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Abstract

We describe, analyze, and experiment with a new framewarleriapirical loss
minimization with regularization. Our algorithmic framerk alternates between
two phases. On each iteration we first performuanonstrainedyradient descent
step. We then cast and solve an instantaneous optimizatitepn that trades off
minimization of a regularization term while keeping clogexmity to the result
of the first phase. This yields a simple yet effective aldgwnifor both batch penal-
ized risk minimization and online learning. Furthermotes two phase approach
enables sparse solutions when used in conjunction withaggation functions
that promote sparsity, such &s We derive concrete and very simple algorithms
for minimization of loss functions with;, ¢, ¢3, and /., regularization. We
also show how to construct efficient algorithms for mixedmd, /¢, regulariza-
tion. We further extend the algorithms and give efficientlienpentations for very
high-dimensional data with sparsity. We demonstrate theri@l of the proposed
framework in experiments with synthetic and natural dasase

1 Introduction

Before we begin, we establish notation for this paper. Weotiencalars by lower case letters and
vectors by lower case bold letters, ewg. The inner product of vectorg andv is denoted/u, v).
We use||x||, to denote the-norm of the vector: and||x|| as a shorthand fdfx||2.

The focus of this paper is an algorithmic framework for regized convex programming to mini-
mize the following sum of two functions:

flw) +r(w) , (1)

where bothf andr are convex bounded below functions (so without loss of gditgwe assume
they are intoR ). Often, the functionf is an empirical loss and takes the fopn), _ ¢ ¢;(w) for

a sequence of loss functiodfs : R — R,, andr(w) is a regularization term that penalizes
for excessively complex vectors, for instangev) = A||w||,. This task is prevalent in machine
learning, in which a learning problem for decision and pradn problems is cast as a convex
optimization problem. To that end, we propose a general@ndive algorithm to minimize Eq. (1),
focusing especially on derivations for and the use of ndfemintiable regularization functions.

Many methods have been proposed to minimize general comvetiéns such as that in Eq. (1).
One of the most general is the subgradient method [1], whkielleigant and very simple. L&f (w)
denote the subgradient set pfat w, namely,0f(w) = {g | Vv : f(v) > f(w) + (g, v — w)}.
Subgradient procedures then minimize the funcfi¢w) by iteratively updating the parameter vec-
tor w according to the update rute; ., = w; — ntg{, wheren; is a constant or diminishing step
size ancy{ € df(w.) is an arbitrary vector from the subgradient sef @valuated atv;. A slightly
more general method than the above is the projected gradietiiod, which iterates
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wherelIln(w) is the Euclidean projection ab onto the sef). Standard results [1] show that the
(projected) subgradient method converges at a raty bf<?), or equivalently that the errgfi(w) —
f(w*) = O(1/V/T), given some simple assumptions on the boundedness of tdéfeudntial set
and() (we have omitted constants dependentaffi|| or dim(£2)). Using the subgradient method to
minimize Eg. (1) gives simple iterates of the foim,; = w; — ntg{ — gy, whereg] € Or(wy).

A common problem in subgradient methods is thatdf f is non-differentiable, the iterates of the
subgradient method are very rarely at the points of noredfitiability. In the case of regularization
functions such as(w) = ||w||,, however, these points (zeros in the case off{reorm) are often
the true minima of the function. Furthermore, with and similar penalties, zeros are desirable
solutions as they tend to convey information about the siremf the problem being solved [2, 3].

There has been a significant amount of work related to minmiEq. (1), especially when the
functionr is a sparsity-promoting regularizer. We can hardly do @esto the body of prior work,
and we provide a few references here to the research we bédienost directly related. The ap-
proach we pursue below is known as “forward-backward spdjttor a composite gradient method
in the optimization literature and has been independenigssted by [4] in the context of sparse
signal reconstruction, wher&(w) = ||y — Aw||?, though they note that the method can apply to
general conveX. [5] give proofs of convergence for forward-backward sjpig in Hilbert spaces,
though without establishing strong rates of convergendee fotivation of their paper is signal
reconstruction as well. Similar projected-gradient md#avhen the regularization functiers no
longer part of the objective function but rather cast as atramt so that(w) < ), are also well
known [1]. [6] give a general and efficient projected gratimethod for/; -constrained problems.
There is also a body of literature on regret analysis fomanlearning and online convex program-
ming with convex constraints upon which we build [7, 8]. Leiag sparse models generally is of
great interest in the statistics literature, specificaflyttie context of consistency and recovery of
sparsity patterns through or mixed-norm regularization across multiple tasks [2,]3, 9

In this paper, we describe a general gradient-based frarkewbich we call F©BOS, and analyze

it in batch and online learning settings. The paper is omghas follows. In the next section, we
begin by introducing and formally defining the method, givsome simple preliminary analysis.
We follow the introduction by giving in Sec. 3 rates of corg@mce for batch (offline) optimization.
We then provide bounds for online convex programming and giconvergence rate for stochastic
gradient descent. To demonstrate the simplicity and use$sl of the framework, we derive in Sec. 4
algorithms for several different choices of the regulagzfunctionr. We extend these methods to
be efficient in very high dimensional settings where the imgata is sparse in Sec. 5. Finally,
we conclude in Sec. 6 with experiments examining variougespof the proposed framework, in
particular the runtime and sparsity selection performaridhe derived algorithms.

2 Forward-Looking Subgradients and Forward-Backward Splitting

In this section we introduce our algorithm, laying the fravoek for its strategy for online or batch
convex programming. We originally named the algorithm Badg an abbreviation for FOrward-
LOoking Subgradient. Our algorithm is a distillation of kwmo approaches for convex program-
ming, in particular the Forward-Backward Splitting methda order not to confuse readers of the
early draft, we attempt to stay close to the original name wsalthe acronym &80s rather than
Fobas. BBOSsis motivated by the desire to have the iteraigsattain points of non-differentiability
of the functionr. The method alleviates the problems of non-differentigbih cases such as
¢1-regularization by taking analytical minimization stejpseirleaved with subgradient steps. Put
informally, FOBOSis analogous to thprojectedsubgradient method, but replaces or augments the
projection step with an instantaneous minimization probfer which it is possible to derive a
closed form solution. BBOSis succinct as each iteration consists of the following tveps:

w1 o= w—ng] @)

’ + M43 r(w)} . (3

1
wyr) = argmin { Hw — W1
w 2 2
In the aboveg{ is a vector indf(w;) andn; is the step size at time stemf the algorithm. The
actual value ofy; depends on the specific setting and analysis. The first stepsiimply amounts
to an unconstrained subgradient step with respect to thetifumf. In the second step we find a



new vector that interpolates between two goals: (i) stagecto the interim vectow, , 1, and (ii)

attain a low complexity value as expressedrbyNote that the regularization function is scaled by
an interim step size, denote;gl%. The analyses we describe in the sequel determine the specifi

value oan%, which is eithem; or n,1. A key property of the solution of Eq. (3) is the necessary

condition for optimality and gives the reason behind the @&wsos. Namely, the zero vector must
belong to subgradient set of the objective at the optimuym; , that is,

1 2
0€d {2 |w—w,.y +Tlt+;7“(w)}‘

SincewH% = w — ntgtf, the above property amountsQoe w; 1 — wy erg,{c +77t+%5?“(wt+1)-
This property implies that so long as we choesg ; to be the minimizer of Eq. (3), we are guar-
anteed to obtain a vectgt, ; € Or(w;41) suchthal = w; 1 —w; + mgl + Ny 19i1- We can
understand this as an update scheme where the new weight uggt; is a linear combination of
the previous weight vectaw,, a vector from the subgradient set pfat w,, and a vector from the
subgradient of evaluated at the yet to be determineel. ;. To recap, we can write;; as

Wiyl = Wy — N Q{ Myl g:+1’ (4)

whereg! € 0f(w,) andgy,, € Or(wy1). Solving Eqg. (3) withr above has two main ben-
efits. First, from an algorithmic standpoint, it enablesrspasolutions at virtually no additional
computational cost. Second, the forward-looking gradaioivs us to build on existing analyses
and show that the resulting framework enjoys the formal eagence properties of many existing
gradient-based and online convex programming algorithms.

W=W¢41

3 Convergence and Regret Analysis dFOBOS

In this section we build on known results while using the farg+looking property of BBOSto
provide convergence rate and regret analysis. To deriveetgence rates we sgt 1 properly. As
we show in the sequel, it is sufficient to Sgt 1 ton, Ormeyy, depending on whether we are doing
online or batch optimization, in order to obtain convergeaad low regret bounds. We provide
proofs of all theorems in this paper, as well as a few usetftliriezal lemmas, in the appendices,
as the main foci of the paper are the simplicity of the methiod derived algorithms and their
experimental usefulness. The overall proof techniquegebllon the forward-looking property in
Eq. (4) and moderately straightforward arguments with egity and subgradient calculus.

Throughout the section we denotedy the minimizer off (w)+r(w). The first bounds we present
rely only on the assumption thiiv*|| < D, though they are not as tight as those in the sequel. In
what follows, defind|0 f (w)|| = SUDgeaf(w) [19]]- We begin by deriving convergence results under
the fairly general assumption [10, 11] that the subgradiarg bounded as follows:

lof(w)|* < Af(w) +G?, [[or(w)|* < Ar(w) + G* . (6)
For example, any Lipschitz loss (such as the logistic or &8y M) satisfies the above with = 0
andG equal to the Lipschitz constant; least squares satisfieEgith G = 0 andA = 4.

Theorem 1. Assume the following hold: (i) the norm of any subgradieoimfd f and the norm of
any subgradient frondr are bounded as in Eq. (5), (ii) the norm af* is less than or equal t®,
(iii) »(0) = 0,and (iv)%nt < nt41 < . Then for a constant < 4 withw; =0 andnt% = Nt1,

D e (1= cAny) f(wy) = f(w*)) + e (1 = cAn)r(wy) —r(w*))] < D* +7G* Y " ni

t=1 t=1

The proof of the theorem is in Appendix A. We also provide ia &ppendix a few useful corollaries.
We provide one corollary below as it underscores that treahtonvergence: /7.

Corollary 2 (Fixed step rate) Assume that the conditions of Thm. 1 hold and that weRoRoS

for a predefined’” iterations withr, = ﬁ and that(1 — cA \/%G) > 0. Then

, 1 & 3DG Flw*) + r(w*)
flwy) + D)< => f + ) < + :
. (R S IR -



Bounds of the form we present above, where the point minimgi{w;) + r(w;) converges rather
than the last pointvr, are standard in subgradient optimization. This occursesthere is no way
to guarantee a descent direction when using arbitrary adiEgrts (see, e.g., [12, Theorem 3.2.2]).

We next derive regret bounds foloBos in online settings in which we are given a sequence of
functionsf; : R® — R. The goal is for the sequence of predictiang to attain low regret when
compared to a single optimal predictar*. Formally, let f;(w) denote the loss suffered on the
t*" input loss function when using a predictar. The regret of an online algorithm which uses

w1, ..., Wwy,... asits predictors w.r.t a fixed predictar- while using a regularization functionis
T
Rpir(T) =Y [felwy) + r(we) = (fi(w*) + r(w"))]
t=1

Ideally, we would like to achieve O regret to a stationary for arbitrary length sequences.

To achieve an online bound for a sequence of convex funcfigrge modify arguments of [7]. We
begin with a slightly different assignment f@{+%: specifically, we sel), 1 = 1. We have the

following theorem, whose proof we provide in Appendix B.

Theorem 3. Assume thafw, — w*|| < D for all iterations and the norm of the subgradient sets
Jdf; andOr are bounded above lfy. Letc > 0 an arbitrary scalar. Then the regret boundiedBos

with , = c/+/ satisfiesR 4, (T) < GD + (% n 7G2c) JT.

For slightly technical reasons, the assumption on the bedimess otv, and the subgradients is not
actually restrictive (see Appendix A for details). It is pidde to obtain arO(log T') regret bound
for FoBoswhen the sequence of loss functigfé) or the functionr(-) is strongly convex, similar
to [8], by using the curvature of, or ». While we can extend these results todos we omit the
extension for lack of space (though we do perform some exptis with such functions). Using
the regret analysis for online learning, we can also givevemgence rates for stochastioBos,
which areO(+/T). Further details are given in Appendix B and the long versibitis paper [13].

4 Derived Algorithms

We now give a few variants of #80s by considering different regularization functions. The-em
phasis of the section is on non-differentiable regulaiiratunctions that lead to sparse solutions.
We also give simple extensions to applg#osto mixed-norm regularization [9] that build on the
first part of this section. For lack of space, we mostly give thsulting updates, skipping techni-
cal derivations. We would like to note that some of the follogvresults were tacitly given in [4].
First, we make a few changes to notation. To simplify ourwdgions, we denote by the vector

Wy 1 =Wy — ntg[ and let\ denotentJr% - A. Using this notation the problem given in Eq. (3) can
be rewritten asnin,, 3 [|lw — v||? + Ar(w). Lastly, we let[z] . denotemax {0, z}.

Fososwith ¢; regularization: The update obtained by choosingw) = A ||w||; is simple and
intuitive. The objective is decomposable into a sum of 1atigional convex problems of the form
min,, (w — v)? + Ajw|. As a result, the components of the optimal solutioh = w;,; are
computed fromw,, 1 as

Weg1,) = Sign<wt+%,j) [|wt+%’j| — 5\} Jr: sign(wt’j — 77t9tf,j> Hwt,j - ntg,fij’ - )\77t+%} . (6)
Note that this update leads to sparse solutions: wheneyabigolute value of a componenter%

is smaller tharn\, the corresponding componenti , ; is set to zero. Eq. (6) gives a simple online
and offline method for minimizing a conveikwith ¢, regularization. [10] recently proposed and
analyzed the same update, terming it the “truncated grgdiiough the analysis presented here
stems from a more general framework. This update can alsmplemented very efficiently when
the support ob{ is small [10], but we defer details to Sec. 5, where we desaibnified view that
facilitates an efficient implementation for all the regi#ation functions discussed in this paper.

FoBos with ¢} regularization: Whenr(w) = 3 ||w|\§, we obtain a very simple optimization

problem,min,, 1|jw — v||2 + 1 \||w]|?. Differentiating the objective and setting the result edoal
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zero, we havev* — v + Aw* = 0, which, using the original notation, yields the update

Wi — Utg{
T+A
Informally, the update simply shrinks;,; back toward the origin after each gradient-descent step.

()

Wiy1 =

Fososwith /5 regularization: A lesser used regularization function is thyenorm of the weight
vector. By setting'(w) = A|w|| we obtain the following problemmin,, 3 [lw — v[|* + A||w].
The solution of the above problem must be in the direction ahd takes the fornw* = sv where
s > 0. The resulting second step of theBosupdate with¢s regularization amounts to

A )
wi = |1—- ————| = 1—7]0 (wt_ntg{)'
Hthr% [ n lwe —megy | i

¢,-regularization results in a zero weight vector under thedition that||w, — n,g{|| < X. This
condition is rather more stringent for sparsity than theditbon for ¢, so it is unlikely to hold in
high dimensions. However, it does constitute a very impantailding block when using a mixed
¢1/¢>-norm as the regularization, as we show in the sequel.

FoBoswith /., regularization: We now turn to a less explored regularization function, the
norm ofw. Our interest stems from the recognition that there ar@ngsttn which it is desirable to
consider blocks of variables as a group (see below). We wisitain an efficient solution to

.1 <
min - lw — ol* + X ]|, - ()

A solution to the dual form of Eq. (8) is well established. Ring that the conjugate of the
guadratic function is a quadratic function and the conjagéthel., norm is the/; barrier function,

we immediately obtain that the dual of the problem in Eq|. $8)ixq —3 [l — vl st e, <

X. Moreover, the vector of dual variables satisfies the relatiomx = v — w. [6] describes a
linear time algorithm for finding the optimat to this ¢, -constrained projection, and the analysis
there shows the optimal solution to Eq. (8)us;1,; = sign(w, 1 ;) minf{|w,, 1 ;|,6}. The optimal

solution satisfies = 0 iff [lw,, 11 < ), and otherwis@ > 0 and can be found i®(n) steps.

Mixed norms: We saw above that when using either theor the /., norm as the regularizer we
obtain an all zeros vector jfw, 1|2 < A or[|w, 1] < A, respectively. This phenomenon can

be useful. For example, in multiclass categorization potd each classmay be associated with
a different weight vectomw*. The prediction for an instanceis a vector(w', ) , ..., (w*, x),

wherek is the number of classes, and the predicted classgisiax; (w7, x). Since all the weight
vectors operate over the same instance space, it may bedielntefitie the weights corresponding
to the same input feature: we would to zero the row of Weigljt,s .. ,wj’? simultaneously

Formally, letiW represent an x k matrix where thg*" column of the matrix is the weight vectar’
associated with clags Then thei'” row contains weight of th¢” feature for each class. The mixed
¢,./¢s-norm [9] of W is obtained by computing th&-norm of each row of/” and then applying
the £,-norm to the resulting: dimensional vector, for instancgW |, ,, = >y max; [W 5.

In a mixed-norm regularized optimization problem, we séwkrhinimizer off (W) + A W/, ;..
Given the specific variants of norms described above, d®dsupdate for the/; /¢, and thel; /{5
mixed-norms is readily available. Lat* be thes'” row of IW. Analogously to standard norm-based
regularization, we use the shorthakid= W, .. For the(; /¢, mixed-norm, we need to solve

1 2 1 -
min > [W—V]g+A HWHzl/ep =

w

: ~ (1 i =i12 3 (|
win, Y- (5o =2+ Aa'],) @

Lk £
1=

wherev! is theit” row of V. It is immediate to see that the problem given in Eq. (9) isodgmosable

into n separate problems of dimensiéneach of which can be solved by the procedures described
in the prequel. The end result of solving these types of mixaain problems is a sparse matrix with
numerous zero rows. We demonstrate the meritsac®swith mixed-norms in Sec. 6.



5 Efficient implementation in high dimensions

In many settings, especially online learning, the weigltteew, and the gradientg{ reside in a
very high-dimensional space, but only a relatively smathber of the components gf[ are non-
zero. Such settings are prevalent, for instance, in tesédhapplications: in text categorization,
the full dimension corresponds to the dictionary or set &t that is being employed while each
gradient is typically computed from a single or a few docutagrach of which contains words
and bigrams constituting only a small subset of the fulliditary. The need to cope with gradient
sparsity becomes further pronounced in mixed-norm problesa single component of the gradient
may correspond to an entire row Bf. Updating the entire matrix because a few entrieg{ohre
non-zero is clearly undesirable. Thus, we would like to edteur methods to cope efficiently
with gradient sparsity. For concreteness, we focus in thisien on the efficient implementation
of /1, {5, and/,, regularization, since the extension to mixed-norms (akénprrevious section) is
straightforward. We postpone the proof of the followinggwsition to Appendix C.

Proposition 4. Let wr be the end result of solving a successiorZogelf-similar optimization
problems fort =1,...,T,

.1
P.1: w; = argmin §||w — w1 |+ M]Jwll, - (20)

Letw™* be the optimal solution of the following optimization pretvl,

T
1
Pﬂ:w*wmmDﬂw—wW+<2)JHMb- (1)
w t=1

For ¢ € {1,2, 00} the vectoraw, andw™ are identical.

The algorithmic consequence of Proposition 4 is that it ssgae to perform a lazy update on each
iteration by omitting the terms ab, (or whole rows of the matriX’; when using mixed-norms) that

are outside the support g{, the gradient of the loss at iterationWe do need to maintain the step-
sizes used on each iteration and have them readily avadalfigture rounds when we newly update
coordinates ofw or W. Let A; denote the sum of the step sizes times regularization rfiatp
An; used from roundl throught. Then a simple algebraic manipulation yields that instefd o
solvingw;; = argmin,, {% [w — w3 + AntHqu} repeatedly whenw, is not changing, we
can simply cache the last tintg thatw (or a coordinate inv or a row fromW) was updated and,
when it is needed, solve,; = argmin,, {% ||w — fwt||§ + (A — At0)||w|\q}. The advantage of
the lazy evaluation is pronounced when using mixed-norralegzation as it lets us avoid updating
entire rows so long as the row index corresponds to a zerg efithe gradieny{. In sum, at the
expense of keeping a time stamfor each entry ofw or row of W and maintaining the cumulative
sumsAy, A, .. ., we getO(k) updates otw when the gradiery{ has onlyk non-zero components.

6 Experiments

In this section we comparedBosto state-of-the-art optimizers to demonstrate its redatherits
and weaknesses. We perform more substantial experimettis foll version of the paper [13].

/3 and ¢;-regularized experiments: We performed experiments usingpBos to solve both/;
and/,-regularized learning problems. For theregularized experiments, we compareogosto
Pegasos [14], a fast projected gradient solver for SVM. egyavas originally implemented and
evaluated on SVM-like problems by using the the hinge-lastha empirical loss function along
with an ¢ regularization term, but it can be straightforwardly exted to the binary logistic loss
function. We thus experimented with both

fw) =31 = yi (@i, w)], (hinge) and  f(w) = > log (1+e7#=)) (logistic)
i=1 i=1
as loss functions. To generate data for our experimentshageca vectow with entries distributed
normally withO mean and unit variance, while randomly zeroing 50% of theientn the vector.
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Figure 1: Comparison of 880oswith Pegasos on the problems of logistic regression (leftraght)
and SVM (middle). The rightmost plot shows the performarfd@® algorithms without projection.

The examples:; € R™ were also chosen at random with entries normally distrthuf® generate
target values, we set = sign({x;, w)), and flipped the sign of 10% of the examples to add label
noise. In all experiments, we usé@00 training examples of dimensicfd0.

The graphs of Fig. 1 show (on a log-scale) the regularizedirgzaploss of the algorithms minus
the optimal value of the objective function. These resukseraveraged ove0 independent runs
of the algorithms. In all experiments with the reguIari%éerHg, we used step sizg = A/t to
achieve logarithmic regret. The two left graphs of Fig. 1vgtibat FOBOS performs comparably
to Pegasos on the logistic loss (left figure) and hinge (S\dd¥ [(middle figure). Both algorithms
quickly approach the optimal value. In these experimentsetvboth Pegasos andoBos employ
a projection after each gradient step int@-aorm ball containingu™* (see [14]). However, in the
experiment corresponding to the rightmost plot of Fig. 1,ekminated this additional projection
step and ran the algorithms with the logistic loss. In thsec&BOSslightly outperforms Pegasos.
We hypothesize that the slightly faster rate @igosis due to the explicishrinkagethat FoBoS
performs in the/; update (see Eq. (7)).

In the next experiment, whose results are given in Fig. 2, elees ¢, -regularized logistic regres-
sion problems. We comparedoBos to a simple subgradient method, where the subgradient of
the A ||w||, term is simplyAsign(w)), and a fast interior point (IP) method which was designed
specifically for solving/; -regularized logistic regression [15]. On the left side igf. 2 we show the
objective function (empirical loss plus tlieregularization term) obtained by each of the algorithms
minus the optimal objective value. We again udedo training examples of dimensiot00. The
learning rate was set tg o 1/4/t. The standard subgradient method is clearly much slower tha
the other two methods even though we chose the initial sipfer which the subgradient method
converged the fastest. Furthermore, the subgradient mhetlb@snot achieve any sparsity along its
entire run. ©BOSquickly gets close to the optimal value of the objective tiot, but eventually
the specialized IP method'’s asymptotically faster cormecg causes it to surpass#0s. In order

to obtain a weight vectow, such thatf (w;) — f(w*) < 1072, FoBosworks very well, though
the IP method enjoys faster convergence rate when the wedghtr is very close to optimal solu-
tion. However, the IP algorithm was specifically designedtoimize empirical logistic loss with

¢, regularization whereasdBosenjoys a broad range of applicable settings.

The middle plotin Fig. 2 shows the sparsity levels (fracttbnon-zero weights) achieved byBOS

as a function of the number of iterations of the algorithmcliElne represents a different synthetic
experiment ag is modified to give more or less sparsity to the solution veatd. The results show
that FoBosquickly selects the sparsity pattermof, and the level of sparsity persists throughout its
execution. We found this sparsity pattern common to nookststic versions of BBoswe tested.

Mixed-norm experiments: Our experiments with mixed-norm regularizatioh (¢> and ¢, /¢..)
focus mostly on sparsity rather than on the speed of minngittie objective. Our restricted focus
is a consequence of the relative paucity of benchmark metfaydearning problems with mixed-
norm regularization. Our methods, however, as describ&km 4, are quite simple to implement,
and we believe could serve as benchmarks for other methaddvi® mixed-norm problems.

Our experiments compared multiclass classification With¢, /¢5, and ¢, /¢, regularization on
the MNIST handwritten digit database and the StatLog Lan8atellite dataset [16]. The MNIST
database consists of 60,000 training examples and a 10x@@@pée test set with 10 classes. Each
digit is a 28 x 28 gray scale image represented a%84 dimensional vector. Linear classifiers
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do not perform well on MNIST. Thus, rather than learning virtsgfor the original features, we
learn the weights for classifier with Gaussian kernels, whetdue of thej'" feature for thei'”
example ist;; = K(z;,2;) = e 21z==1" For the LandSat dataset we attempt to classify 3
neighborhoods of pixels in a satellite image as a particiylae of ground, and we expanded the
input 36 features into 1296 features by taking the produetldéatures.

In the left plot of Fig. 3, we show the test set error and rowsipain 1V as a function of training
time (number of single-example gradient calculations}tier/; -regularized multiclass logistic loss
with 720 training examples. The green lines show resultaigimg all 720 examples to calculate
the gradient, black using 20% of the examples, and blue uddg of the examples to perform
stochastic gradient. Each used the same learningrtatend the reported results are averaged
over 5 independent runs with different training data. Thghttiand figure shows a similar plot
but for MNIST with 10000 training examples arfd/¢>-regularization. The objective value in
training has a similar contour to the test loss. It is inténgsto note that very quickly, &80s
with stochastic gradient descent gets to its minimum tesdsification error, and as the training
set size increases this behavior is consistent. Howeweddterministic version increases the level
of sparsity throughout its run, while the stochastic-geatliversion has highly variable sparsity
levels and does not give solutions as sparse as the detstimcounterpart. The slowness of non-
stochastic gradient mitigates this effect for the largensia size on MNIST in the right figure, but
for longer training times, we do indeed see similar behavior

For comparison of the different regularization approachesreport in Table 1 the test error as a
function of row sparsity of the learned matfiX. For the LandSat data, we see that using the block
¢4 /¢, regularizer yields better performance for a given leveltafictural sparsity. However, on
the MNIST data the/; regularization and thé, /¢, achieve comparable performance for each level
of structural sparsity. Moreover, for a given level of stural sparsity, thé;-regularized solution
matrix W attains significantly higher overall sparsity, roughly 90%he entries of each non-zero
row are zero. The performance on the different datasetstnigicate that structural sparsity is
effective only when the set of parameters indeed exhibitnahgrouping.

% Non-zero|| ¢; Test| ¢1/¢; Test| {1/l Test|| ¢ Test| ¢1/¢ Test| ¢,/ Test
5 43 .29 40 .37 .36 A7
10 .30 .25 .30 .26 .26 31
20 .26 22 .26 .15 .15 .24
40 .22 .19 22 .08 .08 .16

Table 1: LandSat (left) and MNIST (right) classificationarversus sparsity
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Auxiliary Material
Learning using Forward Looking Subgradients

A Batch Convergence Proofs and Corollaries

Before we begin the proofs, we provide a technical lemma.

Lemma 5 (Bounding Step Differences)Assume that the norms of the subgradients of the functions
f andr are bounded as in Eq. (5):

lof(w)[I* < Af(w) + G2, [|9r(w)|* < Ar(w) + G* .

Letni1 < Myt <M and suppose thaf; < 2041 If we use thé=oBOS update of Egs. (2) and
(3), then for a constant < 4 and any vectorw™*,

21, (1 — cAny) f(wy) + 277t+%(1 - CAntJr%)T(wH-l)
<2 f(w*) + 21 (w”) + lwe — w*||* = lwepr —w*|? + T 1 G2 (12)

Proofof Lemma5 We begin with a few simple consequences of the forward-logkubgradient

steps before proceeding with the core of the proof. Note firat for someg{ € 0f(w) and
gi1 € Or(wy1), we have as in Eq. (4)

Wiy —wy = —nig — Meyi9isn - (13)

The definition of a subgradient implies that for agfy, , € Or(w;41) (and similarly for anygic €
f (wy) with f(w;) andf(w*)) implies that

r(w*) > r(wep)+{gh 1w —wep1) = — (gl Wi — w) <r(w*)—r(wig). (14)

From the Cauchy-Shwartz Inequality and Eqg. (13), we obtain

<g:+17(wt+1 _wt)> = <9§+17(—77tg{ —77t+%9§+1)>
< llgiallll r gl < gy 1 I% + nellgia gl |
= t+ 1M1 Ge1 TG Il = My 21941 MllGe+111119t
S Myl (AT(le) + GQ) + 1 max {Af(wt) +G?, Ar(wiy) + GQ} . (15)

We now proceed to bound the difference betwagnandw;,,, and using a telescoping sum we
will eventually boundf (w;) + r(w;) — f(w*) — r(w*). First, we expand norm squared of the
difference betweew, andw;, 1,

i1 —w*||* = |[w, — (mg] +n419741) — w*||?
= s = w? =2 [ (9] wi —w* )+ my (970w — w")] + Img] + ey 9t P

Jwy — w*||* — 2n, <gf, w; — w*> + gl + nes 195

=201 (9011 Wit — W) = (gL, Wi —wy)] (16)

We can bound the third term above by noting that

[ 77t+%9:+1||2

it gl 12 + 2nmeyy (gt o gben) + 02 lgia |
M Af(we) + 2400,y max {f(we), r(wern)} + 07y Ar(ween) + 497G

IN
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We now use Eq. (15) to bound the last term of Eq. (16) and theeabound omtg{ + My 1900
to get that

lwesr — w*?

< lwy —w*|* -2, <9{,'wt - 'w*> — 20,11 {gh 1 wen — w*) + [Ing] + 151970

+ 2741 (Ut+%A7”(’wt+1) + 2An; max{f(wy), r(we1)} + 277tG2)

< lwe = w* [P 2 (f(w”) = f(we)) + 21 (r(w”) —r(we)) + 777 G?
+ anf('wt) + 3A77t77t+% max { f(wy), r(wt)} + 277t2+éA7“(wt+1) a7
< lwy — w* | + PG

+ 2 (f(w”) — (1 — cAm) fwy)) + 2y 1 (T(W*) -(1- cAnH%)T(wm)) . (18)
To obtain Eq. (17) we used the standard convexity bounddlediad earlier in Eq. (14). The
final bound given by Eg. (18) is due to the fact tlﬁaAan% < 6An? and that fora,b > 0,

max{a, b} < a +b. Moving the f(-) andr(-) terms to the left hand side of the gives the desired
inequality. O

Using the above lemma, the analysis fadosin a batch setting is straightforward. In this setting
we setr), 1 = 141 and updatew, to w,; as prescribed by Eq. (2) and Eq. (3).

Proof of Theorem 1  Rearranging thef (w*) andr(w*) terms from the bound in lemma 5, we
sum the loss terms overfrom 1 throughl” and get a canceling telescoping sum:
T

DI (1= cAn) f(we) = f(w")) + o1 (1= cAnesr )r(wis) = r(w”))]

t=1

T T
< wy = w*lP = fwry —wt P+ 7G> 0 < flwy —w* P +7G?) 07 . (19)
t=1 t=1

Now we bound the one-off(w;1) terms by noting that

ténm ((1 = A )r(wiir) — r(w*))
) i” (1= cAm)r(wd) = r(w*) +nr1 (1= cAnroa)r(wen) = r(w?) + mr(w?)
: im (1= cAn)r(wigr) = r(w*) +r(w*)(m —nr+1)
> im (1 = cAny)r(wy) — r(w*)) . o0

Using the fact thafw; — w*|| = ||w*|| < D, we combine Eq. (19)) with Eq. (20) to get the desired
bound. O

Corollary 6 (Convergence of decreasing step sizésysume that the conditions of Thm. 1 hold and
the step sizes, are such thaty, — 0, and that)_;~, 7, = cc. Then

litrgior‘}ff(wt) +r(w) — (f(w*) +r(w*)) =0 .

We can give tighter convergence results when we assumg tnradr are Lipschitz or when we can
guarantee that thg f|| and||0r|| are bounded. In this case, we have

11



Corollary 7. In addition to the conditions of Thm. 1, assume that the ndremg subgradient from
0df and the norm of any subgradient fradm are bounded byz. Then

T
DS g

min wy) +r(wy)) — (f(w*) +r(w*)) < 21
e (100 +r(w00) = (Fl) rw)) € =g (21)
Corollary 8 (Optimal fixed step rate)Assume that the conditions of Cor. 7 hold and that we run
FoBosfor a predefined! iterations withn, = %. Then the following bound holds.
3DG
i + - )+ r(w*)) < —.
ie{q}}%}f(wt) r(we) = (f(w") +r(w”)) < 7T

In corollaries 7 and 8, our assumption on bounded subgrediéthe functiong’ andr is in practice
not restrictive. If we know that an optimab* lies in some closed and bounded §etind that
Q C dom(f 4+ r), then [17, Theorem 24.7] guarantees thatandor are bounded fow € 2. The
lingering question is thus whether we can guarantee th&itsset? exists and that our iterates,
remain in{). We now describe a simple setting to show th#tandor are indeed often bounded.
If r(w) is a norm andf is lower bounded by), then we know that (w*) < f(w*) + r(w*) <
f(w1) + r(wy). Using standard bounds on norms, we get that for spme0)

[w*]l oo < yr(w”) <(f(wi) +r(wi)) =7 f(wi) ,

where for the last inequality we used the assumptionsthat; ) = 0. Thus, we obtain thaw™* lies
in a hypercube. We can easily project onto this box by tringatlements otw; lying outside it
at any iteration without affecting the bounds in Eq. (21).nGetely, this follows since Euclidean
projectionll, to a convex sef with w* € Q satisfieq|Ilo(wi41) —w*|| < ||wer1 —w*||. Further,
so long aq is a norm ball, we know that

r(Ho(wiy)) < r(wer) - (22)

Thus, looking at Eq. (17) in our proof of Theorem 1 we noticagt t{w*) — r(w+1) < r(w*) —
r(Io(w:41)) and the series of inequalities through Eq. (18) still holdtwA = 0). In general,
so long as Eq. (22) holds and* € 2, we can projectv,; into Q2 without affecting convergence
guarantees.

B Online Regret Proofs and Corollaries

Proof of Theorem 3 Looking at lemma 5, we immediately see thatdff || and||0r|| are bounded
by G,
* * 1 * |12 * |12 7 2
fe(we) = fe(w”) + r(wip1) — r(w”) < o (lwe = w*||* = werr — w*|?) + 3G e (23)

Now we use Eq. (23) to obtain that

[M]=

Rpyr(T) = (fe(we) = fe(w™) +7r(we) — r(w”)) + r(wrir) — r(w*) —r(wr) + r(w”)
t=1
4 7G?
< GD+ ; zim (lw — w*|? = |werr — w*|?) + Ep M

sincer(w) < r(0) + G||w|| < GD. We can rewrite the above bound and see

11 ) 762 &
— ) Y
N Mi—1 2

T
1 * 1 *
Rf+7-(T) < GD—F%”’UM—W H2+§Z||Wt_w H2 (
t=2 t=1

D2 p2t/1 1 G2 &
T TE(L 1) o8,
2m 2 M Mi—1 2

t=2 t=1
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where we used again the bound on the distance of @adb w* for the last inequality. Lastly, we
use the fact that the sugy + Zfzz(% — —1) telescopes and get that

n Mt—1
D? TG &
Rpyr(T) < GD+ — +—3S 1
2nr 2 p
. .. . T
Settingn, = ¢/+/t and recognizing as in [7] that,_, n; < 2¢v/T concludes the proof. O

We assume as in Sec. 3 that we are minimizjitgy) + r(w). Suppose that on each step ab-F
BOS, we choose instead of song% € Jf(w;) a stochastic estimate of the gradi@{t where

E[g{] € Of (w). We assume that we still use the truéwhich is generally easy, as it is simply
the regularization function). It is straightforward to uBkeorem 3 above as in the derivation of
Theorems 2 and 3 from [14] to derive the following corollarytbe convergence rate of stochastic
FoBos

Corollary 9. Assume that the conditions éxf, dr, andw* hold as in the previous theorems and
let FoBosbe run forT iterations. Lets be an integer chosen uniformly at random fréin. .., 7T}.
_ _D
If N = m, then
2GD +4GDVT
T .

With probability at least — 8, f(ws) + r(ws) < f(w*) + r(w*) + 2GRHCDVT

E[f(ws) +r(wy)] < f(w”) +r(w”) +

C High-dimensional Efficiency

Proof of Proposition 4 It suffices to show that the proposition is correct for= 2 and then
use an inductive argument, because the proposition tgivialds for7T = 1. We provide here a
direct proof for each norm separately by examining the wgslate derived in Sec. 4 and showing
thatw, = w*.

Note that the objective functions are separablg;fer 1. Therefore, for; -regularization it suffices
to prove the proposition for any component of the veetorWe omit the index of the component
and denote byug, wy, ws, w3, ... one coordinate ofv along the iterations gP.1 and byw* the
result for the same component when solvin@. We need to show that* = w,. Expanding the
£1-update of Eq. (6) over two iterations we get the following:

wy = sign(wi) [Jwi| — A2], = sign(wy) [|sign(wo) [Jwol — /\1]+| - )\2]+

sign(wo) [Jwo| — A1 — Ao,
where we used the positivity 0f |. ExaminingP.2 and using Eq. (6) again we get
w* = sign(wo) [Jwo| — A1 — Aa] | -
Thereforew* = w, as claimed.
Next we prove the proposition fdk, returning to using the entire vector for the proof. Using th

explicit £5-update from Eq. (7), we can expand the norm of the veetpdue to the prograr®.1
as follows,

A
fall = [1- 22| ool = (ool = A, -
[lwoll | + "
Similarly, we get thaf|w.|| = [[|w: || — 2] . Combining the norm equalities we see that the norm

of ws due to the succession of the two updates is
[wall = [[lwoll =Ml = Xo], = [llwoll = A = Ao]y -
Computing directly the norm afy* due to the update given by Eq. (7) yields
AL+ Ao

| = [1} fwoll = [lwoll = M o], .
Twol |, .
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Thus,w* andwsy have the same norm. Since the update itself retains thetidineaf the original
vectorwg, we get thatw* = w- as needed.

We now turn to the most complicated update and proof of theethiorms, thé., norm. We start
by recapping the progran®.1 andP.2 for T' = 2 andq = oo,

1
Pl: wy = argmin{2|w—w0||2+)\1||w|oo} (24)
. f1 2
wy = argming ofw—wif” + A fwl (25)
w
1
P2: w* = argmin{2w—v||§+()\1—|—)\2)w||oo} . (26)
w

We prove the equivalence of the two programs in two stagest, Wie examine the cagev, ||, >

A1+ A2, and then consider the complement cgag||, < A1 + A2. For concreteness and simplicity,
we assume thaib, > 0, since, clearly, the objective is symmetricn, and —w,. We thus can
assume that all entries af, are non-negative. In the proof we use the following opegafet , now
denotes the positive component of each entry,efiin{v, #} denotes the component-wise minimum
between the elements ofandd, and likewisenax{v, 6} is the component-wise maximum. Starting
with the casd|wyl|; > A1 + A2, we examine Eq. (24). From Lagrange duality we know that that
w; = wy — ay, Wherea; is the solution of

o1
m1n7||a—w0\|§ st o[, < Ar
a 2

As described by [6] and reviewed above in Seax4,= [wg — 91]+ for somef; € R,. The form
of a; readily translates to the following form fap;: w; = wo — a1 = min(wy, #1). Applying
similar reasoning to the second steprfl yieldswy = w; — as = wy — a; — ag, Whereas is
the minimizer of

1 2 1 2
5 lle—willy =Sl = (wo —an)ll; st lall, <Az .

Again, we havers = [w; — 92]+ = [wy — a1 — 02]+ for somef, € R,. The successive steps
then imply that
wo = min{ws, 02} = min {min{wy, 01 },02} .

We next show that regardless of tlie-norm of wg, 65 < 6. Intuitively, if 6, > 6, the
second minimization step d?.1 would perform no shrinkage afv; to getw,. Formally, as-
sume for the sake of contradiction that > 6;. Under this assumption, we would have that
wo = min{min{wo, 61 },02} = min{wyp, 61} = w;. In turn, we obtain thad belongs to the
subgradient set of Eq. (25) when evaluatewat w1, thus,

0cw, —w; +)\28\\w1\\00 = )\28”11)1”00 .

Clearly, the seb ||w ||, can contairD only whenw; = 0. Since we assumed that < [|wo]|,,
and hence thaty; < wg anda; # wq, we have thatv; = wg — a1 # 0. This contradiction
implies thatd, < 6.

We now examine the solution vectors to the dual problem®df «; andas. We know that
lar]l; = A1 sothatjwo — ai||; > A2 and hencex, is at the boundarjjai ||, = A2 (See again [6]).
Furthermore, the sum of the these vectors is

a1+a2:[w0—91]++[wo—[w0—91]+—92]+. 27)

Let v denote a component ab, greater thar$);. For any such component the right hand side of
Eq. (27) amounts to

[V—(v—"01) =02, +v—0i], =[01 2], +v—01=v—0,=[v—01],  ,

where we used the fact th&t < 6, to eliminate the ternfp; — 92]+. Next, letu denote a component
of wo smaller thard, . In this case, the right hand side of Eq. (27) amoun{ate 0 — 62], +0 =
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[u — 62] , . Recapping, the end result is that the vector sumi- v, equalsw, — 6], . Moreover,
a; anday are inR’} as we assumed that, = 0, and thus

[ [wo —62], [[1 = [l + azll1 = A1+ A . (28)

We now show thaP.2 has the same dual solution as the sequential updates abluweludl ofP.2
is

1
ngniﬂa—woﬂg st [lefly < A1+ Ao

Denoting byay the solution of the above dual problem, we havé = wg — ap andagy =
[wo — 0], for somed € R,.. Examining the norm oéx, we obtain that

leolly = [[[wo — 6] ]|, = M + A2 (29)

because we assumed thaio||, > A1 + Ao. We can view the termg[w, — 6] , ||, from Eq. (28)
and||[wo — 0] ||, from Eq. (29) as functions df, andd, respectively. The functions are strictly
decreasing functions df and 6, over the interval0, |[wo||..]. Therefore, they are invertible for
0 < A1+ A2 < |Jwoll;. Sincel|[wo — 9]+H1 = ||[wo — 92]+H1, we must haved, = 6. Recall
that the solution of Eq. (26) im* = min{wy,#}, and the solution of the sequential update in-
duced by Eq. (24) and Eq. (25)isin{min{wy, 61}, 02} = min{wy, 62}. The programg.1 and
P.2 therefore result in the same veciain{wy, 62} = min{wy, #} and their induced updates are
equivalent.

We now examine the case whélm||, < A; + Ao. If the 1-norm of w, is also smaller than
A1, Jlwoll; < A1, then the dual solution for the first step 81 is a; = wy, which makes
w; = wg — &1 = 0 and hencavs, = 0. The dual solution for the combined problem is clearly
ap = wo; again,w* = wy — ap = 0. We are thus left with the casg < [|wo|; < A1 + Aa.
We straightforwardly get that the solution to Eq. (26w = 0. We now prove that the iterated
solution obtained byP.1 results in the zero vector as well. First, consider the dohlt®n a4,
which is the minimizer of|a — wol|* subject tofa||, < A;. Sincea; = [wo — 6;], for some

6, > 0, we know that each component af is between zero and its corresponding component in
wy, therefore||wo — o ||; = ||lwoll; — [lall; = |lwoll; — A1 < A2. The dual of the second step
of P.1 distills to the minimization} | — (wo — c1)||? subject tof|a||; < A2. Since we showed
that||wy — af|; < A2, we getas = wy — a;. This means thafl, = 0. Recall that the solution
of P.1is min{wy, 62}, which amounts to the zero vector whén= 0. We have thus showed that
both optimization problems result in the zero vector. Thisvps the equaivalence #f.1 andP.2

for ¢ = oc. O
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