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STOCHASTIC METHODS FOR COMPOSITE AND
WEAKLY CONVEX OPTIMIZATION PROBLEMS∗

JOHN C. DUCHI† AND FENG RUAN†

Abstract. We consider minimization of stochastic functionals that are compositions of a (po-
tentially) nonsmooth convex function h and smooth function c and, more generally, stochastic weakly
convex functionals. We develop a family of stochastic methods—including a stochastic prox-linear
algorithm and a stochastic (generalized) subgradient procedure—and prove that, under mild tech-
nical conditions, each converges to first order stationary points of the stochastic objective. We
provide experiments further investigating our methods on nonsmooth phase retrieval problems; the
experiments indicate the practical effectiveness of the procedures.
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1. Introduction. Let f : Rd → R be the stochastic composite function

f(x) := EP [h(c(x;S);S)] =

∫
S
h(c(x; s); s)dP (s),(1)

where P is a probability distribution on a sample space S and for each s ∈ S, the
function z 7→ h(z; s) is closed convex and x 7→ c(x; s) is smooth. In this paper, we
consider stochastic methods for minimization—or at least finding stationary points—
of such composite functionals. The objective (1) is an instance of the more general
problem of stochastic weakly convex optimization, where f(x) := EP [f(x;S)] and for

each x0 and s ∈ S, there is λ(s, x0) such that x 7→ f(x; s)+ λ(s,x0)
2 ‖x− x0‖2 is convex

in a neighborhood of x0. (We show later how problem (1) falls in this framework.)
Such functions have classical and modern applications in optimization [25, 18, 43, 47],
for example, in phase retrieval [23] problems or training deep linear neural networks
(e.g., [31]). We thus study the problem

minimize
x

f(x) + ϕ(x) = EP [f(x;S)] + ϕ(x)

subject to x ∈ X,
(2)

where X ⊂ Rd is a closed convex set and ϕ : Rd → R is a closed convex function.
Many problems are representable in the form (1). Taking the function c as the

identity mapping, classical regularized stochastic convex optimization problems fall
into this framework [40], including regularized least-squares and the Lasso [32, 51],
with s = (a, b) ∈ Rd × R and h(x; s) = 1

2 (aTx − b)2 and ϕ typically some norm
on x, or supervised learning objectives such as logistic regression or support vector
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machines [32]. The more general settings (1)–(2) include a number of important non-
convex problems. Examples include nonlinear least squares (cf. [42]), with s = (a, b)
and b ∈ R, the convex term h(t; s) ≡ h(t) = 1

2 t
2 independent of the sampled s, and

c(x; s) = c0(x; a)− b, where c0 is some smooth function a modeler believes predicts b
well given x and data a. Another compelling example is the (robust) phase retrieval
problem [8, 49]—which we explore in more depth in our numerical experiments—
where the data s = (a, b) ∈ Rd × R+, h(t; s) ≡ h(t) = |t| or h(t; s) ≡ h(t) = 1

2 t
2, and

c(x; s) = (aTx)2 − b. In the case that h(t) = |t|, the form (1) is an exact penalty for
the solution of a collection of quadratic equalities (aTi x)2 = bi, i = 1, . . . , N , where
we take P to be point masses on pairs (ai, bi).

Fletcher and Watson [29, 28] initiated work on composite problems to

minimize
x

h(c(x)) + ϕ(x) subject to x ∈ X(3)

for fixed convex h, smooth c, convex ϕ, and convex X. A motivation of this earlier
work is nonlinear programming problems with the constraint that x ∈ {x : c(x) = 0},
in which case taking h(z) = ‖z‖ functions as an exact penalty [33] for the constraint
c(x) = 0. A more recent line of work, beginning with Burke [7] and continued by
(among others) Druvyatskiy, Ioffe, Lewis, Pacquette, and Wright [38, 21, 19, 20],
establishes convergence rate guarantees for methods that sequentially minimize convex
surrogates for problem (3).

Roughly, these papers construct a model of the composite function f(x) = h(c(x))
as follows. Letting ∇c(x) be the transpose of the Jacobian of c at x, so c(y) =
c(x) +∇c(x)T (y − x) + o(‖y − x‖), one defines the “linearized” model of f at x by

fx(y) := h(c(x) +∇c(x)T (y − x)),(4)

which is convex in y. When h and ∇c are Lipschitzian, then |fx(y) − f(x)| =

O(‖x− y‖2), so that the model (4) is second-order accurate, which motivates the
following prox-linear method. Beginning from some x0 ∈ X, iteratively construct

xk+1 = argmin
x∈X

{
fxk(x) + ϕ(x) +

1

2αk
‖x− xk‖2

}
,(5)

where αk > 0 is a stepsize that may be chosen by a line search. For small αk, the
iterates (5) guarantee decreasing h(c(xk)) + ϕ(xk), the sequence of problems (5) are
convex, and moreover, the iterates xk converge to stationary points of problem (3) [19,
sect. 5]. The prox-linear method is effective so long as minimizing the models fxk(x) is
reasonably computationally easy. More generally, minimizing a sequence of models fxk
of f centered around the iterate xk is natural, with examples including Rockafellar’s
proximal point algorithm [46] and general sequential convex programming approaches,
such as trust region and other Taylor-like methods [42, 11, 19, 18].

In our problem (2), where f(x) = E[f(x;S)] for f(·, s) weakly convex or compos-
ite, the iterates (5) may be computationally challenging. Even in the case in which
P is discrete so that problem (1) has the form f(x) = 1

n

∑n
i=1 hi(ci(x)), which is

evidently of the form (3), the iterations generating xk may be prohibitively expen-
sive for large n. When P is continuous or is unknown, because we can only simulate
draws S ∼ P or in statistical settings where the only access to P is via observations
Si ∼ P , then the iteration (5) is essentially infeasible. Given the wide applicability of
the stochastic composite problem (1), it is of substantial interest to develop efficient
online and stochastic methods to (approximately) solve it, or at least to find local
optima.
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In this work, we develop and study stochastic model-based algorithms, exam-
ples of which include a stochastic linear proximal algorithm, which is a stochastic
analogue of problem (5), and a stochastic subgradient algorithm, both of whose defi-
nitions we give in section 2. The iterations of such methods are often computationally
simple, and they require only individual samples S ∼ P at each iteration. Consider
for concreteness the case when P is discrete and supported on i = 1, . . . , n (i.e.,
f(x) = 1

n

∑n
i=1 hi(ci(x))). Then instead of solving the nontrivial subproblem (5), the

stochastic prox-linear algorithm samples i0 ∈ [n] uniformly, then substitutes hi0 and
ci0 for h and c in the iteration. Thus, as long as there is a prox-linear step for the
individual compositions hi ◦ ci, the algorithm is easy to implement and execute.

The main result of this paper is that the stochastic model-based methods we
develop for the stochastic composite and weakly-convex optimization problems are
convergent. More precisely, assuming that (i) with probability one, the iterates of the
procedures are bounded, (ii) the objective function F +IX is coercive, and (iii) second
moment conditions on local-Lipschitzian and local-convexity parameters of the ran-
dom functions f(·, s), any appropriate model-based stochastic minimization strategy
has limit points taking values f(x) in the set of stationary values of the function. If
the image of noncritical points of the objective function is dense in R, the methods
converge to stationary points of the (potentially) nonsmooth, nonconvex objective (2)
(Theorem 1 in section 2 and Theorem 5 in section 3.4). As gradients ∇f(x) may not
exist (and may not even be zero at stationary points because of the nonsmoothness of
the objective), demonstrating this convergence provides some challenge. To circum-
vent these difficulties, we show that the iterates are asymptotically equivalent to the
trajectories of a particular ordinary differential inclusion [1] (a nonsmooth general-
ization of ordinary differential equations (ODEs)) related to problem (1), building off
of the classical ODE method [39, 37, 6] (see section 3.2). By developing a number of
analytic properties of the limiting differential inclusion using the weak convexity of f ,
we show that trajectories of the ODE must converge (section 3.3). A careful stability
analysis then shows that limit properties of trajectories of the ODE are preserved
under small perturbations, and viewing our algorithms as noisy discrete approxima-
tions to a solution of the ordinary differential inclusion gives our desired convergence
(section 3.4).

Our results do not provide rates of convergence for the stochastic procedures, so
to investigate the properties of the methods we propose, we perform a number of
numerical simulations in section 4. We focus on a discrete version of problem (1)
with the robust phase retrieval objective f(x; a, b) = |(aTx)2 − b|, which facilitates
comparison with deterministic methods (5). Our experiments extend our theoretical
predictions, showing the advantages of stochastic over deterministic procedures for
some problems, and they also show that the stochastic prox-linear method may be
preferable to stochastic subgradient methods because of robustness properties it enjoys
(which our simulations verify, though our theory does not yet explain).

Related and subsequent work. The stochastic subgradient method has a substan-
tial history. Early work due to Ermoliev and Norkin [25, 26, 27], Gupal [30], and
Dorofeyev [17] identifies the basic assumptions sufficient for stochastic gradient meth-
ods to be convergent. Ruszczyński [48] provides a convergent gradient averaging-based
optimization scheme for stochastic weakly convex problems. Our analytical approach
is based on differential equations and inclusions, which have a long history in the
study of stochastic optimization methods, where researchers have used a limiting
differential equation or inclusion to exhibit convergence of stochastic approximation
schemes [39, 1, 36, 6]; more recent work uses differential equations to model accelerated



3232 JOHN C. DUCHI AND FENG RUAN

gradient methods [50, 56]. Our approach gives similar convergence results to those
for stochastic subgradient methods but allows us to study and prove convergence for
a more general collection of model-based minimization strategies. Our results do not
provide convergence rates, which is possible when the compositional structure (1)
leaves the problem convex [53, 54]; the problems we consider are typically nonsmooth
and nonconvex, so that these approaches do not apply.

Subsequent to the initial appearance of the current paper on the arXiv and in-
spired by our work,1 Davis, Drusvyatskiy, and Grimmer have provided convergence
rates for variants of stochastic subgradient, prox-linear, and related methods [14, 12,
13]. Here they show that the methods we develop in this paper satisfy nonasymp-
totic convergence guarantees. To make this precise, let Fλ(x) = infy∈X{f(y) +

ϕ(y) + λ
2 ‖y − x‖

2} be the Moreau envelope of the objective (2), which is continu-
ously differentiable and for which ∇Fλ being small is a proxy for near-stationarity of
x (see [18, 12, 13]). Then they show that, with appropriate stepsizes, they can con-

struct a (random) iterate x̂k such that E[‖∇Fλ(x̂k)‖2] = O(1/
√
k). These convergence

guarantees extend the with probability 1 convergence results we provide.
Notation and basic definitions. We collect here our (mostly standard) notation

and basic definitions that we require. For x, y ∈ R, we let x ∧ y = min{x, y}. We let
B denote the unit `2-ball in Rd, where d is apparent from context and ‖·‖ denotes the
operator `2-norm (the standard Euclidean norm on vectors). For a set A ⊂ Rd we let
‖A‖ = supa∈A ‖a‖. We say f : Rd → R ∪ {+∞} is λ-weakly convex (also known as
lower-C2 or semiconvex [47, 5]) near x if there exists ε > 0 such that for all x0 ∈ Rd,

y 7→ f(y) +
λ

2
‖y − x0‖22 , y ∈ x+ εB(6)

is convex (the vector x0 is immaterial in (6), as holding at one x0 is equivalent) [47,
Chap. 10.G]. For a function f : Rd → R∪ {+∞}, we let ∂f(x) denote the Fréchet (or
regular [47, Chap. 8.B]) subdifferential of f at the point x,

∂f(x) :=
{
g ∈ Rd : f(y) ≥ f(x) + 〈g, y − x〉+ o(‖y − x‖) as y → x

}
.

The Fréchet subdifferential and standard (convex) subdifferential coincide for convex
f [47, Ch. 8], and for weakly convex f , ∂f(x) is nonempty for x in the relative interior
of dom f . The Clarke directional derivative of a function f at the point x in direction
v is

f ′(x; v) := lim inf
t↓0,v′→v

f(x+ tv)− f(x)

t
,

and recall [47, Ex. 8.4] that ∂f(x) = {w ∈ Rd : 〈v, w〉 ≤ f ′(x; v) for all v}.
We let C(A,B) denote the continuous functions from A to B. Given a sequence

of functions fn : R+ → Rd, we say that fn → f in C(R+,Rd) if fn → f uniformly on
all compact sets, that is, for all T <∞ we have

lim
n→∞

sup
t∈[0,T ]

‖fn(t)− f(t)‖ = 0.

This is equivalent to convergence in d(f, g) :=
∑∞
t=1 2−t supτ∈[0,t] ‖f(τ)− g(τ)‖ ∧ 1,

which shows the standard result that C(R+,Rd) is a Fréchet space. For a closed

1Based on personal communication with Damek Davis and Dmitriy Drusvyatskiy.
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convex set X, we let IX denote the +∞-valued indicator for X, that is, IX(x) = 0 if
x ∈ X and +∞ otherwise. The normal cone to X at x is

NX(x) := {v ∈ Rd : 〈v, y − x〉 ≤ 0 for all y ∈ X}.

For closed convex C, πC(x) := argminy∈C ‖y − x‖ denotes projection of x onto C.

2. Algorithms and main convergence result. In this section, we introduce
the family of algorithms we study for problem (2). In analogy with the update (5),
we first give a general form of our model-based approach, then exhibit three examples
that fall into the broad scheme. We iterate

Draw Sk
iid∼ P

xk+1 := argmin
y∈X

{
fxk(y;Sk) + ϕ(y) +

1

2αk
‖y − xk‖2

}
.

(7)

In the iteration (7), the function fxk(·; s) is an approximation, or model, of f(·; s) at
the point xk, and αk > 0 is a stepsize sequence.

For the model-based strategy (7) to be effective, we require that fx(·; s) satisfy a
few essential properties on its approximation quality.

C.(i) The function y 7→ fx(y; s) is convex and subdifferentiable on its domain.
C.(ii) We have fx(x; s) = f(x; s).

C.(iii) At y = x we have the containment

∂yfx(y; s)|y=x ⊂ ∂xf(x; s).

In addition to conditions C.(i)–C.(iii), we require one additional technical condition
on the models, which quantitatively guarantees they locally almost underestimate f .

C.(iv) There exists ε0 > 0 such that 0 < ε ≤ ε0 implies that for all x0 ∈ X there
exists δε(x0; s) ≥ 0 with

f(y; s) ≥ fx(y; s)− 1

2
δε(x0; s) ‖y − x‖2

for x, y ∈ x0 + εB, where E[δε(x0;S)] <∞.

2.1. Examples. We give four example algorithms for problems (1) and (2),
each of which consists of a local model fx satisfying conditions C.(i)–C.(iv). The
conditions C.(i)–C.(iii) are immediate, while we defer verification of condition C.(iv)
to after the statement of Theorem 1. The first example is the natural generalization
of the classical subgradient method [25].

Example 1 (stochastic subgradient method). For this method, we let g(x; s) ∈
∂f(x; s) be a (fixed) element of the Fréchet subdifferential of f(x; s); in the case of
the composite objective (1) this is g(x; s) ∈ ∇c(x; s)∂h(c(x; s); s). Then the model (7)
for the stochastic (regularized and projected) subgradient method is

fx(y; s) := f(x; s) + 〈g(x; s), y − x〉 .

The properties C.(i)–C.(iii) are immediate.

The stochastic prox-linear method applies to the structured family of convex
composite problems (1), generalizing the deterministic prox-linear method [7, 19, 20].
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Example 2 (stochastic prox-linear method). Here, we have f(x; s) = h(c(x; s); s),
and in analogy to the update (4) we linearize c without modifying h, defining

fx(y; s) := h(c(x; s) +∇c(x; s)T (y − x); s).

Again, conditions C.(i)–C.(iii) are immediate.

Lastly, we have stochastic proximal point methods for weakly convex functions.

Example 3 (stochastic proximal-point method). We assume that the instanta-
neous function f(·; s) is λ(s)-weakly convex over X. In this case, for the model in the

update (7), we set fx(y; s) = f(y; s) + λ(s)
2 ‖y − x‖

2
.

Example 4 (guarded stochastic proximal-point method). We assume that for
some ε > 0 and all x ∈ X, the instantaneous function f(·; s) is λ(s, x)-weakly convex
over X ∩ {x+ εB}. In this case, for the model in the update (7), we set

fx(y; s) = f(y; s) +
λ(s, x)

2
‖y − x‖2 + Ix+εB(y),(8)

which restricts the domain of the model function fx(·; s) to a neighborhood of x so
that the update (7) does not escape the region of convexity. Again, by inspection,
this satisfies conditions C.(i)–C.(iii).

2.2. The main convergence result. The main theoretical result of this paper
is to show that stochastic algorithms based on the update (7) converge almost surely
to the stationary points of the objective function F (x) = f(x) + ϕ(x) over X. To
state our results formally, for ε > 0 we we define the function Mε : X × S → R+ by

Mε(x; s) := sup
y∈X,‖y−x‖≤ε

sup
g∈∂f(y;s)

‖g‖ .

We then make the following local Lipschitzian and convexity assumptions on f(·; s).
Assumption A. There exists ε0 > 0 such that 0 < ε ≤ ε0 implies that

E[Mε(x;S)2] <∞ for all x ∈ X.

Assumption B. There exists ε0 > 0 such that 0 < ε ≤ ε0 implies that for all
x ∈ X, there exists λ(s, x) ≥ 0 such that

y 7→ f(y; s) +
λ(s, x)

2
‖y − x0‖2

is convex on the set x+ εB for any x0, and E[λ(S, x)] <∞.

As we shall see in Lemma 6 later, Assumptions A and B are sufficient to guarantee
that ∂f(x) exists, is nonempty for all x ∈ X, and is outer semicontinuous. In addition,
it is immediate that for any λ ≥ E[λ(S, x)], the function f is λ-weakly convex (6) on
the ε-ball around x.

With the assumptions in place, we can now proceed to a (mildly) simplified version
of our main result in this paper. Let X? denote the set of stationary points for the
objective function F (x) = f(x) + ϕ(x) over X. Lemma 6 to come implies that
∂F (x) = ∂f(x) + ∂ϕ(x) for all x ∈ X, so we can represent X? as

X? := {x ∈ X | ∃g ∈ ∂f(x) + ∂ϕ(x) with 〈g, y − x〉 ≥ 0 for all y ∈ X} .(9)
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Equivalently, ∂f(x)+∂ϕ(x)∩−NX(x) 6= ∅, or 0 ∈ ∂f(x)+∂ϕ(x)+NX(x). Important
for us is the image of the set of stationary points, that is,

F (X?) := {f(x) + ϕ(x) | x ∈ X?} .

With these definitions, we have the following convergence result, which is a sim-
plification of our main convergence result, Theorem 5, which we present in section 3.4.

Theorem 1. Let Assumptions A and B hold and assume X is compact. Let xk be
generated by any model-based update satisfying conditions C.(i)–C.(iv) with stepsizes
αk > 0 satisfying

∑
k αk =∞ and

∑
k α

2
k <∞. Then with probability 1,[

lim inf
k

F (xk), lim sup
k

F (xk)
]
⊂ F (X?).(10)

We provide a few remarks on the theorem, as well as elucidating Examples 1–4
in this context. The limiting inclusion (10) is familiar from the classical literature on
stochastic subgradient methods [17, 26], though in our case, it applies to the broader
family of model-based updates (7), including Examples 1–4.

To see that the theorem indeed applies to each of these examples, we must verify
Condition C.(iv). For Examples 1, 3, and 4, this is immediate by taking the lower
approximation function δε(x; s) = λ(s, x) from Assumption B, yielding the following.

Observation 1. Let Assumption B hold. Then Condition C.(iv) holds for each of
Examples 1, 3, and 4.

We also provide conditions on the composite optimization problem (1), that is,
when f(x; s) = h(c(x; s); s), sufficient for Assumptions A–B and Condition C.(iv) to
hold. Standard results [21] show that ∂f(x; s) = ∇c(x; s)∂h(c(x; s); s), so Assump-
tion A holds if sup‖y−x‖≤ε ‖∇c(x; s)∂h(c(x; s); s)‖ is integrable (with respect to s).
For Assumption B, we assume that there exists ε0 > 0 such that if 0 < ε ≤ ε0, there
exist functions γε : Rd × S → R+ ∪ {+∞} and βε : Rd × S → R+ ∪ {+∞} such that
c(·; s) has βε(x; s)-Lipschitz gradients in an ε neighborhood of x; that is,

‖∇c(y; s)−∇c(y′; s)‖ ≤ βε(x, s) ‖y − y′‖ for ‖y − x‖ , ‖y′ − x‖ ≤ ε,

and that h(·; s) is γε(x; s)-Lipschitz continuous on the compact convex neighborhood

Conv
{
c(y; s) +∇c(y; s)T (z − y) + v | y, z ∈ x+ εB, ‖v‖ ≤ βε(x, s)

2
‖y − z‖2

}
.

We then have the following claim; see Appendix A.1 for a proof.

Claim 1. If E[γε(x;S)βε(x;S)] <∞ for all x ∈ X, then Assumption B holds with
λ(s, x) = γε(x; s)βε(s), and Condition C.(iv) holds with δε(x; s) = γε(x; s)βε(x; s).

Theorem 1 does not guarantee convergence of the iterates, though it does guar-
antee cluster points of {xk} have limiting values in the image of the stationary set.
A slightly stronger technical assumption, which rules out pathological functions such
as Whitney’s construction [55], is the following assumption, which is related to Sard’s
results that the measure of critical values of Cd-smooth f : Rd → R is zero.

Assumption C. The set (F (X?))c is dense in R.

If f is convex then (f + ϕ)(X?) is a singleton. Moreover, if the set of stationary
points X? consists of a (finite or countable) collection of sets X?

1 , X
?
2 , . . . such that

f + ϕ is constant on each X?
i , then F (X?) is at most countable and Assumption C
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holds. In subsequent work to the first version of this paper, Davis et al. [15] give
sufficient conditions for Assumption C to hold (see also [34, 35, 4]). We have the
following.

Corollary 1. In addition to the conditions of Theorem 1, let Assumption C
hold. Then f(xk) + ϕ(xk) converges, and all cluster points of the sequence {xk}
belong to X?.

3. Convergence analysis of the algorithm. In this section, we present the
arguments necessary to prove Theorem 1 and its extensions, beginning with a heuris-
tic explanation. By inspection and a strong faith in the limiting behavior of random
iterations, we expect that the update scheme (7), as the stepsizes αk → 0, are asymp-
totically approximately equivalent to iterations of the form

xk+1 − xk
αk

≈ − [g(xk) + vk + wk] , g(xk) ∈ ∂f(xk), vk ∈ ∂ϕ(xk+1), wk ∈ NX(xk+1),

and the correction wk enforces xk+1 ∈ X. As k → ∞ and αk → 0, we may (again,
deferring rigor) treat limk

1
αk

(xk+1 − xk) as a continuous time process, suggesting

that update schemes of the form (7) are asymptotically equivalent to a continuous
time process t 7→ x(t) ∈ Rd that satisfies the differential inclusion (a set-valued
generalization of an ODE)

ẋ ∈ −∂f(x)− ∂ϕ(x)−NX(x) = −
∫
∂f(x; s)dP (s)− ∂ϕ(x)−NX(x).(11)

We develop a general convergence result showing that this limiting equivalence
is indeed the case and that the second equality of expression (11) holds. As part of
this, we explore in the coming sections how the weak convexity structure of f(·; s)
guarantees that the differential inclusion (11) is well behaved. We begin in section 3.1
with preliminaries on set-valued analysis and differential inclusions we require, which
build on standard convergence results [1, 36]. Once we have presented these pre-
liminary results, we show how the stochastic iterations (7) eventually approximate
solution paths to differential inclusions (section 3.2), which builds off of a number
of stochastic approximation results and the so-called “ODE method” Ljung devel-
ops [39], (see also [37, 2, 6]). We develop the analytic properties of the composite
objective, which yields the uniqueness of trajectories solving (11) as well as a par-
ticular Lyapunov convergence inequality (section 3.3). Finally, we develop stability
results on the differential inclusion (11), which allows us to prove convergence as in
Theorem 1 (section 3.4).

3.1. Preliminaries: Differential inclusions and set-valued analysis. We
now review a few results in set-valued analysis and differential inclusions [1, 36]. Our
notation and definitions follow closely the references of Rockafellar and Wets [47] and
Aubin and Cellina [1], and we cite a few results from the book of Kunze [36].

Given a sequence of sets An ⊂ Rd, the limit supremum of the sets consists of limit
points of subsequences ynk ∈ Ank , that is,

lim sup
n

An := {y : ∃ ynk ∈ Ank s.t. ynk → y as k →∞} .

We let G : X ⇒ Rd denote a set-valued mapping G from X to Rd, and we define
domG := {x : G(x) 6= ∅}. Then G is outer semicontinuous (o.s.c.) if for any
sequence xn → x ∈ domG, we have lim supnG(xn) ⊂ G(x). One says that G is ε-δ
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o.s.c. [1, Def. 1.1.5] if for all x and ε > 0, there exists δ > 0 such that G(x + δB) ⊂
G(x) + εB. These notions coincide when G(x) is bounded. Two standard examples
of o.s.c. mappings follow.

Lemma 1 (see Hiriart-Urruty and Lemaréchal [33, Thm. VI.6.2.4]). Let f : Rd →
R ∪ {+∞} be convex. Then the subgradient mapping ∂f : int dom f ⇒ Rd is o.s.c.

Lemma 2 (see Rockafellar and Wets [47, Prop. 6.6]). Let X be a closed convex
set. Then the normal cone mapping NX : X ⇒ Rd is o.s.c. on X.

The differential inclusion associated with G beginning from the point x0, denoted

ẋ ∈ G(x), x(0) = x0(12)

has a solution if there exists an absolutely continuous function x : R+ → Rd satisfying
d
dtx(t) = ẋ(t) ∈ G(x(t)) for all t ≥ 0. For G : T ⇒ Rd and a measure µ on T ,∫
T
Gdµ =

∫
T
G(t)dµ(t) :=

{∫
g(t)dµ(t) | g(t) ∈ G(t) for t ∈ T , g measurable

}
.

With these definitions, the following results (with minor extension) on the existence
and uniqueness of solutions to differential inclusions are standard.

Lemma 3 (see Aubin and Cellina [1, Thm. 2.1.4]). Let G : X ⇒ Rd be o.s.c. and
compact-valued, and x0 ∈ X. Assume there is K < ∞ such that dist(0, G(x)) ≤ K
for all x. Then there exists an absolutely continuous function x : R+ → Rd such that

ẋ(t) ∈ G(x(t)) and x(t) ∈ x0 +
∫ t
0
G(x(τ))dτ for all t ∈ R+.

Lemma 4 (see Kunze [36, Thm. 2.2.2]). Let the conditions of Lemma 3 hold
and assume there exists c <∞ such that

〈x1 − x2, g1 − g2〉 ≤ c ‖x1 − x2‖2 for gi ∈ G(xi) and all xi ∈ domG.

Then the solution to the differential inclusion (12) is unique.

We recall basic Lyapunov theory for differential inclusions. Let V : X → R+ be a
nonnegative function and W : X ×Rd → R+ be continuous with v 7→W (x, v) convex
in v for all x. A trajectory ẋ ∈ G(x) is monotone for the pair V,W if

V (x(T ))− V (x(0)) +

∫ T

0

W (x(t), ẋ(t))dt ≤ 0 for T ≥ 0.

The next lemma gives sufficient conditions for the existence of monotone trajectories.

Lemma 5 (see Aubin and Cellina [1, Thm. 6.3.1]). Let G : X ⇒ Rd be o.s.c.
and compact-convex valued. Assume that for each x there exists v ∈ G(x) such that
V ′(x; v) + W (x; v) ≤ 0. Then there exists a trajectory of the differential inclusion
ẋ ∈ G(x) such that

V (x(T ))− V (x(0)) +

∫ T

0

W (x(t), ẋ(t))dt ≤ 0.

Finally, we present a lemma on the subgradients of f using our set-valued integral
definitions. The proof is somewhat technical and not the main focus of this paper, so
we defer it to Appendix A.2.
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Lemma 6. Let f(·; s) satisfy Assumptions A and B. Then

∂f(x) = EP [∂f(x;S)],

and ∂f(·; s) : Rd ⇒ Rd and ∂f(·) : Rd ⇒ Rd are closed compact convex-valued and
o.s.c.

Lemma 6 shows that ∂f(x; s) is compact-valued and o.s.c., and we thus define
the shorthand notation for the subgradients of f + ϕ as

G(x; s) := ∂f(x; s) + ∂ϕ(x) and G(x) :=

∫
S
∂f(x; s)dP (s) + ∂ϕ(x),(13)

both of which are o.s.c. in x and compact-convex valued because ϕ is convex.

3.2. Functional convergence of the iteration path. With our preliminaries
in place, we now establish a general functional convergence theorem (Theorem 2) that
applies to stochastic approximation-like algorithms that asymptotically approximate
differential inclusions. By showing the generic algorithm (7) has the form our the-
orem requires, we conclude that each of Examples 1–4 converge to the appropriate
differential inclusion (section 3.2.2).

3.2.1. A general functional convergence theorem. Let {gk}k∈N be a col-
lection of set-valued mappings gk : Rd ⇒ Rd, {αk}k∈N be a sequence of positive
stepsizes, {ξk}∞k=1 be an arbitrary Rd-valued sequence (the noise sequence). Consider
the following iteration, which begins from the initial value x0 ∈ Rd:

xk+1 = xk + αk[yk + ξk+1], where yk ∈ gk(xk) for k ≥ 0.(14)

For notational convenience, define the “times” tm =
∑m
k=1 αk as the partial stepsize

sums, and let x(·) be the linear interpolation of the iterates xk:

x(t) := xk +
t− tk

tk+1 − tk
(xk+1 − xk) and y(t) = yk for t ∈ [tk, tk+1).(15)

This path satisfies ẋ(t) = y(t) for almost all t and is absolutely continuous on compact.
For t ∈ R+, define the time-shifted process xt(·) = x(t + ·). We have the following
convergence theorem for the interpolation (15) of the iterative process (14), where we
recall that we metrize C(R+,Rd) with d(f, g) =

∑∞
t=1 2−t supτ∈[0,t] ‖f(τ)− g(τ)‖ ∧ 1.

Theorem 2. Let the following conditions hold.
(i) The iterates are bounded, i.e., supk ‖xk‖ <∞ and supk ‖yk‖ <∞.

(ii) The stepsizes satisfy
∑∞
k=1 αk =∞ and

∑∞
k=1 α

2
k <∞.

(iii) The weighted noise sequence converges: limn

∑n
k=1 αkξk = v for some v ∈ Rd.

(iv) There exists a closed-valued H : Rd ⇒ Rd such that for all {zk} ⊂ Rd satis-
fying limk zk = z and all increasing subsequences {nk}k∈N ⊂ N, we have

lim
n→∞

dist

(
1

n

n∑
k=1

gnk(zk), H(z)

)
= 0.

Then for any sequence {τk}∞k=1 ⊂ R+, the sequence of functions {xτk(·)} is relatively
compact in C(R+,Rd). If τk → ∞, all limit points of {xτk(·)} are in C(R+,Rd) and
there exists y : R+ → Rd satisfying y(t) ∈ H(x(t)) for all t ∈ R+, where

x̄(t) = x̄(0) +

∫ t

0

y(τ)dτ for all t ∈ R+.
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The theorem is a generalization of Theorem 5.2 of Borkar [6], where the set-valued
mappings gk are identical for all k; our proof techniques are similar. For completeness,
we provide a proof on the arXiv [22].

3.2.2. Differential inclusion for stochastic model-based methods. With
Theorem 2 in place, we can now show how the update scheme (7) is representable by
the general stochastic approximation (14). To do so, we must verify that any method
satisfying Conditions C.(i)–C.(iv) satisfies the four conditions of Theorem 2. With
this in mind, we introduce a bit of new notation before proceeding. In analogy to
the gradient mapping from convex [41] and composite optimization [21], we define a
stochastic gradient mapping G and consider its limits. For fixed x we define

x+α (s) := argmin
y∈X

{
fx(y; s) + ϕ(y) +

1

2α
‖y − x‖2

}
and Gα(x; s) :=

1

α
(x− x+α (s)).

(16)

For any model fx(·; s) we consider, the update is well behaved: it is measurable in
s [45, Lem. 1], and it is bounded, as the next lemma shows.

Lemma 7. The update (16) guarantees that ‖Gα(x; s)‖ ≤ ‖G(x; s)‖, where G(x; s)
is the subgradient (13).

Proof. For shorthand, write x+ = x+α (s) and let g ∈ ∂fx(x; s) ⊂ ∂f(x; s). By
the definition of the optimality conditions for x+, there exists a vector g+ that g+ ∈
∂fx(x+; s) and another vector v+ ∈ ∂ϕ(x+) such that〈

g+ +
1

α
(x+ − x) + v+, y − x+

〉
≥ 0 for all y ∈ X.

Rearranging, we substitute y = x to obtain

〈
g+, x+ − x

〉
+

1

α

∥∥x− x+∥∥2 +
〈
v+, x+ − x

〉
≤ 0.

The subgradient mapping is monotone for fx(·; s) and ϕ, so 〈g+, x− x+〉 ≥ 〈g, x− x+〉
and 〈v+, x− x+〉 ≥ 〈∂ϕ(x), x− x+〉. Thus

〈
g, x+ − x

〉
+

1

α

∥∥x− x+∥∥2 +
〈
v, x+ − x

〉
≤ 0

for all v ∈ ∂ϕ(x). Cauchy–Schwarz implies ‖g + v‖ ‖x+ − x‖ ≥ 1
α ‖x− x

+‖2, which
implies our desired result.

To define the population counterpart of the gradient mapping Gα, we require a
result showing that the gradient mapping is locally bounded and integrable. To that
end, for x ∈ X and ε > 0, define the Lipschitz constants

Lε(x; s) := sup
x′∈X,‖x′−x‖≤ε

‖G(x′; s)‖ and Lε(x) := EP [Lε(x;S)2]
1
2 .

The following lemma shows these are not pathological (see Appendix A.3 for a proof).

Lemma 8. Let Assumptions A and B hold. Then x 7→ Lε(x; s) and x 7→ Lε(x)
are upper semicontinuous on X and Lε(x) <∞ for all x ∈ X.
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As a consequence of this lemma and Lemma 7, Gα(x;S) is locally bounded by
Lε(x; s) and we may define the mean subgradient mapping

Gα(x) := EP [Gα(x;S)] =

∫
S
Gα(x; s)dP (s).

Moreover, any update of the form (7) (e.g., Examples 1–4) has representation

xk+1 = xk − αkGαk(xk;Sk) = xk − αkGαk(xk)− αkξαk(xk;Sk),(17)

where the noise vector ξα(x; s) := Gα(x; s) − Gα(x). Defining the filtration of σ-
fields Fk := σ(x0, S1, . . . , Sk−1), we have xk ∈ Fk and that ξ is a square-integrable
martingale difference sequence adapted to Fk. Indeed, for α and ε > 0 we have

‖Gα(x; s)‖ ≤ Lε(x; s) and
∥∥Gα(x)

∥∥ ≤ Lε(x)

by Lemma 7 and the definition of the Lipschitz constant, and for any x and α > 0,

EP
[
‖ξα(x;S)‖2

]
≤ EP

[
‖Gα(x;S)‖2

]
≤ E

[
L2
ε(x;S)

]
= Lε(x)2,(18)

because E[Gα] = Gα. In the context of our iterative procedures, for any α > 0,

E[ξα(xk;Sk) | Fk] = 0 and E[‖ξα(xk;Sk)‖2 | Fk] ≤ Lε(xk)2.

The (random) progress of each iterate of the algorithm G is now the sum of a mean
progress G and a random noise perturbation ξ with (conditional) mean 0 and bounded
second moments. The update form (17) shows that all of our examples—stochastic
proximal point, stochastic prox-linear, and the stochastic gradient method—have the
form (14) necessary for application of Theorem 2.

Functional convergence for the stochastic updates. Now that we have the repre-
sentation (17), it remains to verify that the mean gradient mapping G and errors
ξ satisfy the conditions necessary for application of Theorem 2. That is, we verify
(i) bounded iterates, (ii) nonsummable but square-summable stepsizes, (iii) conver-
gence of the weighted error sequence, and (iv) the distance condition in the theorem.
Condition (ii) is trivial. To address condition (i), we temporarily make the following
assumption, noting that the compactness of X is sufficient for it to hold (we give
other sufficient conditions in section 3.4, showing that it is not too onerous).

Assumption D. With probability 1, the iterates (7) are bounded,

sup
k
‖xk‖ <∞.

A number of conditions, such as almost supermartingale convergence theorems
[44], are sufficient to guarantee Assumption D. Whenever Assumption D holds, we
have

sup
k

sup
α>0

∥∥Gα(xk)
∥∥ ≤ sup

k
Lε(xk) <∞,

by Lemmas 7 and 8, because the supremum of an upper semicontinuous function on
a compact set is finite. That is, condition (i) of Theorem 2 on the boundedness of xk
and yk holds.

The error sequences ξαk are also well behaved for the model-based updates (7).
That is, condition (iii) of Theorem 2 is satisfied.
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Lemma 9. Let Assumptions A, B, and D hold. Then with probability 1, the limit
limn→∞

∑n
k=1 αkξαk(xk;Sk) exists and is finite.

Proof. Ignoring probability zero events, by Assumption D there is a random vari-
able B, which is finite with probability 1, such that ‖xk‖ ≤ B for all k ∈ N. As Lε(·) is
upper semicontinuous (Lemma 8), we know that sup{Lε(x) | ‖x‖ ≤ B, x ∈ X} < ∞.
Hence, using inequality (18), we have

∞∑
k=1

E
[
α2
k ‖ξαk(xk;Sk)‖2 | Fk

]
≤
∞∑
k=1

α2
k sup
‖x‖≤B,x∈X

Lε(x)2 <∞.

Standard convergence results for `2-summable martingale difference sequences [16,
Thm. 5.3.33] immediately give the result.

Finally, we verify the fourth technical condition Theorem 2 requires by construct-
ing an appropriate closed-valued mapping H : Rd ⇒ Rd for any update scheme of the
form (7). Recall the definition (13) of the o.s.c. mapping G(x) = EP [∂f(x;S)]+∂ϕ(x).
We then have the following limiting inclusion, which is the key result allowing our
limit statements.

Lemma 10. Let the sequence xk ∈ X satisfy xk → x ∈ X and Assumptions A
and B hold. Let {ik} ⊂ N be an increasing sequence. Then, for updates (7) satisfying
Conditions C.(i)–C.(iv),

lim
n→∞

dist

(
1

n

n∑
k=1

Gαik (xk), G(x) +NX(x)

)
= 0.

Proof. We begin with two intermediate lemmas on the continuity properties of
the models fx. Both lemmas assume the conditions of Lemma 10.

Lemma 11. There exists M ′ε(x; s) such that y 7→ fx(y; s) is M ′ε(x; s)-Lipschitz for
y ∈ x+ (ε/2)B, and E[M ′ε(x;S)] <∞.

Proof. Let ε > 0, and let g = g(x; s) ∈ ∂fx(x; s) ⊂ ∂f(x; s). We have that

fx(y; s) ≥ fx(x; s) + 〈g, y − x〉 ≥ f(x; s)−Mε(x; s) ‖y − x‖

by the local Lipschitz condition A on f . Condition C.(iv) and the Lipschitzian as-
sumptions on f also guarantee that for y ∈ x+ εB,

fx(y; s) ≤ f(y; s)+
1

2
δε(x; s) ‖y − x‖2 ≤ f(x; s)+[Mε(x; s) + δε(x; s) ‖x− y‖] ‖x− y‖ .

These two boundedness conditions and convexity of the model fx imply [33, Lem.
IV.3.1.1] that y 7→ fx(y; s) is 2Mε(x; s) + δε(x; s)ε-Lipschitz for y ∈ x+ (ε/2)B.

Lemma 12. Let xk, yk ∈ X satisfy xk → x, yk → x, and let gk ∈ ∂fxk(yk; s).
Then there exists an integrable function M(·) such that for large k, dist(gk, ∂f(x; s)) ≤
M(s) for all s, and dist(gk, ∂f(x; s))→ 0.

Proof. By Lemma 11, we know that there exists an integrable M such that ‖gk‖ ≤
M(s) for all large enough k. This gives the first claim of the lemma, as f(·; s) is locally
Lipschitz (Assumption A). Let g∞ be any limit point of the sequence gk; by moving to
a subsequence if necessary, we assume without loss of generality that gk → g∞ ∈ Rd.
Now let y ∈ x+ εB. Then for large k we have
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f(y; s)
(i)

≥ fxk(y; s)− δε(x; s)

2
‖y − xk‖2≥fxk(xk; s) + 〈gk, y − xk〉 −

δε(x; s)

2
‖y − xk‖2

→ f(x; s) + 〈g∞, y − x〉 −
δε(x; s)

2
‖y − x‖2 ,

where inequality (i) is a consequence of Condition C.(iv). By definition of the Fréchet
subdifferential, we have g∞ ∈ ∂f(x; s) as desired.

Now we return to the proof of Lemma 10. Let x+k (s) be shorthand for the result
of the update (7) when applied with the stepsize α = αik . For any ε > 0, Lemma 7
shows that

∥∥x+k (s)− xk
∥∥ ≤ αikLε(x; s). By the (convex) optimality conditions for

x+k (s), there exists a vector g+(xk; s) such that

g+(xk; s) ∈ ∂fxk(x+k (s); s)

and

Gαik (xk; s) ∈ g+(xk; s) + ∂ϕ(x+k (s)) +NX(x+k (s)).

Let v+k (s) ∈ ∂ϕ(x+k (s)) and w+
k (s) ∈ NX(x+k (s)) be the vectors such that

Gαik (xk; s) = g+(xk; s) + v+k (s) + w+
k (s).

The three set-valued mappings x 7→ ∂f(x; s), x 7→ ∂ϕ(x), and x 7→ NX(x) are
o.s.c. (see Lemmas 1, 2, and 6). Since x+k (s)→ x tends to x as k →∞ (as xk → x),
this outer semicontinuity and Lemma 12 thus imply

dist
(
g+(xk; s), ∂f(x; s)

)
→ 0, dist

(
v+k (s), ∂ϕ(x)

)
→ 0, dist

(
w+
k (s),NX(x)

)
→ 0

(19)

as k → ∞. Because xk → x and the Lipschitz constants Lε(·; s) are upper semicon-
tinuous, (19) and Lemma 7 also imply that

lim sup
k

∥∥g+(xk; s) + v+k (s)
∥∥ ≤ Lε(x; s) and lim sup

k
‖Gαik (xk; s)‖ ≤ Lε(x; s).

By the triangle inequality, we thus obtain lim supk
∥∥w+

k (s)
∥∥ ≤ 2Lε(x; s), and hence,

dist
(
w+
k (s),NX(x) ∩ 2Lε(x; s) · B

)
→ 0.

That Lε(x) = E[Lε(x;S)2]
1
2 yields NX(x)∩2Lε(x)B ⊃

∫
(NX(x)∩2Lε(x; s) ·B)dP (s),

and the definition of the set-valued integral and convexity of dist(·, ·) imply that

dist

(
1

n

n∑
k=1

Gαik (xk), G(x) +NX(x) ∩ 2Lε(x) · B

)

≤ 1

n

n∑
k=1

∫
dist

(
Gαik (xk; s), ∂f(x; s) + ∂ϕ(x) +NX(x) ∩ 2Lε(x; s) · B

)
dP (s).(20)

We now bound the preceding integral. By the definition of Minkowski addition
and the triangle inequality, we have the pointwise convergence

dist
(
Gαik (xk; s), ∂f(x; s) + ∂ϕ(x) +NX(x) ∩ 2Lε(x; s)B

)
≤ dist(g(xk; s), ∂f(x; s)) + dist

(
v+k (s), ∂ϕ(x)

)
+ dist

(
w+
k (s),NX(x) ∩ 2Lε(x; s)B

)
→0
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as k → ∞ by the earlier o.s.c. convergence guarantee (19). For suitably large k, the
first term in the preceding sum is bounded by an integrable function M ′ε(x; s) by
Lemma 12 and the latter two are bounded by 2Lε(x; s), which is square integrable by
Lemma 8. Lebesgue’s dominated convergence theorem thus implies that the individual
summands in expression (20) converge to zero, and the analytic fact that the Cesáro
mean 1

n

∑n
k=1 ak → 0 if ak → 0 gives the result.

With this lemma, we may now show the functional convergence of our stochastic
model-based update schemes (7). We have verified that each of the conditions (i)–(iv)
of Theorem 2 hold with the mapping H(x) = −NX(x) − G(x). Indeed, H is closed-
valued and o.s.c. as G(·) is convex compact o.s.c. and NX(·) is closed and o.s.c. Thus,
with slight abuse of notation, let x(·) be the linear interpolation (15) of the iterates xk
for either the stochastic prox-linear algorithm or the stochastic subgradient algorithm,
where we recall that xt(·) = x(t+ ·). We have the following.

Theorem 3. Let Assumptions A, B, and D hold. With probability one over the

random sequence Si
iid∼ P we have the following. For any sequence {τk}∞k=1, the

function sequence {xτk(·)} is relatively compact in C(R+,Rd). In addition, for any
sequence τk →∞, any limit point of {xτk(·)} in C(R+,Rd) satisfies

x̄(t) = x̄(0) +

∫ t

0

y(τ)dτ for all t ∈ R+, where y(τ) ∈ −G(x(τ))−NX(x(τ)).

3.3. Properties of the limiting differential inclusion. Theorem 3 estab-
lishes that the updates (7), which include stochastic subgradient methods (Exam-
ple 1), stochastic prox-linear methods (Example 2), or stochastic proximal point
methods (Examples 3–4) have sample paths asymptotically approximated by the dif-
ferential inclusion

ẋ ∈ −G(x)−NX(x) where G(x) = ∂f(x) + ∂ϕ(x)

for the objective f(x) = E[f(x;S)]. To establish convergence of the iterates xk them-
selves, we must understand the limiting properties of trajectories of the preceding
differential inclusion.

We define the minimal subgradient

g?(x) := argmin
g

{
‖g‖2 | g ∈ ∂f(x) + ∂ϕ(x) +NX(x)

}
= πG(x)+NX(x)(0).

Before presenting the theorem on the differential inclusion, we need one regularity
assumption on the objective function F (x) and the constraint set X. Recall that a
function f is coercive if f(x)→∞ as ‖x‖ → ∞.

Assumption E. The function x 7→ F (x) + IX(x) is coercive.

This assumption ensures that the sublevel sets of the objective function F + IX
are compact. Now we have the following convergence theorem.

Theorem 4. Let Assumptions A, B, and E hold. Let x(·) be a solution to the
differential inclusion ẋ ∈ −∂f(x)−∂ϕ(x)−NX(x) initialized at x(0) ∈ X. Then x(t)
exists and is in X for all t ∈ R+, supt ‖x(t)‖ <∞, x(t) is Lipschitz in t, and

f(x(t)) + ϕ(x(t)) +

∫ t

0

‖g?(x(τ))‖2 dτ ≤ f(x(0)) + ϕ(x(0)).
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We prove the theorem in section 3.3.1, giving a few corollaries to show that
solutions to the differential inclusion converge to stationary points of f + ϕ.

Corollary 2. Let x(·) be a solution to ẋ ∈ −G(x)−NX(x) and assume that for
some t > 0 we have f(x(t)) = f(x(0)). Then g?(x(τ)) = 0 for all τ ∈ [0, t].

Proof. By Theorem 4, we have that
∫ t
0
‖g?(x(τ))‖2 dτ = 0, so that g?(x(τ)) = 0

for almost every τ ∈ [0, t]. The continuity of x(·) and outer semicontinuity of G extend
this to all τ .

In addition, we can show that all cluster points of any trajectory solving the
differential inclusion (11) are stationary. First, we recall the following definition.

Definition 1. Let {x(t)}t≥0 be a trajectory. A point x∞ is a cluster point of
x(t) if there exists an increasing sequence tn →∞ such that x(tn)→ x∞.

We have the following observation.

Corollary 3. Let x(·) be the trajectory of ẋ ∈ −G(x) −NX(x), and let x∞ be
a cluster point of x(·). Then x∞ is stationary, meaning that g?(x∞) = 0.

Proof. For ε > 0, define Tε(x∞) = {t ∈ R+ | ‖x(t)− x∞‖ ≤ ε}, and let µ
denote Lebesgue measure on R. Because the trajectory x(·) is Lipschitz, we have
that µ(Tε(x∞) ∩ [T,∞)) = ∞ for all ε > 0 and T < ∞ (cf. [1, Prop. 6.5.1]). Let
εn, δn be sequences of positive numbers converging to 0. Because f(x(t)) + ϕ(x(t))
converges to f(x∞) +ϕ(x∞) (the sequence is decreasing and f +ϕ is continuous), we

have
∫
‖g?(x(t))‖2 dt <∞. Moreover, there exist increasing Tn such that∫

Tεn (x∞)∩[Tn,∞)

‖g?(x(t))‖2 dt ≤ δn.

As µ(Tεn(x∞) ∩ [Tn,∞)) = ∞, there must exist an increasing sequence tn ≥ Tn,

tn ∈ Tεn(x∞), such that ‖g?(x(tn))‖2 ≤ δn. By construction x(tn) → x∞, we have a
subsequence g?(x(tn)) → 0. The outer semicontinuity of x 7→ G(x) +NX(x) implies
that 0 ∈ G(x∞) +NX(x∞).

3.3.1. Proof of Theorem 4. Our argument proceeds in three main steps. For
shorthand, we define F (x) = f(x) + ϕ(x). Our first step shows that the function
V (x) := F (x) + IX(x)− infy∈X F (y) is a Lyapunov function for the differential inclu-

sion (11), where we take the function W in Lemma 5 to be W (x, v) = ‖v‖2. Once we
have this, then we can use the existence result of Lemma 3 to show that a solution
x(·) exists in a neighborhood of 0. The uniqueness of trajectories (Lemma 4) then
implies that the trajectory x is nonincreasing for V , which then—combined with the
assumption of coercivity of F + IX—implies that the trajectory x is bounded and we
can extend uniquely it to all of R+.

Part 1: A Lyapunov function. To develop a Lyapunov function, we compute
directional derivatives of f + ϕ.

Lemma 13 (see [33, Chap. VI.1]). Let h be convex and g? = argming∈∂h(x){‖g‖}.
Then the directional derivative satisfies h′(x;−g?) = −‖g?‖2.

Now, take g?(x) as in the statement of the theorem and define the Lyapunov-like
function V (x) = f(x) + ϕ(x) + IX(x)− infy∈X{f(y) + ϕ(y)}; we claim that

V ′(x;−g?(x)) ≤ −‖g?(x)‖2 .(21)
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Before proving (21), we note that it is identical to that in Lemma 5 on monotone tra-
jectories of differential inclusions. Thus there exists a solution x(·) to the differential
inclusion ẋ ∈ −G(x)−NX(x) defined on [0, T ] for some T > 0, where x(·) satisfies

f(x(t)) + ϕ(x(t)) + IX(x(t)) ≤ f(x(0)) + ϕ(x(0))−
∫ t

0

‖g?(x(τ))‖2 dτ(22)

for all t ∈ [0, T ]. We return now to prove the claim (21). Let x ∈ X and recall

by Assumption B that for all λ ≥ E[λ(S, x)] that f + λ
2 ‖· − x0‖

2
is convex in an

ε-neighborhood of x. Now, define Fx(y) = f(y) + ϕ(y) + λ
2 ‖y − x‖

2
, so that for v

with ‖v‖ = 1 and t ≤ ε, we have

|F (x+ tv)− F (x)| ≤ |Fx(x+ tv)− F (x)|+ t2λ2

2
‖v‖2 .

Because ϕ is convex and the error in the approximation fx of f is second order, taking
limits as u→ v, t→ 0, we have for any fixed x ∈ X that

lim inf
t↓0,u→v

F (x+ tu) + IX(x+ tu)− F (x)

t

= lim inf
t↓0

Fx(x+ tv) + IX(x+ tv)− Fx(x)

t
= sup
g∈∂f(x)+∂ϕ(x)+NX(x)

〈g, v〉 ,

where F (x) = f(x) + ϕ(x), and we have used that the subgradient set of y 7→ Fx(y)
at y = x is ∂f(x) + ∂ϕ(x). Applying Lemma 13 with v = −g?(x) gives claim (21).

Part 2: Uniqueness of trajectories. Lemma 4 shows that solutions to ẋ ∈ −G(x)−
NX(x) have unique trajectories almost immediately. By Assumption B, for any x ∈ X,

f +ϕ+ λ
2 ‖·‖

2
is convex on the set X ∩{x+ εB} for all λ ≥ E[λ(S, x)]. Thus for points

x1, x2 satisfying ‖xi − x‖ ≤ ε and gi ∈ ∂f(xi) + ∂ϕ(xi) +NX(xi),

〈g1 + λx1 − g2 − λx2, x1 − x2〉 ≥ 0 or 〈−g1 + g2, x1 − x2〉 ≤ λ ‖x1 − x2‖2 ,

because subgradients of convex functions are increasing [33, Chap. VI]. Now, suppose
that on an interval [0, T ] the trajectory x(t) satisfies ‖x(t)‖ ≤ B; that is, it lies in a
compact subset of X. Then by taking a finite subcovering of BB ∩ X as necessary,
we may assume f + ϕ + λ

2 ‖·‖
2

is convex over BB ∩ X. This preceding display is
equivalent to the condition of Lemma 4, so that for any B and any interval [0, T ] for
which the trajectory x(t) satisfies ‖x(t)‖ ≤ B on t ∈ [0, T ], the trajectory is unique.
In particular, the Lyapunov inequality (22) is satisfied on the interval over which the
trajectory ẋ ∈ −G(x)−NX(x) is defined.

Part 3: Extension to all times. We argue that we may take T →∞. For any fixed
T < ∞, we know that f(x(T )) + ϕ(x(T )) ≤ f(x(0)) + ϕ(x(0)), and the coercivity of
f +ϕ over X implies that there exists B <∞ such that ‖x(t)‖ ≤ B on this trajectory
(i.e., t ∈ [0, T ]). The compactness of ∂f(x) +∂ϕ(x) for x ∈ X ∩{y : ‖y‖ ≤ B} implies
that infg{‖g‖ | g ∈ ∂f(x) + ∂ϕ(x) +NX(x)} is bounded (because 0 ∈ NX(x)). The
condition on existence of paths for all times T in Lemma 3 applies.

The Lipschitz condition on x(t) is an immediate consequence of the boundedness
of the subgradient sets ∂f(x) + ∂ϕ(x) for bounded x.

3.4. Almost sure convergence to stationary points. Thus far we have
shown that the limit points of the stochastic model-based iterations (7) are asymp-
totically equivalent to the differential inclusion (11) (Theorem 3) and that solutions
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to the differential inclusion have certain uniqueness and convergence properties (The-
orem 4). Based on those asymptotic equivalence results and convergence properties,
this section shows that cluster points of the iterates xk are stationary. To provide a
starting point, we state the main theorem of the section, which applies to any sequence
xk generated by a model update (7) satisfying Conditions C.(i)–C.(iv).

Theorem 5. Let Assumptions A, B, D, and E hold. Then with probability 1,[
lim inf

k
F (xk), lim sup

k
F (xk)

]
⊆ F (X?) = {f(x) : x ∈ X?}.(23)

Let us discuss the theorem briefly. Theorem 1 is an immediate consequence of
Theorem 5, as Assumptions D and E are trivial when X is compact. To illustrate
Theorem 5, we also establish convergence of the iterates of xk to the stationary set
X? under the weak Sard-type Assumption C, giving Corollary 1 as a consequence.

Corollary 4. Let Assumptions A–E hold. With probability 1, all cluster points
of the sequence {xk}∞k=1 belong to the stationary set X?, and F (xk) = f(xk) + ϕ(xk)
converges.

Proof. By Assumption C (that (F (X?))c is dense), Theorem 5 implies that F (xk)
converges. That all cluster points of xk belong to X? follows from Lemma 14 to come.

Conditions for boundedness of the iterates. Key to our theorems is the bounded-
ness of the iterates xk, so it is important to give sufficient conditions that Assump-
tion D holds even when X is unbounded. We may develop examples by considering
the joint properties of the regularizer ϕ and objectives f(x;S) in the stochastic up-
dates of our methods. We mention two such examples, focusing for simplicity on the
stochastic subgradient method (Example 1, using subgradient g(x; s) ∈ ∂f(x; s)) in

the unconstrained case X = Rd. We first assume that ϕ(x) = λ
2 ‖x‖

2
, i.e., `2 or

Tikhonov regularization, common in statistical learning and inverse problems. In ad-
dition, let us assume that f(x; s) is L(s)-Lipschitz in x, where L := E[L(S)2]

1
2 <∞,

so that ‖g(x; s)‖ ≤ L(s). This regularization is sufficient to guarantee boundedness.

Observation 2. Let the conditions of the preceding paragraph hold. Assume that
E[L(S)2] <∞. Then with probability 1, supk ‖xk‖ <∞.

We provide the proof of Observation 2 in Appendix A.4. More quickly growing
regularization functions ϕ also yield bounded iterates. We begin with a definition.

Definition 2. A function ϕ is β-coercive if lim‖x‖→∞ ϕ(x)/ ‖x‖β = ∞, and it
is (λ, β)-regularly coercive if it is β-coercive and ϕ(x) ≥ ϕ(λx) for ‖x‖ large.

Observation 3. Let ϕ be (β, λ)-coercive with λ ∈ [0, 1). Assume that for all s ∈ S,
x 7→ f(x; s) is L(1 + ‖x‖ν)-Lipschitz in a neighborhood of x, where L < ∞ is some
constant, and ν < β − 1. Then supk ‖xk‖ <∞.

The proof of Observation 3 is tangential to our main thrust; we provide it in [22].

3.4.1. Proof of Theorem 5. We prove the theorem using two intermediate
results: in the first part (Lemma 14), we show that if a cluster point x∞ of the
sequence xk is nonstationary, then the iterates F (xk) must decrease through F (x∞)
infinitely often. A consequence we show is that lim supk F (xk) and lim infk F (xk)
belong to F (X?). We then show (Lemma 15) that the interpolated path x(·) of the
iterates xk (recall definition (15)) cannot move too quickly (Lemma 15). We finally
use this to show that all limting values of f(xk) + ϕ(xk) belong to F (X?). In the
statements of the lemmas, we implicitly assume all of the conditions of the theorem
(i.e., Assumptions A, B, D, and E).
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We start with a result on the boundaries of the sequences F (xk) and the growth
of the path x(t) interpolating the iterates xk (recall the definition (15)).

Lemma 14. With probability one, lim infk F (xk) ∈ F (X?) and lim supk F (xk) ∈
F (X?). For any increasing sequence {hk} ⊂ R satisfying hk → ∞ and limk x(hk) =
x∞ 6∈ X? and any sequence τk → τ > 0,

lim inf
k

F (x(hk − τk)) > F (x∞) > lim sup
k

F (x(hk + τk)).(24)

Proof. We begin with the second claim (24) of the lemma, as the first is a nearly
immediate consequence of the second. Let the probability 1 events of Theorem 3
hold; that is, the limit points of the shifted sequences {xτk(·)} satisfy the differential
inclusion (11). We introduce the left- and right-shifted times

h−k = hk − τk and h+k = hk + τk for k ∈ N.

To show the lemma, it suffices to show that, for any subsequence {hk(m)} of the
sequence {hk}, there exists a further subsequence {hk(m(n))}n∈N such that

lim
n→∞

F
(
xh−

k(m(n))

)
> F (x∞) > lim

n→∞
F
(
xh+

k(m(n))

)
.(25)

Now, fix a subsequence {hk(m)}m∈N. By Assumption D, both sequences {x(h−k(m))}
and {x(h+k(m))} are relatively compact in Rd, and Theorem 3 implies that the sequence

of shifted functions {xh
−
k(m)(·)}m∈N is relatively compact in C(R+,Rd). As a conse-

quence, there exists a further subsequence {hk(m(n))}n such that for un = x(h−k(m(n)))

and vn = x(h+k(m(n))), there are points u∞ and v∞ and a function x ∈ C(R+,Rd) such

that

lim
n
un = u∞, lim

n
vn = v∞, and lim

n→∞
x
h−
k(m(n))(·) = x(·).

By this equation, that τk → τ as k → ∞, and the assumption in the lemma that

limk x(hk) = limk x
h−k (τk) = x∞, we have x(0) = u∞, x(τ) = x∞, and x(2τ) = v∞.

Theorem 3 shows that x satisfies the differential inclusion (11), which has monotone
trajectory by Theorem 4. As x(τ) = x∞ 6∈ X?, Corollary 2 implies the strict decrease

F (u∞) = F (x(0)) > F (x(τ)) > F (x(2τ)) = F (v∞),

yielding inequality (25) and thus inequality (24).
Now we show the first claim of the lemma. Let y = lim infk F (xk) (the proof for

case y = lim supk F (xk) is, mutatis mutandis, identical). As the sequence {xk}∞k=1 is
bounded and the function F is continuous on X, there is a subsequence {xk(m)}m∈N
with xk(m) → x∞ and limm F (xk(m)) = F (x∞) = y. Recall that xk = x(tk) for

tk =
∑k
i=1 αi. If x∞ 6∈ X?, then for any τ > 0 and for hk = tk, inequality (24) implies

F (x∞) > lim supm F (x(hk(m) + τ)) ≥ lim infk F (xk), an absurdity, so we must have
x∞ ∈ X?.

Our second intermediate result shows that the interpolated paths x(·) cannot
move too quickly.

Lemma 15. For any two sequences {hk}∞k=1 and {h′k}∞k=1 satisfying h′k > hk,
limk h

′
k = limk hk = ∞ and lim infk ‖x(h′k)− x(hk)‖ > 0, we have with probability 1

that lim infk(h′k − hk) > 0.



3248 JOHN C. DUCHI AND FENG RUAN

Proof. As in the proof of Lemma 14, fix the sample S1, S2, . . . so that the proba-
bility 1 conclusions of Theorem 3 hold. Now, for h ∈ R+ define

k<(h) = max{k ∈ N : tk ≤ h} and k>(h) = min{k ∈ N : tk ≥ h},

where we recall the interpolation times tk =
∑k
i=1 αi. As αk → 0, the statement

lim infk→∞(hk−h′k) > 0 is equivalent to the statement lim infk→∞(tk>(hk)−tk<(h′k)
) >

0. For any m ≤ n ∈ N, we have

‖x(tn)− x(tm)‖ =

∥∥∥∥ n∑
i=m+1

αiGαi(xi) +

n∑
i=m+1

αiξi

∥∥∥∥
≤ (tn − tm) sup

i

∥∥Gαi(xi)∥∥+

∥∥∥∥ n∑
i=m+1

αiξi

∥∥∥∥.
Let M = supi

∥∥Gαi(xi)∥∥ < ∞ (use Lemmas 7 and 8 to see that M < ∞). Lemma 9
implies that limm→∞ supn≥m ‖

∑n
i=m+1 αiξi‖ = 0. Thus, we obtain that for any ε > 0,

there exists N ∈ N such that for all m,n ≥ N ,

(tn − tm)M ≥ ‖x(tn)− x(tm)‖ −
∥∥∥∥ n∑
i=m+1

αiξi

∥∥∥∥ ≥ ‖x(tn)− x(tm)‖ − ε.(26)

As x(·) are linear interpolations of xk = x(tk) and hk, h
′
k → ∞, for any ε > 0 there

exists exists K ∈ N such that k ≥ K implies

‖x(h′k)− x(hk)‖ ≤ max {‖x(tn)− x(tm)‖ : n,m ∈ [k<(h′k), k>(hk)]}

≤
(
tk>(hk) − tk>(h′k)

)
M + ε.

Since lim infk ‖x(h′k)− x(hk)‖ > 0, inequality (26) gives the result.

To prove the theorem, we assume (lim infk F (xk), lim supk F (xk)) is nonempty, as
otherwise the result is trivial. As in the proof of Lemma 14, fix the sample S1, S2, . . .
so that the probability 1 conclusions of Theorem 3 hold.

Suppose for the sake of contradiction that yhi ∈ (lim infk F (xk), lim supk F (xk))
satisfies yhi 6∈ F (X?). Let ylo < yhi, ylo ∈ (lim infk F (xk), lim supk F (xk)). We claim
we may choose sequences {hlok } and {hhik } with hlok < hhik , limk h

lo
k = limk h

hi
k =∞, and

F (x(hlok )) = ylo, F (x(hhik )) = yhi, and ylo < F (x(t)) < yhi for t ∈ (hlok , h
hi
k ).(27)

To see that sequences satisfying condition (27) exist, we consider traversals of the
interval [ylo, yhi] (see Figure 1). As lim infk F (xk) < ylo < yhi < lim supk F (xk), there

exist increasing sequences h̃′k and h̃k with

F (x(h̃′k)) = ylo, F (x(h̃k)) = yhi and h̃′k < h̃k.

Then we define the last entrance and first subsequent exit times

hlok := sup{h ∈ [h̃′k, h̃k] : f(x(h)) ≤ ylo} and hhik := inf{h ∈ [hlok , h̃k] : f(x(h)) ≥ yhi}.

The continuity of F and x(·) show that the conclusion (27) holds.
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yhi

ylo

hlok hhik

Fig. 1. Illustration of proof of Theorem 5. The erratic line represents a trajectory F (x(t)),
with last entrance time hlok and first exit time hhik . Such upcrossings must be separated in time by
the strict decreases in Lemma 14.

By taking a subsequence if necessary, we assume without loss of generality (w.l.o.g.)
that x(hhik ) → x∞. By continuity, we have yhi = F (x∞) and x∞ 6∈ X? as yhi 6∈
F (X?). Now, fix some τ > 0, and take yτ = lim infk F (x(hhik − τ)), which satis-
fies yτ > F (x∞) = yhi by Lemma 14, because x∞ 6∈ X?. Consider the value gap
∆ = 1

2 min{|yτ − yhi|, |yhi − ylo|} > 0. The continuity of F implies for some δ > 0,
we have |F (x)− yhi| < ∆ for x ∈ X ∩ {x∞ + δB}. As lim infk |F (x(hlok ))− F (x∞)| =
|ylo− yhi| > ∆ and lim infk |F (x(hhik − τ))−F (x∞)| = |yτ − yhi| > ∆, by continuity of
F and our choice of δ, we must have the separation

lim inf
k

∥∥x(hlok )− x∞
∥∥ > δ, and lim inf

k

∥∥x(hhik − τ)− x∞
∥∥ > δ.(28)

For this value δ > 0, consider the sequence {hδk}∞k=1 defined by

hδk = max
t

{
t | t < hhik ,

∥∥x(t)− x(hhik )
∥∥ = δ

}
.

Then using x(hhik )→ x∞, we have lim infk
∥∥x(hlok )− x(hhik )

∥∥ > δ and so

hδk ∈ [hlok , h
hi
k ] eventually, and F (x(hδk)) ∈ [ylo, yhi](29)

by definition (27) of the upcrossing times.
By (28) and that x(hhik )→ x∞, we have hδk > max{hlok , hhik −τ} for large enough k.

In particular, this implies that lim supk(hhik − hδk) ≤ τ . Because the paths x(·) cannot
move too quickly by Lemma 15, the quantity τ(δ) := lim infk(hhik − hδk) ∈ (0, τ ]. By
taking subsequences if necessary, we may assume w.l.o.g. that the sequence hδk−hhik →
τ∞ ∈ [τ(δ), τ ], so that hδk = hhik − τk for τk → τ∞ > 0. As x(hhik )→ x∞ 6∈ X?, Lemma
14 implies that lim infk F (x(hδk)) > yhi, contradicting the containments (29). This is
the desired contradiction, which gives the theorem.

4. Experiments. The asymptotic results in the previous sections provide some-
what limited guidance for application of the methods. To that end, in this section
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we present experimental results explicating the performance of the methods as well
as comparing their performance to the deterministic prox-linear method (5) (adapted
from [19, sect. 5]). Drusvyatskiy and Lewis [19] provide a convergence guarantee
for the deterministic method that after O(1/ε2) iterations, the method can output
an ε-approximate stationary point, that is, a point x̂ such that there exists x0 with
‖x̂− x0‖ ≤ ε and min{‖g‖ : g ∈ ∂f(x0)} ≤ ε. These comparisons provide us a
somewhat better understanding of the practical advantages and disadvantages of the
stochastic methods we analyze.

We consider the following problem. We have observations bi = 〈ai, x?〉2, i =
1, . . . , n, for an unknown vector x? ∈ Rd, and we wish to find x?. This is a quadratic
system of equations, which arises (for example) in phase retrieval problems in imaging
science as well as in a number of combinatorial problems [10, 9]. The natural exact
penalty form of this system of equations yields the minimization problem

minimize
x

f(x) :=
1

n

n∑
i=1

| 〈ai, x〉2 − bi|,(30)

which is certainly of the form (1) with the function h(t) = |t| and ci(x) = 〈ai, x〉2−bi,
so we may take the sample space S = {1, . . . , n}. In somewhat more general noise

models, we may also assume we observe bi = 〈ai, x?〉2 + ξi for some noise sequence
ξi; in this case the problem (30) is a natural robust analogue of the typical phase

retrieval problem, which uses the smooth objective (〈ai, x〉2 − bi)2. While there are a
number of specialized procedures for solving such quadratic equations [10], we view
problem (30) as a natural candidate for exploration of our algorithms’ performance.

The stochastic prox-linear update of Example 2 is reasonably straightforward to
compute for the problem (30). Indeed, as ∇x(〈ai, x〉2 − bi) = 2 〈ai, x〉 ai, by rescaling

by the stepsize αk we may simplify the problem to minimizing |b+〈a, x〉 |+ 1
2 ‖x− x0‖

2

for some scalar b and vectors a, x0 ∈ Rd. A standard Lagrangian calculation shows
that

argmin
x

{
|b+ 〈a, x〉 |+ 1

2
‖x− x0‖2

}
= x0 − π(λ)a, where λ =

〈x0, a〉+ b

‖a‖2

and π(·) is the projection of its argument into the interval [−1, 1]. The full proxi-
mal step (Example 3) is somewhat more expensive, and for general weakly convex
functions, it may be difficult to estimate ρ(s), the weak-convexity constant; nonethe-
less, in section 4.3 we use it to evaluate its merits relative to the prox-linear updates
in terms of robustness to stepsize. Each iteration k of the deterministic prox-linear
method [7, 19] requires solving the quadratic program

xk+1 = argmin
x

{
1

n

n∑
i=1

| 〈ai, xk〉2+2 〈ai, xk〉 〈ai, x−xk〉 − bi|+
1

2α
‖x− xk‖2

}
,(31)

which we perform using Mosek via the Convex.jl package in Julia [52].
Before we present our results, we describe our choices for all parameters in our

experiments. In each experiment, we let n = 500 and d = 50, and we choose x?

uniformly from the unit sphere Sd−1. The noise variables ξi are independently and
identically distributed Laplacian random variables with mean 0 and scale parameter
σ, which we vary in our experiments. We construct the design matrix A ∈ Rn×d,
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A = [a1 · · · an]T , where each row is a measurement vector ai, as follows: we choose
U ∈ Rn×d uniformly from the orthogonal matrices in Rn×d, i.e., UTU = Id×d. We
then make one of two choices for A, the first of which controls the condition number
of A and the second the regularity of the norms of the rows ai. In the former case, we
set A = UR, where R ∈ diag(Rd) ⊂ Rd×d is diagonal with linearly spaced diagonal
elements in [1, κ], so that κ ≥ 1 gives the condition number of A. In the latter case,
we set A = RU , where R ∈ diag(Rn) ⊂ Rn×n is again diagonal with linearly spaced
elements in [1, κ]. Finally, in each of our experiments, we set the stepsize for the
stochastic methods as αk = α0k

−β , where α0 > 0 is the initial stepsize and β ∈ ( 1
2 , 1)

governs the rate of decrease in stepsize. We present three experiments in more detail
in the coming subsections: (i) basic performance of the algorithms, (ii) the role of
conditioning in the data matrix A, and (iii) an analysis of stepsize sensitivity for the
different stochastic methods, that is, an exploration of the effects of the choices of α0

and β in the stepsize choice.

4.1. Performance for well-conditioned problems. In our first group of ex-
periments, we investigate the performance of the three algorithms under noiseless and
noisy observational situations. In each of these experiments, we set the condition
number κ = κ(A) = 1. We consider three experimental settings to compare the pro-

cedures: in the first, we have noiseless observations bi = 〈ai, x?〉2; in the second, we

set bi = 〈ai, x?〉2 + ξi, where ξi are Laplacian with scale σ = 1; and in the third,

we again have noiseless observations bi = 〈ai, x?〉2, but for a fraction p = 0.1 of the
observations, we replace bi with an independent N(0, 25) random variable, so that
n/10 of the observations provide no information. Within each experimental setting,
we perform N = 100 independent tests, and in each individual test we allow the
stochastic methods to perform N = 200n iterations (so approximately 200 loops over
the data). For the deterministic prox-linear method (31), we allow 200 iterations.
Each deterministic iteration is certainly more expensive than n (sub)gradient steps
or stochastic prox-linear steps, but it provides a useful benchmark for comparison.
The stochastic methods additionally require specification of the initial stepsize α0

and power β for αk = α0k
−β , and to choose this, we let α0 ∈ {1, 10, 102, 103} and

β ∈ {0.6, 0.7, 0.8, 0.9}, perform 3n steps of the stochastic method with each potential
pair (α0, β), and then perform the full N = 200n iterations with the best performing
pair. We measure performance of the methods within each test by plotting the gap
f(xk) − f(x?), where we approximate x? by taking the best iterate xk produced by
any of those methods. While the problem is nonconvex and thus may have spuri-
ous local minima, these gaps provide a useful quantification of (relative) algorithm
performance.

We summarize our experimental results in Figure 2. In each plot, we plot the
median of the excess gap f(xk) − f(x?) as well as its 10% and 90% confidence in-
tervals over our N = 100 tests. In order to compare the methods, the horizontal
axis scales as iteration k divided by n for the stochastic methods and as iteration
for the deterministic method (31). Each of the three methods is convergent in these
experiments, and the stochastic methods exhibit fast convergence to reasonably ac-
curate (say ε ≈ 10−4) solutions after a few passes through the data. Eventually
(though we do not always plot such results) the deterministic prox-linear algorithm
achieves substantially better accuracy, though its progress is often slower. This
corroborates substantial experience from the convex case with stochastic methods
(c.f. [40, 24]).
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Fig. 2. Experiments with well-conditioned A matrices. The vertical axis shows f(xk)− f(x?),
the horizontal axis iteration count for the prox-linear iteration (31) or the k/nth iteration for the
stochastic methods. The key: prox is the prox-linear iteration (5), s.prox is the stochastic prox-linear
method (Example 2), sgm is the stochastic subgradient method (Example 1). (a) Methods with no

noise. (b) ξi
iid∼ Laplacian with scale σ = 1. (c) Proportion p = 0.1 of observations bi corrupted

arbitrarily.

There are differences in behavior for the different methods, which we can heuristi-
cally explain. In Figure 2(a), the stochastic prox-linear method (Example 2) converges
substantially more quickly than the stochastic subgradient method. Intuitively, we
expect this behavior because each data point (ai, bi) should have 〈ai, x〉2 = bi exactly,
and the precise stepping of the prox-linear method achieves this more easily. In
Figure 2(b), where bi = 〈ai, x?〉2 + ξi the two methods have similar behavior; in this
case, the population expectation fpop(x) = E[|b − 〈a, x?〉 |2] is smooth, because the
noise ξ has a density, so gradient methods are likely to be reasonably effective. More-
over, with probability 1 we have 〈ai, x?〉2 6= bi, so that the precision of the prox-linear
step is unnecessary. Finally, Figure 2(c) shows that the methods are robust to cor-

ruption, but because we have 〈ai, x?〉2 = bi for the majority of i ∈ {1, . . . , n}, there
is still benefit to using the more exact (stochastic) prox-linear iteration. We note
in passing that the gap in function values f(xk) between the stochastic prox-linear
method and stochastic subgradient method (SGM) is statistically significantly posi-
tive at the p = 10−2 level for iterations k = 1, . . . , 20, and that at each iteration k,
the prox-linear method outperforms SGM for at least 77 of the N = 100 experiments
(which is statistically significant for rejecting the hypothesis that each is equally likely
to achieve lower objective value than the other at level p = 10−6).
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4.2. Problem conditioning and observation irregularity. In our second set
of experiments, we briefly investigate conditioning of the problem (30) by modifying
the condition number κ = κ(A) of the measurement matrix A ∈ Rn×d or by modifying
the relative norms of the rows ‖ai‖ of A. In each of the experiments, we choose the
initial stepsize α0 and power β in αk = α0k

−β using the same heuristic as the previous
experiment for the stochastic methods (by considering a grid of possible values and
selecting the best after 3n iterations). We present four experiments, whose results we
summarize in Figure 3. As in the previous experiments, we plot the gaps f(xk)−f(x?)
versus iteration k (for the deterministic prox-linear method) and versus iteration k/n

for the stochastic methods. In the first two, we use observations bi = 〈ai, x?〉2 + ξi,
where the noise variables are i.i.d. Laplacian with scale σ = 1, and we set A = UR
where R is diagonal, in the first (Figure 3(a)) scaling between 1 and κ = 10 and in
the second (Figure 3(b)) scaling between 1 and κ = 100. Each method’s performance
degrades as the condition number κ = κ(A) increases, as one would expect. The
performance of SGM degrades substantially more quickly with the conditioning of
the matrix A, in spite of the fact that noisy observations improve its performance
relative to the other methods (in the case σ = 0, SGM’s relative performance is
worse).

In the second two experiments, we set A = RU , where R is diagonal with entries
linearly spaced in [1, κ] for κ = 10, so that the norms ‖ai‖ are irregular (varying by
approximately a factor of κ = 10). In the first of the experiments (Figure 3(c)), we set
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(c) A = RU , bi = 〈ai, x?〉2 (d) A = RU , bi = 〈ai, x?〉2 + ξi

Fig. 3. Experiments with A matrices of varying condition number and irregularity in row norms.
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the observations bi = 〈ai, x?〉2 with no noise, while in the second (Figure 3(d)) we set

bi = 〈ai, x?〉2 + ξi for ξi i.i.d. Laplacian with scale σ = 1. In both cases, the stochastic
prox-linear method has better performance—this is to be expected, because its more
exact updates involving the linearization h(c(xk; s) +∇c(xk; s)T (x− xk); s) are more
robust to scaling of ‖ai‖. As we explore more carefully in the next set of experiments,
one implication of these results is that the robustness and stability of the stochastic
prox-linear algorithm with respect to problem conditioning is reasonably good, while
the behavior of stochastic subgradient methods can be quite sensitive to conditioning
behavior of the design matrix A.

4.3. Robustness of stochastic methods to stepsize. In our final experiment,
we investigate the effects of stepsize parameters for the behavior of our stochastic
methods. For stepsizes αk = α0k

−β , the stochastic methods require specification of
both the parameter α0 and β, so it is interesting to investigate the robustness of the
stochastic prox-linear method and SGM to various settings of α0 and β. In each of
these experiments, we set the condition number κ(A) = 1 and have no noise, i.e.,

bi = 〈ai, x?〉2. We vary the initial stepsize α0 ∈ {2−1, 21, 23, . . . , 211} and the power
β ∈ {0.5, 0.55, 0.6, . . . , 1}. In this experiment, we have f(x?) = 0, and we investigate
the number of iterations

T (ε) := inf {k ∈ N | f(xk) ≤ ε}

required to find and ε-optimal solution. (In our experiments, the stochastic methods
always find such a solution eventually.) We perform N = 250 tests for each setting
of the pairs α0, β, and in each test, we implement all three of the stochastic gradient
(Example 1), prox-linear (Example 2), and proximal-point (Example 3) methods, each
for k = 200n iterations, setting T (ε) = 200n if no iterate xk satisfies f(xk) ≤ ε.

Figure 4 illustrates the results of these experiments, where the vertical axis gives
the median time T (ε) to ε = 10−2-accuracy over all the N = 250 tests. The left plot
demonstrates convergence time of the stochastic prox-linear and subgradient meth-
ods versus the initial stepsize α0 and power β, indicated on the horizontal axes. The
solid white-to-blue surface, with thin lines, corresponds to the iteration counts for the
stochastic prox-linear method; the transparent surface with thicker lines corresponds
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to the iteration counts for the stochastic subgradient method. Figure 4 shows that the
stochastic prox-linear algorithm consistently has comparable or better performance
than SGM for the same choices of parameters α0, β. The right plot shows convergence
of the stochastic proximal-point method (see Example 3 in section 2.1), stochastic
prox-linear method, and stochastic subgradient method versus stepsize on a log-plot
of initial stepsizes, with β = 1

2 fixed. The most salient aspect of the figures is that
the stochastic prox-linear and proximal-point methods are more robust to stepsize
(mis-)specification than is SGM. Indeed, Figure 4 makes apparent, the range of step-
sizes yielding good performance for SGM is a relatively narrow valley, while the prox-
linear and proximal-point methods enjoy reasonable performance for broad choices of
(often large) stepsizes α0, with less sensitivity to the rate of decrease β in the stepsize
as well. This behavior is expected: the iterations of the stochastic prox-linear and
proximal-point methods (Examples 2–3) guard more carefully against wild swings that
result from aggressive stepsize choices, yielding more robust convergence and easier
stepsize selection.

Appendix A. Technical proofs and results.

A.1. Proof of Claim 1. Fix s ∈ S; we let h = h(·; s) and c = c(·; s) for
notational simplicity. Then for any y, z with ‖y − x‖ ≤ ε and ‖z − x‖ ≤ ε and some

vector v with ‖v‖ ≤ βε ‖y − z‖2 /2, we have

h(c(y)) = h(c(z) +∇c(z)T (y − z) + v)

(i)

≥ h(c(z) +∇c(z)T (y − z))− γε(x) ‖v‖
(ii)

≥ h(c(z)) + ∂h(c(z))T∇c(z)T (y − z)− γε(x)βε(x)

2
‖z − y‖2 ,

where inequality (i) follows from the local Lipschitz continuity of h and (ii) because

h is subdifferentiable. Let λ ≥ γε(x)βε(x). Then adding the quantity λ
2 ‖y − x0‖

2
to

both sides of the preceding inequalities, we obtain for any g ∈ ∂h(c(x)) that

h(c(y))+
λ

2
‖y − x0‖2 ≥ h(c(z)) + (∇c(z)g)T (y − z)− λ

2
‖z − y‖2 +

λ

2
‖y − x0‖2

= h(c(z)) +
λ

2
‖z − x0‖2 + 〈∇c(z)g, y − z〉+ λ 〈z − x0, y − z〉 .

That is, the function y 7→ h(c(y)) + λ
2 ‖y − x0‖

2
has subgradient ∇c(z)g + λ(z − x0)

at y = z for all z with ‖z − x‖ ≤ ε; any function with nonempty subdifferential
everywhere on a compact convex set must be convex on that set [33]. In particular, we
see that y 7→ f(y; s) is λ(s, x) = γε(x, s)βε(x, s)-weakly convex in an ε-neighborhood
of x, giving the result.

The final result on Condition C.(iv) is nearly immediate: we have

h(c(y; s); s) ≥ h(c(x; s) +∇c(x; s)T (y − x); s)− γε(x; s)βε(x; s)

2
‖y − x‖2

for y in an ε-neighborhood of x by the Lipschitz continuity of h and ∇c.
A.2. Proof of Lemma 6. Recall Assumption B that for all x ∈ X and some ε >

0, there exists λ(s, x) such that y 7→ f(y; s)+ λ(s,x)
2 ‖y − x‖2 is convex for ‖y − x‖ ≤ ε,

and E[λ(S, x)] < ∞ for all x. Then f(·; s) has a Fréchet subdifferential ∂f(x; s) and
the directional derivative of f(·; s) in the direction v is f ′(x; s; v) = supg∈∂f(x;s) 〈g, v〉
(cf. [47, Chap. 8]). Let λ(s) = λ(s, x) for shorthand, as x is fixed throughout our
argument. Fix v ∈ Rd, and let u be near v with t < ε/(‖u‖+ ‖v‖). Then
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f(x+ tu) =

∫ [
f(x+ tu; s) +

λ(s)t2

2
‖u‖2

]
dP (s)− t2

2
‖u‖2 E[λ(S)].

Because u 7→ f(x + tu; s) + λ(s)
2 ‖tu‖

2
is a normal convex integrand [47, Chap. 14],

the dominated convergence theorem implies that

f(x+ tu)− f(x)

t
=

∫ [
f(x+ tu; s)− f(x; s)

t
+ t

λ(s)

2
‖u‖2

]
dP (s)− t ‖u‖2

2
E[λ(S)]

→
∫
f ′(x; s; v)dP (s) as t→ 0, u→ v.

That is, f ′(x; v) =
∫
f ′(x, s; v)dP (s). An argument parallel to that of Bertsekas [3,

Prop. 2.1–2.2] yields that ∂f(x) =
∫
∂f(x; s)dP (s) and that ∂f(x) is compact.

Now we show that ∂f(·) is o.s.c. Because the support function of the subdif-
ferential ∂f(x) is the directional derivative of f , the outer semicontinuity of ∂f is
equivalent to

lim sup
k→∞

f ′(xk; v) ≤ f ′(x; v) for all ‖v‖ = 1 and xk → x ∈ X(32)

(cf. [33, Prop. V.3.3.9]). The sets ∂y(f(y; s)+(λ(s)/2) ‖y − x‖2) are bounded for y in a
neighborhood of x because the function f is weakly convex, where λ(·) is P -integrable.

Let λ = EP [λ(S, x)] <∞, and define g(y) = f(y) + λ
2 ‖y − x‖

2
. Then g is convex and

continuous near x [3], and we have [33, Cor. VI.6.2.5] that

g′(x; v) = lim sup
y→x

g′(y; v)

for all v ∈ Rd. But for convex g, we have g′(x; v) = limt↓0(g(x+ tv)− g(x))/t, and so
the preceding display implies that as y → x we have

−o(1) ≤ g′(x; v)− g′(y; v)

= lim
t↓0

[
f(x+ tv)− f(x)

t
+
λt ‖v‖2

2

]
− lim

t↓0

[
f(y + tv)− f(y)

t
+ λ 〈v, y − x〉+

λt ‖v‖2

2

]

= lim
t↓0

f(x+ tv)− f(x)

t
− lim

t↓0

f(y + tv)− f(y)

t
− λ 〈v, y − x〉 .

In particular, the preceding limits exist, we have f ′(x; v) = limt↓0(f(x+ tv)−f(x))/t,
and inequality (32) holds by taking y → x. The preceding argument works, of course,
for any weakly convex function, and so applies to f(·; s) as well.

The final claim of the lemma is a standard calculation [19, 21].

A.3. Proof of Lemma 8. That Lε(x; s) <∞ for all x is immediate, asG(x; s) =
∂ϕ(x)+∂f(x; s), and subdifferentials of convex functions (ϕ) are compact convex sets.

We first show the upper semicontinuity of the function Lε(·; s). Suppose for the
sake of contradiction that for some x ∈ X and for some sequence {xk}∞k=1 ⊂ X
converging to x, we have limk→∞ Lε(xk; s) exists and there is some δ > 0 such that

lim
k→∞

Lε(xk; s) ≥ Lε(x; s) + δ.

By definition of Lε we may choose x′k ∈ X such that ‖xk − x′k‖ ≤ ε and subgradient
vectors pk(s) ∈ ∂f(x′k; s) and qk(s) ∈ ∂ϕ(x′k) satisfying

Lε(xk; s) ≤ ‖pk(s) + qk(s)‖+ δ/2 for all k.
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Since the sequence {x′k} ⊂ X is bounded, it has accumulation points and we may
assume w.l.o.g. that x′k → x′ ∈ X, where x′ satisfies ‖x′ − x‖ ≤ ε. The o.s.c. of the
subdifferential for weakly convex functions (Lemma 1 or 6) shows that there must be
a subsequence {nk} satisfying pnk(s)→ p(s) ∈ ∂f(x′; s) and qnk(s)→ q(s) ∈ ∂ϕ(x′).
In particular,

lim
k→∞

Lε(xk; s) = lim sup
k→∞

Lε(xnk ; s) ≤ lim sup
k→∞

‖pnk(s) + qnk(s)‖+
δ

2

= ‖p(s) + q(s)‖+
δ

2
≤ Lε(x; s) +

δ

2
,

which is a contradiction. Thus Lε(·; s) and L2
ε(·; s) are upper semicontinuous.

To see that Lε(·) is upper semicontinuous, we construct an integrable envelope for
the function and then apply Fatou’s lemma. Indeed, using the assumed Mε(x; s)-local
Lipschitz continuity of y 7→ f(y; s) for y near x, we have

‖G(y; s)‖ ≤Mε(x; s) + ‖∂ϕ(y)‖

for y with ‖y − x‖ ≤ ε. This quantity is integrable, and we may apply Fatou’s lemma
and Assumption A to obtain

lim sup
y→x

Lε(y) ≤ E
[
lim sup
y→x

Lε(y)

]
≤ E[Lε(x;S)] ≤

√
E[Lε(x;S)2].

A.4. Proof of Observation 2. In the case that ϕ(x) = λ
2 ‖x‖

2
, the stochastic

update in Example 1 becomes xk+1 = 1
1+αkλ

xk− αk
1+αkλ

gk, and we have the recursion

‖xk+1‖ ≤
‖xk‖

1+αkλ
+

αk
1+αkλ

L(Sk) ≤
k∏
i=1

(1+αiλ)−1 ‖x1‖+

k∑
i=1

αiL(Si)

k∏
j=i

(1+αjλ)−1.

Let Li = L(Si) for shorthand and define ξi = Li − E[L(Si)], noting ξi are i.i.d.
and mean zero. Assume that λ = 1 and E[L(S)2] = 1 w.l.o.g. Defining Zk =∑k
i=1 αiLi

∏k
j=i(1 + αjλ)−1, so that Zk − E[Zk] =

∑k
i=1 αiξi

∏k
j=i(1 + αjλ)−1 and

noting that

E[Zk+1] =
E[Zk] + αk+1

1 + αk+1
=

{
≤ E[Zk] if E[Zk] > 1,

≤ 1 if E[Zk] ≤ 1,

we have that supk E[Zk] <∞. Moreover, if we let Mk =
∑k
i=1 αi

∏i−1
j=1(1+αj)ξi, then

Zk − E[Zk] =
∏k
j=1(1 + αj)

−1Mk, and Mk is a martingale adapted to the filtration

Fk = σ(S1, . . . , Sk). Noting that Mk+1 −Mk = αk+1

∏k
j=1(1 + αj)ξk+1, we have

∞∑
k=1

1∏k
j=1(1 + αj)2

E[(Mk+1 −Mk)2 | Fk] =

∞∑
k=1

α2
k+1E[ξ2k+1] <∞.

Applying standard L2-martingale convergence results (e.g., [16, Exer. 5.3.35]) gives

that Mk/
∏k
j=1(1 + αj)

a.s.→ 0, and thus Zk
a.s.→ E[Zk], while certainly lim supk ‖xk‖ ≤

lim supk Zk.
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