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Abstract

We consider derivative-free algorithms for stochastic optimization problems that
use only noisy function values rather than gradients, analyzing their finite-sample
convergence rates. We show that if pairs of function values are available, algo-
rithms that use gradient estimates based on random perturbations suffer a factor

of at most
√
d in convergence rate over traditional stochastic gradient methods,

where d is the problem dimension. We complement our algorithmic develop-
ment with information-theoretic lower bounds on the minimax convergence rate of
such problems, which show that our bounds are sharp with respect to all problem-
dependent quantities: they cannot be improved by more than constant factors.

1 Introduction

Derivative-free optimization schemes have a long history in optimization (see, for example, the
book by Spall [21]), and they have the clearly desirable property of never requiring explicit gradient
calculations. Classical techniques in stochastic and non-stochastic optimization, including Kiefer-
Wolfowitz-type procedures [e.g. 17], use function difference information to approximate gradients
of the function to be minimized rather than calculating gradients. Researchers in machine learning
and statistics have studied online convex optimization problems in the bandit setting, where a player
and adversary compete, with the player choosing points θ in some domain Θ and an adversary
choosing a point x, forcing the player to suffer a loss F (θ;x), where F (·;x) : Θ → R is a convex
function [13, 5, 1]. The goal is to choose optimal θ based only on observations of function values
F (θ;x). Applications including online auctions and advertisement selection in search engine results.
Additionally, the field of simulation-based optimization provides many examples of problems in
which optimization is performed based only on function values [21, 10], and problems in which
the objective is defined variationally (as the maximum of a family of functions), such as certain
graphical model and structured-prediction problems, are also natural because explicit differentiation
may be difficult [23].

Despite the long history and recent renewed interest in such procedures, an understanding of their
finite-sample convergence rates remains elusive. In this paper, we study algorithms for solving
stochastic convex optimization problems of the form

min
θ∈Θ

f(θ) := EP [F (θ;X)] =

∫

X

F (θ;x)dP (x), (1)

where Θ ⊆ R
d is a compact convex set, P is a distribution over the space X , and for P -almost every

x ∈ X , the function F (·;x) is closed convex. Our focus is on the convergence rates of algorithms
that observe only stochastic realizations of the function values f(θ).

Work on this problem includes Nemirovski and Yudin [18, Chapter 9.3], who develop a randomized
sampling strategy that estimates ∇F (θ;x) using samples from the surface of the ℓ2-sphere, and
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Flaxman et al. [13], who build on this approach, applying it to bandit convex optimization problems.
The convergence rates in these works are (retrospectively) sub-optimal [20, 2]: Agarwal et al. [2]

provide algorithms that achieve convergence rates (ignoring logarithmic factors) of O(poly(d)/
√
k),

where poly(d) is a polynomial in the dimension d, for stochastic algorithms receiving only single
function values, but (as the authors themselves note) the algorithms are quite complicated.

Some of the difficulties inherent in optimization using only a single function evaluation can be alle-
viated when the function F (·;x) can be evaluated at two points, as noted independently by Agarwal
et al. [1] and Nesterov [20]. The insight is that for small u, the quantity (F (θ+uZ;x)−F (θ;x))/u
approximates a directional derivative of F (θ;x) and can thus be used in first-order optimization
schemes. Such two-sample-based gradient estimators allow simpler analyses, with sharper conver-
gence rates [1, 20], than algorithms that have access to only a single function evaluation in each
iteration. In the current paper, we take this line of work further, finding the optimal rate of con-
vergence for procedures that are only able to obtain function evaluations, F (·;X), for samples X .
Moreover, adopting the two-point perspective, we present simple randomization-based algorithms
that achieve these optimal rates.

More formally, we study algorithms that receive paired observations Y (θ, τ) ∈ R
2, where θ and τ

are points the algorithm selects, and the tth sample is

Y t(θt, τ t) :=

[
F (θt;Xt)
F (τ t;Xt)

]
(2)

where Xt is a sample drawn from the distribution P . After k iterations, the algorithm returns a

vector θ̂(k) ∈ Θ. In this setting, we analyze stochastic gradient and mirror-descent procedures [27,
18, 6, 19] that construct gradient estimators using the two-point observations Y t. By a careful
analysis of the dimension dependence of certain random perturbation schemes, we show that the

convergence rate attained by our stochastic gradient methods is roughly a factor of
√
d worse than

that attained by stochastic methods that observe the full gradient ∇F (θ;X). Under appropriate

conditions, our convergence rates are a factor of
√
d better than those attained by Agarwal et al.

[1] and Nesterov [20]. In addition, though we present our results in the framework of stochastic
optimization, our analysis applies to (two-point) bandit online convex optimization problems [13,
5, 1], and we consequently obtain the sharpest rates for such problems. Finally, we show that
the convergence rates we provide are tight—meaning sharp to within constant factors—by using
information-theoretic techniques for constructing lower bounds on statistical estimators.

2 Algorithms

Stochastic mirror descent methods are a class of stochastic gradient methods for solving the problem
minθ∈Θ f(θ). They are based on a proximal function ψ, which is a differentiable convex function
defined over Θ that is assumed (w.l.o.g. by scaling) to be 1-strongly convex with respect to the norm
‖·‖ over Θ. The proximal function defines a Bregman divergence Dψ : Θ×Θ → R+ via

Dψ(θ, τ) := ψ(θ)− ψ(τ)− 〈∇ψ(τ), θ − τ〉 ≥ 1

2
‖θ − τ‖2 , (3)

where the inequality follows from the strong convexity of ψ over Θ. The mirror descent (MD)
method proceeds in a sequence of iterations that we index by t, updating the parameter vector θt ∈
Θ using stochastic gradient information to form θt+1. At iteration t the MD method receives a
(subgradient) vector gt ∈ R

d, which it uses to update θt via

θt+1 = argmin
θ∈Θ

{〈
gt, θ

〉
+

1

α(t)
Dψ(θ, θ

t)

}
, (4)

where {α(t)} is a non-increasing sequence of positive stepsizes.

We make two standard assumptions throughout the paper. Let θ∗ denote a minimizer of the prob-
lem (1). The first assumption [18, 6, 19] describes the properties of ψ and the domain.

Assumption A. The proximal function ψ is strongly convex with respect to the norm ‖·‖. The
domain Θ is compact, and there exists R <∞ such that Dψ(θ

∗, θ) ≤ 1
2R

2 for θ ∈ Θ.
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Our second assumption is standard for almost all first-order stochastic gradient methods [19, 24, 20],
and it holds whenever the functions F (·;x) are G-Lipschitz with respect to the norm ‖·‖. We use
‖·‖∗ to denote the dual norm to ‖·‖, and let g : Θ × X → R

d denote a measurable subgradient
selection for the functions F ; that is, g(θ;x) ∈ ∂F (θ;x) with E[g(θ;X)] ∈ ∂f(θ).

Assumption B. There is a constant G < ∞ such that the (sub)gradient selection g satisfies

E[‖g(θ;X)‖2∗] ≤ G2 for θ ∈ Θ.

When Assumptions A and B hold, the convergence rate of stochastic mirror descent methods is
well understood [6, 19, Section 2.3]. Indeed, let the variables Xt ∈ X be sampled i.i.d. according
to P , set gt = g(θt;Xt), and let θt be generated by the mirror descent iteration (4) with stepsize

α(t) = α/
√
t. Then one obtains

E[f(θ̂(k))]− f(θ∗) ≤ 1

2α
√
k
R2 +

α√
k
G2. (5)

For the remainder of this section, we explore the use of function difference information to obtain
subgradient estimates that can be used in mirror descent methods to achieve statements similar to
the convergence guarantee (5).

2.1 Two-point gradient estimates and general convergence rates

In this section, we show—under a reasonable additional assumption—how to use two samples of
the random function values F (θ;X) to construct nearly unbiased estimators of the gradient ∇f(θ)
of the expected function f . Our analytic techniques are somewhat different than methods employed
in past work [1, 20]; as a consequence, we are able to achieve optimal dimension dependence.

Our method is based on an estimator of ∇f(θ). Our algorithm uses a non-increasing sequence
of positive smoothing parameters {ut} and a distribution µ on R

d (which we specify) satisfying
Eµ[ZZ

⊤] = I . Upon receiving the point Xt ∈ X , we sample an independent vector Zt and set

gt =
F (θt + utZ

t;Xt)− F (θt;Xt)

ut
Zt. (6)

We then apply the mirror descent update (4) to the quantity gt.

The intuition for the estimator (6) of ∇f(θ) follows from an understanding of the directional deriva-
tives of the random function realizations F (θ;X). The directional derivative f ′(θ, z) of the function

f at the point θ in the direction z is f ′(θ, z) := limu↓0
f(θ+uz)−f(θ)

u . The limit always exists when
f is convex [15, Chapter VI], and if f is differentiable at θ, then f ′(θ, z) = 〈∇f(θ), z〉. In addition,
we have the following key insight (see also Nesterov [20, Eq. (32)]): whenever ∇f(θ) exists,

E[f ′(θ, Z)Z] = E[〈∇f(θ), Z〉Z] = E[ZZ⊤∇f(θ)] = ∇f(θ)

if the random vector Z ∈ R
d has E[ZZ⊤] = I . Intuitively, for ut small enough in the construc-

tion (6), the vector gt should be a nearly unbiased estimator of the gradient ∇f(θ).
To formalize our intuition, we make the following assumption.

Assumption C. There is a function L : X → R+ such that for (P -almost every) x ∈ X , the func-
tion F (·;x) has L(x)-Lipschitz continuous gradient with respect to the norm ‖·‖, and the quantity
L(P )2 := E[L(X)2] <∞.

With Assumption C, we can show that gt is (nearly) an unbiased estimator of ∇f(θt). Furthermore,
for appropriate random vectors Z, we can also show that gt has small norm, which yields better
convergence rates for mirror descent-type methods. (See the proof of Theorem 1.) In order to study
the convergence of mirror descent methods using the estimator (6), we make the following additional
assumption on the distribution µ.

Assumption D. LetZ be sampled according to the distribution µ, where E[ZZ⊤] = I . The quantity

M(µ)2 := E[‖Z‖4 ‖Z‖2∗] < ∞, and there is a constant s(d) such that for any vector g ∈ R
d,

E[‖〈g, Z〉Z‖2∗] ≤ s(d) ‖g‖2∗.
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As the next theorem shows, Assumption D is somewhat innocuous, the constant M(µ) not even
appearing in the final bound. The dimension (and norm) dependent term s(d), however, is impor-
tant for our results. In Section 2.2 we give explicit constructions of random variables that satisfy
Assumption D. For now, we present the following result.

Theorem 1. Let {ut} ⊂ R+ be a non-increasing sequence of positive numbers, and let θt be
generated according to the mirror descent update (4) using the gradient estimator (6). Under As-
sumptions A, B, C, and D, if we set the step and perturbation sizes

α(t) = α
R

2G
√
s(d)

√
t

and ut = u
G
√
s(d)

L(P )M(µ)
· 1
t
,

then

E

[
f(θ̂(k))− f(θ∗)

]
≤ 2

RG
√
s(d)√
k

max
{
α, α−1

}
+ αu2

RG
√
s(d)

k
+ u

RG
√
s(d) log k

k
,

where θ̂(k) = 1
k

∑k
t=1 θ

t, and the expectation is taken with respect to the samples X and Z.

The proof of Theorem 1 requires some technical care—we never truly receive unbiased gradients—
and it builds on convergence proofs developed in the analysis of online and stochastic convex op-
timization [27, 19, 1, 12, 20] to achieve bounds of the form (5). Though we defer proof to Ap-
pendix A.1, at a very high level, the argument is as follows. By using Assumption C, we see that
for small enough ut, the gradient estimator gt from (6) is close (in expectation with respect to Xt)
to f ′(θt, Zt)Zt, which is an unbiased estimate of ∇f(θt). Assumption C allows us to bound the
moments of the gradient estimator gt. By carefully showing that taking care to make sure that the
errors in gt as an estimator of ∇f(θt) scale with ut, we given an analysis similar to that used to
derive the bound (5) to obtain Theorem 1.

Before continuing, we make a few remarks. First, the method is reasonably robust to the selection
of the step-size multiplier α (as noted by Nemirovski et al. [19] for gradient-based MD methods).

So long as α(t) ∝ 1/
√
t, mis-specifying the multiplier α results in a scaling at worst linear in

max{α, α−1}. Perhaps more interestingly, our setting of ut was chosen mostly for convenience
and elegance of the final bound. In a sense, we can simply take u to be extremely close to zero (in
practice, we must avoid numerical precision issues, and the stochasticity in the method makes such
choices somewhat unnecessary). In addition, the convergence rate of the method is independent
of the Lipschitz continuity constant L(P ) of the instantaneous gradients ∇F (·;X); the penalty for
nearly non-smooth objective functions comes into the bound only as a second-order term. This
suggests similar results should hold for non-differentiable functions; we have been able to show that
in some cases this is true, but a fully general result has proved elusive thus far. We are currently
investigating strategies for the non-differentiable case.

Using similar arguments based on Azuma-Hoeffding-type inequalities, it is possible to give high-
probability convergence guarantees [cf. 9, 19] under additional tail conditions on g, for example,

that E[exp(‖g(θ;X)‖2∗ /G2)] ≤ exp(1). Additionally, though we have presented our results as
convergence guarantees for stochastic optimization problems, an inspection of our analysis in Ap-
pendix A.1 shows that we obtain (expected) regret bounds for bandit online convex optimization
problems [e.g. 13, 5, 1].

2.2 Examples and corollaries

In this section, we provide examples of random sampling strategies that give direct convergence
rate estimates for the mirror descent algorithm with subgradient samples (6). For each corollary,
we specify the norm ‖·‖, proximal function ψ, and distribution µ, verify that Assumptions A, B, C,
and D hold, and then apply Theorem 1 to obtain a convergence rate.

We begin with a corollary that describes the convergence rate of our algorithm when the expected
function f is Lipschitz continuous with respect to the Euclidean norm ‖·‖2.

Corollary 1. Given the proximal function ψ(θ) := 1
2 ‖θ‖

2
2, suppose that E[‖g(θ;X)‖22] ≤ G2 and

that µ is uniform on the surface of the ℓ2-ball of radius
√
d. With the step size choices in Theorem 1,
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we have

E

[
f(θ̂(k))− f(θ∗)

]
≤ 2

RG
√
d√

k
max{α, α−1}+ αu2

RG
√
d

k
+ u

RG
√
d log k

k
.

Proof Note that ‖Z‖2 =
√
d, which implies M(µ)2 = E[‖Z‖62] = d3. Furthermore, it is easy to

see that E[ZZ⊤] = I . Thus, for g ∈ R
d we have

E[‖〈g, Z〉Z‖22] = dE[〈g, Z〉2] = dE[g⊤ZZ⊤g] = d ‖g‖22 ,
which gives us s(d) = d.

The rate provided by Corollary 1 is the fastest derived to date for zero-order stochastic optimiza-
tion using two function evaluations. Both Agarwal et al. [1] and Nesterov [20] achieve rates of

convergence of order RGd/
√
k. Admittedly, neither requires that the random functions F (·;X) be

continuously differentiable. Nonetheless, Assumption C does not require a uniform bound on the
Lipschitz constant L(X) of the gradients ∇F (·;X); moreover, the convergence rate of the method
is essentially independent of L(P ).

In high-dimensional scenarios, appropriate choices for the proximal function ψ yield better scaling
on the norm of the gradients [18, 14, 19, 12]. In online learning and stochastic optimization settings
where one observes gradients g(θ;X), if the domain Θ is the simplex, then exponentiated gradient
algorithms [16, 6] using the proximal function ψ(θ) =

∑
j θj log θj obtain rates of convergence

dependent on the ℓ∞-norm of the gradients ‖g(θ;X)‖∞. This scaling is more palatable than de-

pendence on Euclidean norms applied to the gradient vectors, which may be a factor of
√
d larger.

Similar results apply [7, 6] when using proximal functions based on ℓp-norms. Indeed, making the

choice p = 1 + 1/ log d and ψ(θ) = 1
2(p−1) ‖θ‖

2
p, we obtain the following corollary.

Corollary 2. Assume that E[‖g(θ;X)‖2∞] ≤ G2 and that Θ ⊆ {θ ∈ R
d : ‖θ‖1 ≤ R}. Set µ to be

uniform on the surface of the ℓ2-ball of radius
√
d. Use the step sizes specified in Theorem 1. There

are universal constants C1 < 20e and C2 < 10e such that

E

[
f(θ̂(k))− f(θ∗)

]
≤ C1

RG
√
d log d√
k

max
{
α, α−1

}
+ C2

RG
√
d log d

k

(
αu2 + u log k

)
.

Proof The proof of this corollary is somewhat involved. The main argument involves showing
that the constants M(µ) and s(d) may be taken as M(µ) ≤ d6 and s(d) ≤ 24d log d.

First, we recall [18, 7, Appendix 1] that our choice of ψ is strongly convex with respect to the norm
‖·‖p. In addition, if we define q = 1 + log d, then we have 1/p+ 1/q = 1, and ‖v‖q ≤ e ‖v‖∞ for

any v ∈ R
d and any d. As a consequence, we see that we may take the norm ‖·‖ = ‖·‖1 and the dual

norm ‖·‖∗ = ‖·‖∞, and E[‖〈g, Z〉Z‖2q] ≤ e2E[‖〈g, Z〉Z‖2∞]. To apply Theorem 1 with appropriate

values from Assumption D, we now bound E[‖〈g, Z〉Z‖2∞]; see Appendix A.3 for a proof.

Lemma 3. Let Z be distributed uniformly on the ℓ2-sphere of radius
√
d. For any g ∈ R

d,

E[‖〈g, Z〉Z‖2∞] ≤ C · d log d ‖g‖2∞ ,

where C ≤ 24 is a universal constant.

As a consequence of Lemma 3, the constant s(d) of Assumption D satisfies s(d) ≤ Cd log d.

Finally, we have the essentially trivial bound M(µ)2 = E[‖Z‖41 ‖Z‖
2
∞] ≤ d6 (we only need the

quantity M(µ) to be finite to apply Theorem 1). Recalling that the set Θ ⊆ {θ ∈ R
d : ‖θ‖1 ≤ R},

our choice of ψ yields [e.g., 14, Lemma 3]

(p− 1)Dψ(θ, τ) ≤
1

2
‖θ‖2p +

1

2
‖τ‖2p + ‖θ‖p ‖τ‖p .

We thus find that Dψ(θ, τ) ≤ 2R2 log d for any θ, τ ∈ Θ, and using the step and perturbation size
choices of Theorem 1 gives the result.

5



Corollary 2 attains a convergence rate that scales with dimension as
√
d log d. This dependence

on dimension is much worse than that of (stochastic) mirror descent using full gradient informa-
tion [18, 19]. The additional dependence on d suggests that while O(1/ǫ2) iterations are required to
achieve ǫ-optimization accuracy for mirror descent methods (ignoring logarithmic factors), the two-
point method requires O(d/ǫ2) iterations to obtain the same accuracy. A similar statement holds for
the results of Corollary 1. In the next section, we show that this dependence is sharp: except for log-
arithmic factors, no algorithm can attain better convergence rates, including the problem-dependent
constants R and G.

3 Lower bounds on zero-order optimization

We turn to providing lower bounds on the rate of convergence for any method that receives random
function values. For our lower bounds, we fix a norm ‖·‖ on R

d and as usual let ‖·‖∗ denote its

dual norm. We assume that Θ = {θ ∈ R
d : ‖θ‖ ≤ R} is the norm ball of radius R. We study

all optimization methods that receive function values of random convex functions, building on the
analysis of stochastic gradient methods by Agarwal et al. [3].

More formally, let Ak denote the collection of all methods that observe a sequence of data points

(Y 1, . . . , Y k) ⊂ R
2 with Y t = [F (θt, Xt) F (τ t, Xt)] and return an estimate θ̂(k) ∈ Θ. The classes

of functions over which we prove our lower bounds consist of those satisfying Assumption B, that is,
for a given Lipschitz constantG > 0, optimization problems over the set FG. The set FG consists of
pairs (F, P ) as described in the objective (1), and for (F, P ) ∈ FG we assume there is a measurable

subgradient selection g(θ;X) ∈ ∂F (θ;X) satisfying EP [‖g(θ;X)‖2∗] ≤ G2 for θ ∈ Θ.

Given an algorithm A ∈ Ak and a pair (F, P ) ∈ FG, we define the optimality gap

ǫk(A, F, P,Θ) := f(θ̂(k))− inf
θ∈Θ

f(θ) = EP

[
F (θ̂(k);X)

]
− inf
θ∈Θ

EP [F (θ;X)] , (7)

where θ̂(k) is the output of A on the sequence of observed function values. The quantity (7) is a
random variable, since the Y t are random and A may use additional randomness. We we are thus
interested in its expected value, and we define the minimax error

ǫ∗k(FG,Θ) := inf
A∈Ak

sup
(F,P )∈FG

E[ǫk(A, F, P,Θ)], (8)

where the expectation is over the observations (Y 1, . . . , Y k) and randomness in A.

3.1 Lower bounds and optimality

In this section, we give lower bounds on the minimax rate of optimization for a few specific settings.
We present our main results, then recall Corollaries 1 and 2, which imply we have attained the min-
imax rates of convergence for zero-order (stochastic) optimization schemes. The following sections
contain proof sketches; we defer technical arguments to appendices.

We begin by providing minimax lower bounds when the expected function f(θ) = E[F (θ;X)] is
Lipschitz continuous with respect to the ℓ2-norm. We have the following proposition.

Proposition 1. Let Θ =
{
θ ∈ R

d : ‖θ‖2 ≤ R
}

and FG consist of pairs (F, P ) for which the sub-

gradient mapping g satisfies EP [‖g(θ;X)‖22] ≤ G2 for θ ∈ Θ. There exists a universal constant
c > 0 such that for k ≥ d,

ǫ∗k(FG,Θ) ≥ c
GR

√
d√

k
.

Combining the lower bounds provided by Proposition 1 with our algorithmic scheme in Section 2
shows that our analysis is essentially sharp, since Corollary 1 provides an upper bound for the

minimax optimality of RG
√
d/

√
k. The stochastic gradient descent algorithm (4) coupled with the

sampling strategy (6) is thus optimal for stochastic problems with two-point feedback.

Now we investigate the minimax rates at which it is possible to solve stochastic convex optimization
problems whose objectives are Lipschitz continuous with respect to the ℓ1-norm. As noted earlier,
such scenarios are suitable for high-dimensional problems [e.g. 19].
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Proposition 2. Let Θ = {θ ∈ R
d : ‖θ‖1 ≤ R} and FG consist of pairs (F, P ) for which the

subgradient mapping g satisfies EP [‖g(θ;X)‖2∞] ≤ G2 for θ ∈ Θ. There exists a universal constant
c > 0 such that for k ≥ d,

ǫ∗k(FG,Θ) ≥ c
GR

√
d√

k
.

We may again consider the optimality of our mirror descent algorithms, recalling Corollary 2. In this

case, the MD algorithm (4) with the choice ψ(θ) = 1
2(p−1) ‖θ‖

2
p, where p = 1 + 1/ log d, implies

that there exist universal constants c and C such that

c
GR

√
d√

k
≤ ǫ∗k(FG,Θ) ≤ C

GR
√
d log d√
k

for the problem class described in Proposition 2. Here the upper bound is again attained by our
two-point mirror-descent procedure. Thus, to within logarithmic factors, our mirror-descent based
algorithm is optimal for these zero-order optimization problems.

When full gradient information is available, that is, one has access to the subgradient selection

g(θ;X), the
√
d factors appearing in the lower bounds in Proposition 1 and 2 are not present [3].

The
√
d factors similarly disappear from the convergence rates in Corollaries 1 and 2 when one

uses gt = g(θ;X) in the mirror descent updates (4); said differently, the constant s(d) = 1 in
Theorem 1 [19, 6]. As noted in Section 2, our lower bounds consequently show that in addition to
dependence on the radius R and second moment G2 in the case when gradients are available [3],

all algorithms must suffer an additional O(
√
d) penalty in convergence rate. This suggests that for

high-dimensional problems, it is preferable to use full gradient information if possible, even when
the cost of obtaining the gradients is somewhat high.

3.2 Proofs of lower bounds

We sketch proofs for our lower bounds on the minimax error (8), which are based on the framework
introduced by Agarwal et al. [3]. The strategy is to reduce the optimization problem to a testing
problem: we choose a finite set of (well-separated) functions, show that optimizing well implies that
one can identify the function being optimized, and then, as in statistical minimax theory [26, 25],
apply information-theoretic lower bounds on the probability of error in hypothesis testing problems.

We begin with a finite set V ⊆ R
d, to be chosen depending on the characteristics of the function

class FG, and a collection of functions and distributions G = {(Fv, Pv) : v ∈ V} ⊆ FG indexed by
V . Define fv(θ) = EPv

[Fv(θ;X)], and let θ∗v ∈ argminθ∈Θ fv(θ). We also let δ > 0 be an accuracy
parameter upon which Pv and the following quantities implicitly depend. Following Agarwal et al.
[3], we define the separation between two functions as

ρ(fv, fw) := inf
θ∈Θ

[
fv(θ) + fw(θ)

]
− fv(θ

∗
v)− fw(θ

∗
w),

and the minimal separation of the set V (this may depend on the accuracy parameter δ) as

ρ∗(V) := min{ρ(fv, fw) : v, w ∈ V, v 6= w}.

For any algorithm A ∈ Ak, there exists a hypothesis test v̂ : (Y 1, . . . , Y k) → V such that for V
sampled uniformly from V (see [3, Lemma 2]),

P(v̂(Y 1, . . . , Y k) 6= V ) ≤ 2

ρ∗(V)E[ǫk(A, FV , PV ,Θ)] ≤ 2

ρ∗(V) max
v∈V

E[ǫk(A, Fv, Pv,Θ)], (9)

where the expectation is taken over the observations (Y 1, . . . , Y k). By Fano’s inequality [11],

P(v̂ 6= V ) ≥ 1− I(Y 1, . . . , Y k;V ) + log 2

log |V| . (10)

We thus must upper bound the mutual information I(Y 1, . . . , Y k;V ), which leads us to the follow-
ing. (See Appendix B.3 for the somewhat technical proof of the lemma.)
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Lemma 4. Let X | V = v be distributed as N(δv, σ2I), and let F (θ;x) = 〈θ, x〉. Let V be a
uniform random variable on V ⊂ R

d, and assume that Cov(V ) � λI for some λ ≥ 0. Then

I(Y 1, Y 2, . . . , Y k;V ) ≤ λkδ2

σ2
.

Using Lemma 4, we can obtain a lower bound on the minimax optimization error whenever the
instantaneous objective functions are of the form F (θ;x) = 〈θ, x〉. Combining inequalities (9),
(10), and Lemma 4, we find that if we choose the accuracy parameter

δ =
σ√
kλ

(
log |V|

2
− log 2

)1/2

, (11)

(we assume that |V| > 4) we find that there exist a pair (F, P ) ∈ FG such that

E[ǫk(A, F, P,Θ)] ≥ ρ∗(V)/4. (12)

The inequality (12) can give concrete lower bounds on the minimax optimization error. In our lower
bounds, we use Fv(θ;x) = 〈θ, x〉 and set Pv to be the N(δv, σ2I) distribution, which allows us to
apply Lemma 4. Proving Propositions 1 and 2 thus requires three steps:

1. Choose the set V with the property that Cov(V ) � λI when V ∼ Uniform(V).
2. Choose the variance parameter σ2 such that for each v ∈ V , the pair (Fv, Pv) ∈ FG.

3. Calculate the separation value ρ∗(V) as a function of the accuracy parameter δ.

Enforcing (Fv, Pv) ∈ FG amounts to choosing σ2 so that E[‖X‖2∗] ≤ G2 for X ∼ N(δv, σ2I).
By construction fv(θ) = δ 〈θ, v〉, which allows us to give lower bounds on the minimal separation
ρ∗(V) for the choices of the norm constraint ‖θ‖ ≤ R in Propositions 1 and 2. We defer formal
proofs to Appendices B.1 and B.2, providing sketches here.

For Proposition 1, an argument using the probabilistic method implies that there are universal
constants c1, c2 > 0 for which there is a 1

2 packing V of the ℓ2-sphere of radius 1 with size

at least |V| ≥ exp(c1d) and such that (1/|V|)∑v∈V vv
⊤ � c2Id×d/d. By the linearity of fv ,

we find ρ(fv, fw) ≥ δR/16, and setting σ2 = G2/(2d) and δ as in the choice (11) implies that

E[‖X‖22] ≤ G2. Substituting δ and ρ∗(V) into the bound (12) proves Proposition 1.

For Proposition 2, we use the packing set V = {±ei : i = 1, . . . , d}. Standard bounds [8] on

the normal distribution imply that for Z ∼ N(0, I), we have E[‖Z‖2∞] = O(log d). Thus we find

that for σ2 = O(G2/ log(d)) and suitably small δ, we have E[‖X‖2∞] = O(G2); linearity yields
ρ(fv, fw) ≥ δR for v 6= w ∈ V . Setting δ as in the expression (11) yields Proposition 2.

4 Discussion

We have analyzed algorithms for stochastic optimization problems that use only random function
values—as opposed to gradient computations—to minimize an objective function. As our develop-
ment of minimax lower bounds shows, the algorithms we present, which build on those proposed by
Agarwal et al. [1] and Nesterov [20], are optimal: their convergence rates cannot be improved (in a
minimax sense) by more than numerical constant factors. As a consequence of our results, we have
attained sharp rates for bandit online convex optimization problems with multi-point feedback. We
have also shown that there is a necessary sharp transition in convergence rates between stochastic
gradient algorithms and algorithms that compute only function values. This result highlights the
advantages of using gradient information when it is available, but we recall that there are many
applications in which gradients are not available.

Finally, one question that this work leaves open, and which we are actively attempting to address,
is whether our convergence rates extend to non-smooth optimization problems. We conjecture that
they do, though it will be interesting to understand the differences between smooth and non-smooth
problems when only zeroth-order feedback is available.
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A Proofs of Convergence

A.1 Proof of Theorem 1

Before giving the proof of Theorem 1, we state two lemmas that we will need. The first is essentially
standard [e.g. 19, Section 2.3], and we provide a proof of the lemma in the long version of this paper.

Lemma 5. Let {gt}kt=1 ⊂ R
d be a sequence of vectors, and let θt be generated by the mirror

descent iteration (4). If Assumption A holds, for any θ∗ ∈ Θ we have

k∑

t=1

〈
gt, θt − θ∗

〉
≤ 1

2α(k)
R2 +

k∑

t=1

α(t)

2

∥∥gt
∥∥2
∗
.

We provide the proof of this next lemma, which is required to control the norms of the observed
gradient vectors, in Appendix A.2.

Lemma 6. Let the vector gt be defined as in the construction (6) and let Ft−1 denote the σ-field
of X1, . . . , Xt−1 and Z1, . . . , Zt−1. Let Assumption C hold. Then for some vector v with ‖v‖∗ ≤
(1/2)E[‖Z‖2 ‖Z‖∗],

E[gt | Ft−1] = ∇f(θt) + utL(P )v

and

E[
∥∥gt
∥∥2
∗
| Ft−1] ≤ 2E

[∥∥〈g(θt;X), Z
〉
Z
∥∥2
∗
| Ft−1

]
+
u2tL(P )

2

2
E

[
‖Z‖4 ‖Z‖2∗

]
.

Proof of Theorem 1 The proof of the theorem follows from Lemma 5. Indeed, defining the error
vector et := ∇f(θt)− gt, we have

k∑

t=1

(
f(θt)− f(θ∗)

)
≤

k∑

t=1

〈
∇f(θt), θt − θ∗

〉
=

k∑

t=1

〈
gt, θt − θ∗

〉
+

k∑

t=1

〈
et, θt − θ∗

〉
.

Applying Lemma 5, we find that

k∑

t=1

(
f(θt)− f(θ∗)

)
≤ 1

2α(k)
R2 +

k∑

t=1

α(t)

2

∥∥gt
∥∥2
∗
+

k∑

t=1

〈
et, θt − θ∗

〉
. (13)

Now we use Lemma 6, which implies that

E[et | Ft−1] = utL(P )v(θ
t, ut),

where ‖v‖∗ ≤ 1
2E[‖Z‖

2 ‖Z‖∗] ≤ 1
2M(µ). Using the compactness assumption and fact that θt ∈

Ft−1, we thus have
k∑

t=1

E[
〈
et, θt − θ∗

〉
] ≤ 1

2
M(µ)RL(P )

k∑

t=1

ut.

In addition, Lemma 6 implies that

E[
∥∥gt
∥∥2
∗
] = E[E[

∥∥gt
∥∥2
∗
| Ft−1]] ≤ 2E

[
E[
∥∥〈g(θt;X), Z

〉
Z
∥∥2
∗
| Ft−1]

]
+

1

2
u2tL(P )

2M(µ)2

≤ 2s(d)E
[
E[
∥∥g(θt;X)

∥∥2
∗
| Ft−1]

]
+

1

2
u2tL(P )

2M(µ)2.

Since E[‖g(θt;X)‖2∗ | Ft−1] ≤ G2 by assumption, we may apply our initial bound (13) to see

k∑

t=1

E
[
f(θt)− f(θ∗)

]

≤ 1

2α(k)
R2 + s(d)G2

k∑

t=1

α(t) +
1

4
L(P )2M(µ)2

k∑

t=1

u2tα(t) +
M(µ)RL(P )

2

k∑

t=1

ut. (14)

10



Now we use our choices of the sample size α(t) and ut to complete the proof. For the former, we

have α(t) = αR/2G
√
s(d)

√
t. Since

k∑

t=1

i−
1
2 ≤

∫ k

0

t−
1
2 dt = 2

√
k,

we have

1

2α(k)
R2+s(d)G2

k∑

t=1

α(t) ≤ RG
√
s(d)

α

√
k+αRG

√
s(d)

√
k ≤ 2RG

√
s(d)

√
kmax{α, α−1}.

For the second summation in the quantity (14), we have the bound

αu2
(

G2s(d)

L(P )2M(µ)2

)
RL(P )2M(µ)2

4G
√
s(d)

k∑

t=1

1

t3/2
≤ αu2RG

√
s(d)

since
∑k
t=1 i

−γ ≤ 1 +
∫ k
1
t−γdt. The final term in the inequality (14) is similarly bounded by

u

(
G
√
s(d)

L(P )M(µ)

)
RL(P )M(µ)

2
(log k + 1) = u

RG
√
s(d)

2
(log k + 1) ≤ uRG

√
s(d) log k

since k ≥ 3.

By combining the preceding inequalities and using Jensen’s inequality to note that

E

[
f(θ̂(k))− f(θ∗)

]
≤ 1

k

k∑

t=1

E
[
f(θt)− f(θ∗)

]
,

we obtain the statement of the theorem.

A.2 Proof of Lemma 6

Let h be an arbitrary convex function with Lh-Lipschitz continuous gradient with respect to the
norm ‖·‖. Then for any u > 0

h′(θ, z) =
〈∇h(θ), uz〉

u

(i)

≤ h(θ + uz)− h(θ)

u
(ii)

≤ 〈∇h(θ), uz〉+ (Lh/2) ‖uz‖2
u

= h′(θ, z) +
Lhu

2
‖z‖2 ,

where inequality (i) follows from the first-order tangent bound for a convex function, and inequality
(ii) uses the Lh-Lipschitz continuity of the gradient. Thus we see that for any point θ ∈ relint domh
and for any z ∈ R

d, we have

h(θ + uz)− h(θ)

u
z = h′(θ, z)z +

Lhu

2
‖z‖2 γ(u, θ, z)z, (15)

where γ is some function with range contained in [0, 1].

Now, assume that the function f has L-Lipschitz derivative with respect to the norm ‖·‖. Then for
any Z with E[ZZ⊤] = I , we find as a consequence of the equality (15) that

E

[
h(θ + uZ)− h(θ)

u
Z

]
= E

[
h′(θ, Z)Z +

Lhu

2
‖Z‖2 γ(u, θ, Z)Z

]
= ∇h(θ) + uLhv(θ, u),

(16)

where v(θ, u) ∈ R
d is an error vector with ‖v(θ, u)‖∗ ≤ (1/2)E[‖Z‖2 ‖Z‖∗]. Thus, for u > 0

small enough, we see that [h(θ + uZ)− h(θ)]/u is an approximately unbiased estimator of ∇h(θ).
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With the general identities (15) and (16), we now turn to proving the statements of the lemma. The
first statement follows because (with probability 1 over the samples X)

E[gt | X(t),Ft−1] = ∇F (θt;X(t)) + utL(X(t))vt

for some vector vt with 2 ‖vt‖∗ ≤ E[‖Z‖2 ‖Z‖∗], by the expression (16). Noting that

E[L(X(t)) ‖vt‖∗ | Ft−1] ≤
√

E[L(X)2]

√
E[‖vt‖2∗ | Ft−1] ≤ L(P )E[‖Z‖2 ‖Z‖∗]

(by independence) and that E[∇F (θ;X)] = ∇f(θ) completes the first argument.

For the second statement of the lemma, we use the equality (15) applied to F (·;X). Ignoring the
indexing by t, we have in this case that

g = 〈g(θ,X), Z〉Z +
L(X)u

2
‖Z‖2 γ(u, θ, Z,X)Z

for a function γ ∈ [0, 1]. Applying the inequality (a+ b) ≤ 2a2 + 2b2 to the upper bound

E[‖g‖2∗] ≤ E

[(
‖〈g(θ,X), Z〉Z‖∗ +

∥∥∥∥
1

2
L(X)u ‖Z‖2 γ(u, θ, Z,X)Z

∥∥∥∥
∗

)2
]

yields the result.

A.3 Proof of Lemma 3

By using Levy’s theorem on concentration of Haar measure on the unit sphere [4, Lemma 2.2], we
have that for U uniform on the ℓ2-sphere, for any vector v with ‖v‖2 = 1,

P(〈U, v〉 ≥ ǫ) ≤ exp

(
−dǫ

2

2

)
. (17)

Now, set v = g/ ‖g‖2, which gives

E[‖〈g, Z〉Z‖2∞] = d2 ‖g‖22 E[〈v, U〉2 ‖U‖2∞] ≤ d2 ‖g‖22
√
E[〈v, U〉4]

√
E[‖U‖4∞]. (18)

We bound the final two expectations in the expression (18) in turn.

Recall the identity E[X] =
∫∞

0
P(X ≥ t)dt valid for any non-negative random variable with finite

mean. Since we have P(〈U, v〉4 ≥ ǫ) ≤ 2 exp(−dǫ 1
2 /2), we find that

E[〈v, U〉4] =
∫ 1

0

P(〈v, U〉4 ≥ t)dt ≤ 2

∫ 1

0

exp

(
−d

√
t

2

)
dt =

16

d2

∫ d/2

0

ue−udu

by making the substitution u = d
√
t/2. Since

∫
ue−udu = −e−u − ue−u, we find that

E[〈U, v〉4] ≤ 16

d2
[
−e−t − te−t

]∣∣d/2
t=0

=
16

d2

[
1− e−d/2 − (d/2)e−d/2

]
≤ 16

d2
.

The second expectation is somewhat more challenging to bound, though the technique is the same.

Using a union bound, we have P(‖U‖4∞ ≥ ǫ) ≤ 2d exp(−dǫ 1
2 /2). Noting that ǫ = 4 log2(2d)/d2

sets the upper bound to be equal to 1, we have

E[‖U‖4∞] =

∫ 1

0

P(‖U‖∞ ≥ t)dt ≤
∫ 4 log2(2d)

d2

0

1dt+ 2d

∫ 1

4 log2(2d)

d2

exp

(
−d

√
t

2

)
dt.

Making the same change of variables as earlier, the second term above is equal to

16

d

∫ d/2

log(2d)

t exp(−t)dt = 16

d

[
−e−t − te−t

]∣∣d/2
t=log(2d)

≤ 16

d

[
1

2d
+

log(2d)

2d

]
.

In particular, we see that

E[‖U‖4∞] ≤ 4 log2(2d)

d2
+

8

d2
+

8 log(2d)

d2
,

which is bounded by 36 log2 d/d2 for d ≥ 3.

Recalling the inequality (18), we find that for d ≥ 3

E[‖〈g, Z〉Z‖2∞] ≤ d2 ‖g‖22
4

d
· 6 log d

d
= 24 log d ‖g‖22 ≤ 24d log d ‖g‖2∞ ,

since ‖g‖2 ≤
√
d ‖g‖∞.
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B Lower bound proofs

B.1 Proof of Proposition 1

The proof of the proposition requires the choice of packing set V , which necessitates some care. We
can use the ℓ2-ball in R

d, however, as described by the next lemma (see Appendix C for a proof).

Lemma 7. Let d ≥ 2. Let Sd−1 := {u ∈ R
d : ‖u‖2 = 1} denote the unit sphere in R

d. There

is 1/2-packing V of Sd−1 (that is, for any pair v, w ∈ V with w 6= v, ‖w − v‖2 ≥ 1
2 ) such that

|V| ≥ e49d/256 and
1

|V|
∑

v∈V

vv⊤ � 5

d
Id×d.

With Lemma 7 in hand, Proposition 1’s proof follows the outline we provide in Section 3.2.

Proof of Proposition 1 According to Lemma 7, there exists a 1
2 -packing V of Sd−1 of size

log |V| ≥ 3d/16 and a constant c ≤ 12 such that for V sampled uniformly from V , Cov(V ) � cI/d.
Computing the separation ρ(fv, fw), we have

ρ(fv, fw) = δ inf
θ∈Θ

{〈θ, v + w〉}+ δR ‖v‖2 + δR ‖w‖2

= 2δR− δR ‖v + w‖2 = δR

(
2−

√
4− ‖v − w‖22

)

since ‖v‖2 = ‖w‖2 = 1. Since ‖v − w‖2 ≥ 1/2, we find that

√
4− ‖v − w‖22 ≤ 31/16, so

ρ∗(V) ≥ δR

16
. (19)

Now we turn to finding a setting for the variance σ2 of the samples X so that E[‖X‖22] ≤ G2. Since

X ∼ N(δv, σ2I) and ‖v‖22 = 1, we have E[‖X‖22] = δ2 + dσ2. If δ2 ≤ dσ2, then we may take

σ2 = G2/2d, and the setting (11) yields for d ≥ 15 that

δ =
G/

√
2d√

kc/d

(
3d

32
− log 2

) 1
2

=
G√
2kc

(
3d

32
− log 2

) 1
2

≥ G√
2kc

·
√
3d

8
.

Now we apply our bound (12), which shows that ρ∗(V) lower bounds the minimax optimization
error, note that for k ≥ d, we have δ2 ≤ dσ2, so that the bound (19) applies with this choice of δ.

When d ≤ 15, we recall the analysis of Agarwal et al. [3], which gives a lower bound of

Ω(GR/
√
k), which is within a constant factor of GR

√
d/

√
k.

B.2 Proof of Proposition 2

The proof of Proposition 2 requires an auxiliary result, which we state here, to guarantee that our

choice of distribution for X satisfies E[‖g(θ;X)‖2∞] ≤ G2.

Lemma 8. Let X ∼ N(δv, σ2I) where ‖v‖∞ ≤ 1. For d ≥ 3,

E[‖X‖2∞] ≤ 8σ2(1 + log d) + 2δ2.

Proof Let Z = X − δv, so Z ∼ N(0, σ2I). Letting (X1, . . . , Xd) and (Z1, . . . , Zd) denote the
components of X and Z, respectively, we see that we have X2

i ≤ 2Z2
i + 2δ2v2i , so

‖X‖2∞ ≤ 2max{Z2
1 , . . . , Z

2
d}+ 2δ2 max{v21 , . . . , v2d} ≤ 2 ‖Z‖2∞ + 2δ2. (20)

Each Zi is a random variable with N(0, σ2) distribution, and standard results on sub-Gaussian

random variables [8, Chapter 2] imply that E[‖Z‖2∞] ≤ 4σ2(1+log d). Applying the inequality (20)
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implies the result of the lemma.

With Lemma 8 in hand, we can now prove the proposition.

Proof of Proposition 2 We take the packing set V = {±ei : i = 1, . . . , d}. Now let v ∈ V , and

suppose X ∼ N(δv, σ2I). We must choose σ2 so that E[‖X‖2∞] ≤ G2. Recalling our choice (11)
of δ following Lemma 4, we apply Lemma 8 and substitute δ to obtain

E[‖X‖2∞] ≤ 8σ2(1 + log d) + 2δ2 = 8σ2(1 + log d) +
σ2

kλ

(
log |V|

2
− log 2

)
.

Now, if we sample V ∼ Uniform(V), then E[V ] = 0 and Cov(V ) = E[V V ⊤] = I/d, which gives
us λ = 1/d in Lemma 4. Substituting λ = 1/d and |V| = 2d, then using our assumption k ≥ d, we
find that

E[‖X‖2∞] ≤ 8σ2(1 + log d) +
σ2d log(2d)

2k
≤ 8σ2(1 + log d) +

σ2 log(2d)

2
.

Therefore, if we set σ2 = G2/( 12 log(2d) + 8 log(d) + 8), we find that E[‖X‖2∞] ≤ G2, as desired.

Lastly, we compute the separation ρ∗(V). For each v ∈ V we have

inf
θ∈Θ

fv(θ) = inf
θ∈Θ

δ 〈θ, v〉 = −δR ‖v‖∞ = −δR,

and the unique minimizer is θ∗v = −Rv. Now for each v, w ∈ V , v 6= w, we have

ρ(fv, fw) = inf
θ∈Θ

{fv(θ) + fw(θ)} − fv(θ
∗
v)− fw(θ

∗
w) = inf

θ∈Θ
δ 〈v + w, θ〉+ 2δR

= −δR ‖v + w‖∞ + 2δR ≥ δR,

whence the minimum separation is ρ∗(V) ≥ δR. Using the lower bound (12) on the minimax error,
then substituting our chosen variable values, we obtain the lower bound

sup
(F,P )∈FG

E[ǫk(A, F, P,Θ)] ≥ δR

4
=

(
G√

log(2d)/2 + 8 log(d) + 8

)
R
√
d

4
√
k

(
log(2d)

2
− log(2)

)1/2

≥ GR
√
d

12
√

log(2d)/2 + 8 log d+ 8

√
log(2d) >

GR

40

√
d

k
,

where the final two inequalities hold for d ≥ 3.

When d ≤ 3, we may (as in Proposition 1 earlier) apply the lower bounds provided by Agarwal
et al. [3].

B.3 Proof of Lemma 4

Since the pair (θt, τ t) is measurable with respect to Ft−1 = σ(Y 1, . . . , Y t−1) and Y t is independent
of the first t − 1 observations (Y 1, . . . , Y t−1) given the pair (θt, τ t), we see by the chain rule for
mutual information [11] that

I(Y 1, . . . , Y k;V ) =

k∑

t=1

I(Y t;V | Y 1, . . . , Y t−1) =

k∑

t=1

I(Y t;V | θt, τ t, Y 1, . . . , Y t−1)

=

k∑

t=1

I(Y t;V | θt, τ t). (21)

Thus, if we can bound I(Y ;V | T ) by λδ2/σ2 for any pair T = [θ τ ] ∈ R
d×2 (formally, any

distribution over the pair, though taking a supremum shows that we may focus on an arbitrary pair
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T ), the equality (21) will yield the desired result. To that end, we spend the remainder of the proof
studying the differential entropies in the representation

I(Y ;V | T ) = h(Y | T )− h(Y | T, V ).

The remainder of our proof will be based on the fact that the normal distribution maximizes the
differential entropy across all distributions with the same covariance [11].

By construction we have Y = T⊤X and X | V ∼ N(δV, σ2I), so conditioned on V , the vector
Y ∈ R

2 has normal distribution with mean E[Y | V, T ] = δT⊤V and covariance

Cov(Y | V, T ) = E[Y Y ⊤ | V, T ]− E[Y | V, T ] E[Y | V, T ]⊤

= T⊤
(
σ2I + δ2V V ⊤

)
T − δ2T⊤V V ⊤T = σ2T⊤T = σ2

[
‖θ‖22 〈θ, τ〉
〈θ, τ〉 ‖τ‖22

]
.

Let Σ = σ2T⊤T be shorthand for this covariance. Now using the law of total covariance, we can
compute the covariance of Y conditional on T :

Cov(Y | T ) = E[Cov(Y | V, T )] + Cov(E[Y | V, T ])
= Σ + Cov(δT⊤V ) = Σ + δ2T⊤ Cov(V )T.

Since Cov(V ) � λI for V uniform on V by assumption, we find that

Cov(Y | T ) � Σ+ δ2λT⊤T = Σ

(
1 +

δ2λ

σ2

)
. (22)

Using the fact that for the normal distributionZ ∼ N(µ,Γ) in R
d we have h(Z) = (d/2) log(2πe)+

(1/2) log det(Γ), we find the differential entropy bound

h(Y | T ) ≤ log(2πe)+
1

2
log det

(
Σ

(
1 +

δ2λ

σ2

))
= log(2πe)+

1

2
log det(Σ)+ log

(
1 +

δ2λ

σ2

)

as a consequence of the inequality (22). But of course, we have via standard entropy calculations
for the normal distribution that h(Y | V, T ) = log(2πe) + 1

2 log det(Σ). Therefore

I(Y ;V | T ) = h(Y | T )− h(Y | V, T ) ≤ log

(
1 +

δ2λ

σ2

)
.

Noting that log(1 + a) ≤ a completes the proof.

C Proof of Lemma 7

We prove the result using the probabilistic method, showing that there is positive probability that a
set of N (to be specified) vectors sampled uniformly at random from the ℓ2-sphere Sd−1 satisfy the
conclusions of the lemma. As we noted in (17), if U is sampled uniformly from Sd−1, then for any
ǫ ≥ 0 and v ∈ Sd−1 we have

P(〈U, v〉 ≥ ǫ) ≤ exp

(
−dǫ

2

2

)
.

Now, consider a set of N points {U1, . . . , UN} sampled independently and uniformly at random
from Sd−1. Then a pair Ui, Uj satisfying ‖Ui − Uj‖2 ≤ ǫ is equivalent to 〈Ui, Uj〉 ≥ 1 − ǫ2/2,
since ‖Ui‖2 = ‖Uj‖2 = 1. Using a union bound, we thus see that

P
(
∃ i 6= j s.t. ‖Ui − Uj‖2 ≤ ǫ

)
≤

N∑

i<j

P

(
〈Ui, Uj〉 ≥ 1− ǫ2

2

)
.

Since Ui and Uj are independent, we can condition on the value of Uj = v ∈ Sd−1 to obtain

P

(
〈Ui, Uj〉 ≥ 1− ǫ2

2

)
≤ exp

(
−d(1− ǫ2/2)2

2

)
,
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which yields

P
(
∃ i 6= j s.t. ‖Ui − Uj‖2 ≤ ǫ

)
≤
(
N

2

)
exp

(
−d(1− ǫ2/2)2

2

)
.

If we choose ǫ = 1/2 and N = e49d/256, we obtain

P

(
∃ i 6= j s.t. ‖Ui − Uj‖2 ≤ 1

2

)
<
N2

2
exp

(
−49d

128

)
=

1

2
. (23)

Now we show that since N is suitably large, the probability that the set {U1, . . . , UN} satisfies
1
N

∑N
i=1 UiU

⊤
i ≈ (1/d)I is high. By the Levy bound (17), each vector

√
dUi is sub-Gaussian with

parameter 1. Consequently, by standard non-asymptotic bounds on random matrices [22], we have

P



∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

N

N∑

i=1

UiU
T
i − 1

d
I

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
op

≥ δ

d


 ≤ 2 exp

(
−Nδ

2

16

)
for all δ ∈ (0, 1).

Substituting the value N = e49d/256 and setting δ = 4
√
log 4 e−49d/512, we obtain the inequatliy

2 exp

(
−Nδ

2

16

)
≤ 2 exp

(
− log(4)e49d/256e−49d/256

)
=

1

2
.

Since 4
√
log 4 e−49d/512 < 4 for d ≥ 2, we have in particular that with probability strictly greater

than 1/2

1

N

N∑

i=1

UiU
⊤
i � 5

d
I.

By a union bound argument, we see that for Ui sampled uniformly at random from Sd−1 and for

N = e49d/256, we have

P

(
‖Ui − Uj‖2 ≥ 1

2
for all i 6= j and

1

N

N∑

i=1

UiU
⊤
i � 5

d
I

)
> 0.

Hence a packing as claimed in the statement of the lemma must exist.
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