√

(2d− 2)2 + 4(M2 − 1)

2(M − 1)
=

√
M + 1

M − 1
+

d− 1

M − 1
+ Θ(d2/M2),

we see that since log(1 + x) = x − x2/2 + Θ(x3), we have γ = d
M + Θ

(
d2

M2

)
. Thus the mutual

information in Proposition 2 is

I(P ∗, Q∗) =
log2(

√
(M + 1)/(M − 1) + d/M +Θ(d2/M2))

2d
+Θ

(
log4(1 + d/M)

d

)

=
d

2M2
+Θ

(
min

{
d3

M4
,
log4(d)

d

})
.

Now we return to showing the claim (40). Indeed, define f(γ) = log(eγ + e−γ + 2d − 2). Taking
several derivatives, we have

f (1)(γ) =
eγ − e−γ

eγ + e−γ + 2d− 2
, f (2)(γ) =

(eγ + e−γ)(2d− 2) + 4

(eγ + e−γ + 2d− 2)2
,

and

f (3)(γ) =
−(e2γ − e−2γ)(2d− 2)− 8(eγ − e−γ) + (2d− 2)2(eγ − e−γ)

(eγ + e−γ + 2d− 2)3
.

We see via a Taylor expansion that the difference

log(2d) = log(eγ − e−γ + 2d− 2) + (0− γ)f (1)(γ) +
(0− γ)2

2
f (2)(γ) +O

(
f (3)(γ)γ3

)
.

Recalling our calculation of the first derivative f (1)(γ), we thus see that

log(2d)− log
(
eγ + e−γ + 2d− 2

)
+ γ

eγ

eγ + e−γ + 2d− 2
− γ

e−γ

eγ + e−γ + 2d− 2

=
(eγ + e−γ)(2d− 2) + 4

(eγ + e−γ + 2d− 2)2
· γ

2

2
+O

(
f (3)(γ)γ3

)
.

A few simpler Taylor expansions yield that f (3)(γ) = O(γ/d), which means that all we have left to

tackle is f (2)(γ). But noting that

2
(
eγ + e−γ

)
= 4

(
1 +

γ2

2!
+

γ4

4!
+ · · ·

)
= 4 +O(γ2)

implies that f (2)(γ)γ2 = γ2 +O(γ4/d), which yields the result.

E.2 Proof of Lemma 3

We may write the Lagrangian with dual variables µ ∈ R
d, λ(z) ≥ 0, and θ ∈ R,

L(q, µ, λ, θ) =
∑

z

q(z | x) log q(z | x)+µ⊤

(∑

z

zq(z | x)−x

)
+θ

(∑

z

q(z | x)−1

)
−
∑

z

λ(z)q(z | x).

Since the problem (11) has convex cost, linear constraints, and non-empty domain, strong duality
obtains and the KKT conditions hold for the problem. Thus, minimizing q out of L to find the dual,
we take derivatives with respect to the m variables q(z | x) for z = (1 + α)ui and find the optimal
conditional p.m.f. q must satisfy

log q(z | x) + 1 + µ⊤z + θ − λ(z) = 0, or q(z | x) = exp(λ(z)− 1− θ) exp(−µ⊤z).

In particular, we see that since q(z | x) > 0, we must have λ(z) = 0 by complementarity, and
(satisfying the summability constraint

∑
z q(z | x) = 1) we see that

q(z | x) = exp(−µ⊤z)∑
z′ exp(−µ⊤z′)

,

where µ ∈ R
d is any vector chosen to satisfy the constraint

∑
z zq(z | x) = x. The existence of

such a µ is guaranteed by the attainment of the KKT conditions.
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