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Abstract

We describe, analyze, and experiment with a framework for empirical loss minimization with

regularization. Our algorithmic framework alternates between two phases. On each iteration we

first perform an unconstrained gradient descent step. We then cast and solve an instantaneous

optimization problem that trades off minimization of a regularization term while keeping close

proximity to the result of the first phase. This view yields a simple yet effective algorithm that

can be used for batch penalized risk minimization and online learning. Furthermore, the two

phase approach enables sparse solutions when used in conjunction with regularization functions

that promote sparsity, such as ℓ1. We derive concrete and very simple algorithms for minimization

of loss functions with ℓ1, ℓ2, ℓ22, and ℓ∞ regularization. We also show how to construct efficient

algorithms for mixed-norm ℓ1/ℓq regularization. We further extend the algorithms and give efficient

implementations for very high-dimensional data with sparsity. We demonstrate the potential of

the proposed framework in a series of experiments with synthetic and natural datasets.

Keywords: Subgradient methods, group sparsity, online learning, convex optimization

1. Introduction

Before we begin, we establish notation for the content of this paper. We denote scalars by lower
case letters and vectors by lower case bold letters, e.g. w. The inner product of two vectors u and
v is denoted 〈u,v〉. We use ‖x‖p to denote the p-norm of the vector x and ‖x‖ as a shorthand for
‖x‖2.

The focus of this paper is an algorithmic framework for regularized convex programming to
minimize the following sum of two functions:

f(w) + r(w), (1)

where both f and r are convex bounded below functions (so without loss of generality we assume
they are into R+). Often, the function f is an empirical loss and takes the form

∑

i∈S ℓi(w) for
a sequence of loss functions ℓi : R

n → R+, and r(w) is a regularization term that penalizes for
excessively complex vectors, for instance r(w) = λ‖w‖p. This task is prevalent in machine learning,
in which a learning problem for decision and prediction problems is cast as a convex optimization
problem. To that end, we investigate a general and intuitive algorithm, known as forward-backward
splitting, to minimize Eq. (1), focusing especially on derivations for and use of non-differentiable
regularization functions.
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Many methods have been proposed to minimize general convex functions such as that in Eq. (1).
One of the most general is the subgradient method (see, e.g., Bertsekas, 1999), which is elegant and
very simple. Let ∂f(w) denote the subgradient set of f at w, namely,

∂f(w) = {g | ∀v : f(v) ≥ f(w) + 〈g,v − w〉} .

Sub-gradient procedures then minimize the function f(w) by iteratively updating the parameter
vector w according to the update rule

wt+1 = wt − ηtg
f
t , (2)

where ηt is a constant or diminishing a step size and g
f
t ∈ ∂f(wt) is an arbitrary vector from the

subgradient set of f evaluated at wt. A more general method than the above is the projected
gradient method, which iterates

wt+1 = ΠΩ

(

wt − ηtg
f
t

)

= argmin
w∈Ω

{

∥

∥

∥w − (wt − ηtg
f
t )
∥

∥

∥

2

2

}

(3)

where ΠΩ(w) is the Euclidean projection of w onto the set Ω. Standard results (Bertsekas, 1999)
show that the (projected) subgradient method converges at a rate of O(1/ε2), or equivalently that
the error f(w) − f(w⋆) = O(1/

√
T ), given some simple assumptions on the boundedness of the

subdifferential set and Ω (we have omitted constants dependent on ‖∂f‖ or dim(Ω)).
If we use the subgradient method to minimize Eq. (1), the iterates are simply wt+1 = wt −

ηtg
f
t − ηtg

r
t , where g

r
t ∈ ∂r(wt). A common problem in subgradient methods is that if r or f

is non-differentiable, the iterates of the subgradient method are very rarely at the points of non-
differentiability. In the case of regularization functions such as r(w) = ‖w‖1, however, these points
(zeros in the case of the ℓ1-norm) are often the true minima of the function. Furthermore, with
ℓ1 and similar penalties, zeros are desirable solutions as they tend to convey information about the
structure of the problem being solved, and in the case of statistical inference, can often yield the
correct sparsity structure of the parameters (Zhao and Yu, 2006; Meinshausen and Bühlmann, 2006).

There has been a significant amount of work related to minimizing Eq. (1), especially when the
function r is a sparsity-promoting regularizer, and much of it stems from the machine learning,
statistics, and optimization communities. We can hardly do justice to the body of prior work, and
we provide a few references here to the research we believe is most directly related. The approach we
pursue below is known as forward-backward splitting in the optimization literature, which is closely
related to the proximal method.

The forward-backward splitting method was first proposed by Lions and Mercier (1979) and has
been analyzed by several researches in the context of maximal monotone operators in the optimiza-
tion literature. Chen and Rockafellar (1997) and Tseng (2000) give conditions and modifications
of forward-backward splitting to attain linear convergence rates. Combettes and Wajs (2005) give
proofs of convergence for forward-backward splitting in Hilbert spaces under asymptotically negli-
gible perturbations, though without establishing strong rates of convergence. Prior work on conver-
gence of the method often requires an assumption of strong monotonicity of the maximal monotone
operators (equivalent to strong convexity of at least one of the functions in Eq. (1)), and as far as we
know, all analyses assume that f is differentiable with Lipschitz-continuous gradient. The analyses
have also been carried out in a non-stochastic and non-online setting.

More recently, Wright et al. (2009) suggested the use of the method for sparse signal reconstruc-
tion, where f(w) = ‖y − Aw‖2, though they note that the method can apply to suitably smooth
convex functions f . Nesterov (2007) gives analysis of convergence rates using gradient mapping
techniques when f has Lipschitz continuous gradient, which was inspired by Wright et al. In the
special case that r(w) = λ ‖w‖1, similar methods to the algorithms we investigate have been pro-
posed and termed iterative thresholding (Daubechies et al., 2004) or truncated gradient (Langford
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et al., 2008) in signal processing and machine learning, but the authors were apparently unaware of
the connection to splitting methods.

Similar projected-gradient methods, when the regularization function r is no longer part of the
objective function but rather cast as a constraint so that r(w) ≤ λ, are also well known (Bertsekas,
1999). In signal processing, the problem is often termed as an inverse problem with sparsity con-
straints, see for example Daubechies et al. (2008) and the references therein. Duchi et al. (2008) give
a general and efficient projected gradient method for ℓ1-constrained problems. We make use of one
of Duchi et al.’s results in obtaining an efficient algorithm for the case when r(w) = ‖w‖∞ (a setting
useful for mixed-norm regularization). There is also a body of literature on regret analysis for online
learning and online convex programming with convex constraints, which we build upon here (Zinke-
vich, 2003; Hazan et al., 2006; Shalev-Shwartz and Singer, 2007). Learning sparse models generally
is of great interest in the statistics literature, specifically in the context of consistency and recovery
of sparsity patterns through ℓ1 or mixed-norm regularization across multiple tasks (Meinshausen
and Bühlmann, 2006; Obozinski et al., 2008; Zhao et al., 2006).

In this paper, we describe a general gradient-based framework for online and batch convex pro-
gramming. To make our presentation a little simpler, we call our approach Fobos, for FOrward-
Backward Splitting.1 Our proofs are made possible through the use of “forward-looking” subgradi-
ents, and Fobos is a distillation of some the approaches mentioned above for convex programming.
Our alternative view lends itself to unified analysis and more general settings, efficient implementa-
tion, and provides a flexible tool for the derivation of algorithms for old and new convex programming
settings.

The paper is organized as follows. In the next section, we begin by introducing and formally
defining the method, giving some simple preliminary analysis. We follow the introduction by giving in
Sec. 3 rates of convergence for batch (offline) optimization. We then extend the results to stochastic
gradient descent and provide regret bounds for online convex programming in Sec. 4. To demonstrate
the simplicity and usefulness of the framework, we derive in Sec. 5 algorithms for several different
choices of the regularizing function r, though most of these results are known. We then extend these
methods to be efficient in very high dimensional learning settings where the input data is sparse in
Sec. 6. Finally, we conclude in Sec. 7 with experiments examining various aspects of the proposed
framework, in particular the runtime and sparsity selection performance of the derived algorithms.

2. Forward-Looking Subgradients and Forward-Backward Splitting

Our approach to Forward-Backward Splitting is motivated by the desire to have the iterates wt

attain points of non-differentiability of the function r. The method alleviates the problems of non-
differentiability in cases such as ℓ1-regularization by taking analytical minimization steps interleaved
with subgradient steps. Put informally, Fobos can be viewed as analogous to the projected subgra-
dient method while replacing or augmenting the projection step with an instantaneous minimization
problem for which it is possible to derive a closed form solution. Fobos is succinct as each iteration
consists of the following two steps:

wt+ 1
2

= wt − ηtg
f
t (4)

wt+1 = argmin
w

{

1

2

∥

∥

∥w − wt+ 1
2

∥

∥

∥

2

+ ηt+ 1
2

r(w)

}

. (5)

In the above, g
f
t is a vector in ∂f(wt) and ηt is the step size at time step t of the algorithm. The

actual value of ηt depends on the specific setting and analysis. The first step thus simply amounts
to an unconstrained subgradient step with respect to the function f . In the second step we find a

1. An earlier draft of this paper referred to our algorithm as Folos, for FOrward LOoking Subgradients. In order

not to confuse readers of the early draft, we attempt to stay close to the earlier name and use the acronym Fobos

rather than Fobas.
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new vector that interpolates between two goals: (i) stay close to the interim vector wt+ 1
2
, and (ii)

attain a low complexity value as expressed by r. Note that the regularization function is scaled by
an interim step size, denoted ηt+ 1

2
. The analyses we describe in the sequel determine the specific

value of ηt+ 1
2
, which is either ηt or ηt+1.

A key property of the solution of Eq. (5) is the necessary condition for optimality and gives the
reason behind the name Fobos. Namely, the zero vector must belong to subgradient set of the
objective at the optimum wt+1, that is,

0 ∈ ∂

{

1

2

∥

∥

∥w − wt+ 1
2

∥

∥

∥

2

+ ηt+ 1
2

r(w)

}∣

∣

∣

∣

w=wt+1

.

Since wt+ 1
2

= wt − ηtg
f
t , the above property amounts to

0 ∈ wt+1 − wt + ηtg
f
t + ηt+ 1

2
∂r(wt+1). (6)

The property 0 ∈ wt+1 − wt + ηtg
f
t + ηt+ 1

2
∂r(wt+1) implies that so long as we choose wt+1 to be

the minimizer of Eq. (5), we are guaranteed to obtain a vector g
r
t+1 ∈ ∂r(wt+1) such that

0 = wt+1 − wt + ηtg
f
t + ηt+ 1

2
g

r
t+1 .

The above equation can be understood as an update scheme where the new weight vector wt+1 is a
linear combination of the previous weight vector wt, a vector from the subgradient set of f evaluated
at wt, and a vector from the subgradient of r evaluated at the yet to be determined wt+1, hence
the name Forward-Looking Subgradient. To recap, we can write wt+1 as

wt+1 = wt − ηt g
f
t − ηt+ 1

2
g

r
t+1, (7)

where g
f
t ∈ ∂f(wt) and g

r
t+1 ∈ ∂r(wt+1). Solving Eq. (5) with r above has two main benefits. First,

from an algorithmic standpoint, it enables sparse solutions at virtually no additional computational
cost. Second, the forward-looking gradient allows us to build on existing analyses and show that the
resulting framework enjoys the formal convergence properties of many existing gradient-based and
online convex programming algorithms.

3. Convergence Analysis of Fobos

Upon first look Fobos looks substantially different from sub-gradient and online convex program-
ming methods. However, the fact that Fobos actually employs a forward-looking subgradient of the
regularization function lets us build nicely on exisiting analyses. In this section we modify known
results while using the forward-looking property of Fobos to provide convergence rate analysis for
Fobos. To do so we will set ηt+ 1

2
properly. As we show in the sequel, it is sufficient to set ηt+ 1

2

to ηt or ηt+1, depending on whether we are doing online or batch optimization, in order to obtain
convergence and low regret bounds. We start with an analysis of Fobos in a batch setting. In this
setting we use the subgradient of f , set ηt+ 1

2
= ηt+1 and update wt to wt+1 as prescribed by Eq. (4)

and Eq. (5).
Throughout the section we denote by w

⋆ the minimizer of f(w) + r(w). In what follows, define
‖∂f(w)‖ , sup

g∈∂f(w) ‖g‖. We begin by deriving convergence results under the fairly general as-
sumption (see, e.g., Langford et al., 2008 or Shalev-Shwartz and Tewari, 2009) that the subgradients
are bounded as follows:

‖∂f(w)‖2 ≤ Af(w) + G2, ‖∂r(w)‖2 ≤ Ar(w) + G2 . (8)

For example, any Lipschitz loss (such as the logistic loss or hinge loss used in support vector ma-
chines) satisfies the above with A = 0 and G equal to the Lipschitz constant. Least squares estimation
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satisfies Eq. (8) with G = 0 and A = 4. The next lemma, while technical, provides a key tool for
deriving all of the convergence results in this paper.

Lemma 1 (Bounding Step Differences) Assume that the norms of the subgradients of the func-
tions f and r are bounded as in Eq. (8):

‖∂f(w)‖2 ≤ Af(w) + G2, ‖∂r(w)‖2 ≤ Ar(w) + G2 .

Let ηt+1 ≤ ηt+ 1
2
≤ ηt and suppose that ηt ≤ 2ηt+ 1

2
. If we use the Fobos update of Eqs. (4) and (5),

then for a constant c ≤ 4 and any vector w
⋆,

2ηt(1 − cAηt)f(wt) + 2ηt+ 1
2
(1 − cAηt+ 1

2
)r(wt+1)

≤ 2ηtf(w⋆) + 2ηt+ 1
2
r(w⋆) + ‖wt − w

⋆‖2 − ‖wt+1 − w
⋆‖2 + 7ηtηt+ 1

2
G2 . (9)

Proof We begin with a few simple properties of the forward-looking subgradient steps before
proceeding with the core of the proof. Note first that for some g

f
t ∈ ∂f(wt) and g

r
t+1 ∈ ∂r(wt+1),

we have as in Eq. (7)

wt+1 − wt = −ηtg
f
t − ηt+ 1

2
g

r
t+1 . (10)

The definition of a subgradient implies that for any g
r
t+1 ∈ ∂r(wt+1) (and similarly for any g

f
t ∈

∂f(wt) with f(wt) and f(w⋆))

r(w⋆) ≥ r(wt+1) +
〈

g
r
t+1,w

⋆ − wt+1

〉

⇒ −
〈

g
r
t+1,wt+1 − w

⋆
〉

≤ r(w⋆) − r(wt+1). (11)

From the Cauchy-Shwartz Inequality and Eq. (10), we obtain

〈

g
r
t+1, (wt+1 − wt)

〉

=
〈

g
r
t+1, (−ηtg

f
t − ηt+ 1

2
g

r
t+1)

〉

≤ ‖gr
t+1‖‖ηt+ 1

2
g

r
t+1 + ηtg

f
t ‖ ≤ ηt+ 1

2
‖gr

t+1‖2 + ηt‖gr
t+1‖‖gf

t ‖
≤ ηt+ 1

2

(

Ar(wt+1) + G2
)

+ ηt

(

Amax {f(wt), r(wt+1)} + G2
)

. (12)

We now proceed to bound the difference between w
⋆ and wt+1, and using a telescoping sum we will

eventually bound f(wt) + r(wt) − f(w⋆) − r(w⋆). First, we expand norm squared of the difference
between wt and wt+1,

‖wt+1 − w
⋆‖2 = ‖wt − (ηtg

f
t + ηt+ 1

2
g

r
t+1) − w

⋆‖2

= ‖wt − w
⋆‖2 − 2

[

ηt

〈

g
f
t ,wt − w

⋆
〉

+ ηt+ 1
2

〈

g
r
t+1,wt − w

⋆
〉

]

+ ‖ηtg
f
t + ηt+ 1

2
g

r
t+1‖2

= ‖wt − w
⋆‖2 − 2ηt

〈

g
f
t ,wt − w

⋆
〉

+ ‖ηtg
f
t + ηt+ 1

2
g

r
t+1‖2

−2ηt+ 1
2

[〈

g
r
t+1,wt+1 − w

⋆
〉

−
〈

g
r
t+1,wt+1 − wt

〉]

. (13)

We can bound the third term above by noting that

‖ηtg
f
t + ηt+ 1

2
g

r
t+1‖2

= η2
t ‖gf

t ‖2 + 2ηtηt+ 1
2

〈

g
f
t , gr

t+1

〉

+ η2
t+ 1

2
‖gr

t+1‖2

≤ η2
t Af(wt) + 2ηtηt+ 1

2
A max {f(wt), r(wt+1)} + η2

t+ 1
2

Ar(wt+1) + 4η2
t G2 .
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We now use Eq. (12) to bound the last term of Eq. (13) and the above bound on ηtg
f
t + ηt+ 1

2
g

r
t+1

to get that

‖wt+1 − w
⋆‖2

≤ ‖wt − w
⋆‖2 − 2ηt

〈

g
f
t ,wt − w

⋆
〉

− 2ηt+ 1
2

〈

g
r
t+1,wt+1 − w

⋆
〉

+ ‖ηtg
f
t + ηt+ 1

2
g

r
t+1‖2

+ 2ηt+ 1
2

(

ηt+ 1
2

Ar(wt+1) + 2ηt A max{f(wt), r(wt+1)} + 2ηtG
2
)

≤ ‖wt − w
⋆‖2 + 2ηt (f(w⋆) − f(wt)) + 2ηt+ 1

2
(r(w⋆) − r(wt)) + 7η2

t G2

+ η2
t Af(wt) + 3ηtηt+ 1

2
A max {f(wt), r(wt)} + 2η2

t+ 1
2

Ar(wt+1) (14)

≤ ‖wt − w
⋆‖2 + 7η2

t G2

+ 2ηt (f(w⋆) − (1 − cηtA)f(wt)) + 2ηt+ 1
2

(

r(w⋆) − (1 − cηt+ 1
2
A)r(wt+1)

)

. (15)

To obtain Eq. (14) we used the standard convexity bounds established earlier in Eq. (11). The
final bound given by Eq. (15) is due to the fact that 3Aηtηt+ 1

2
≤ 6Aη2

t and that for any a, b ≥ 0,

max{a, b} ≤ a + b. Rearranging the terms f(·) and r(·) yields the desired inequality.

The lemma allows a proof of the following theorem, which constitutes the basis for deriving
concrete convergence results for Fobos. It is also demonstrates the ease of proving convergence
results based on the lemma and the forward looking property.

Theorem 2 Assume the following hold: (i) the norm of any subgradient from ∂f and the norm of
any subgradient from ∂r are bounded as in Eq. (8), (ii) the norm of w

⋆ is less than or equal to D,
(iii) r(0) = 0, and (iv) 1

2ηt ≤ ηt+1 ≤ ηt. Then for a constant c ≤ 4 with w1 = 0 and ηt+ 1
2

= ηt+1,

T
∑

t=1

[ηt ((1 − cAηt)f(wt) − f(w⋆)) + ηt ((1 − cAηt)r(wt) − r(w⋆))] ≤ D2 + 7G2
T
∑

t=1

η2
t .

Proof Rearranging the f(w⋆) and r(w⋆) terms from the bound in Lemma 1, we sum the loss terms
over t from 1 through T and get a canceling telescoping sum:

T
∑

t=1

[ηt ((1 − cAηt)f(wt) − f(w⋆)) + ηt+1 ((1 − cAηt+1)r(wt+1) − r(w⋆))]

≤ ‖w1 − w
⋆‖2 − ‖wT+1 − w

⋆‖2 + 7G2
T
∑

t=1

η2
t ≤ ‖w1 − w

⋆‖2 + 7G2
T
∑

t=1

η2
t . (16)

We now bound the time-shifted r(wt+1) terms by noting that

T
∑

t=1

ηt+1 ((1 − cAηt+1)r(wt+1) − r(w⋆))

=

T
∑

t=1

ηt ((1 − cAηt)r(wt) − r(w⋆)) + ηT+1 ((1 − cAηT+1)r(wt+1) − r(w⋆)) + η1r(w
⋆)

≥
T
∑

t=1

ηt ((1 − cAηt)r(wt+1) − r(w⋆)) + r(w⋆)(η1 − ηT+1)

≥
T
∑

t=1

ηt ((1 − cAηt)r(wt) − r(w⋆)) . (17)
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Finally, we use the fact that ‖w1 −w
⋆‖ = ‖w⋆‖ ≤ D, along with with Eq. (16)) and Eq. (17) to get

the desired bound.

In the remainder of this section, we present a few corollaries that are consequences of the theorem.
The first corollary underscores that the rate of convergence in general is approximately 1/ε2, or,
equivalently, 1/

√
T .

Corollary 3 (Fixed step rate) Assume that the conditions of Thm. 2 hold and that we run Fobos

for a predefined T iterations with ηt = D√
7TG

and that (1 − cA D√
7TG

) > 0. Then

min
t∈{1,...,T}

f(wt) + r(wt) ≤
1

T

T
∑

t=1

f(wt) + r(wt) ≤
3DG

√
T
(

1 − cAD
G
√

7T

) +
f(w⋆) + r(w⋆)

1 − cAD
G
√

7T

Proof Since we have ηt = η for all t, the bound on the convergence rate from Thm. 2 becomes

η(1 − cAη)T min
t∈{1,...,T}

[f(wt) + r(wt) − f(w⋆) − r(w⋆)]

≤ η(1 − cAη)

T
∑

t=1

[f(wt) − f(w⋆)] + [r(wt) − r(w⋆)] ≤ D2 + 7G2Tη2 .

Plugging in the specified value for η gives the bound.

Another direct consequence of Thm. 2 is convergence of the minimum over t when running Fobos

with ηt ∝ 1/
√

t or with non-summable step sizes decreasing to zero.

Corollary 4 (Convergence of decreasing step sizes) Assume that the conditions of Thm. 2
hold and the step sizes ηt satisfy ηt → 0 and

∑∞
t=1 ηt = ∞. Then

lim inf
t→∞

f(wt) + r(wt) − (f(w⋆) + r(w⋆)) = 0.

Finally, when f and r are Lipschitz with Lipschitz constant G, we immediately have

Corollary 5 In addition to the conditions of Thm. 2, assume that the norm of any subgradient from
∂f and the norm of any subgradient from ∂r are bounded by G. Then

min
t∈{1,...,T}

(f(wt) + r(wt)) − (f(w⋆) + r(w⋆)) ≤ D2 + 7G2
∑T

t=1 η2
t

2
∑T

t=1 ηt

. (18)

Bounds of the above form, where we obtain convergence for one of the points in the sequence
w1, . . . ,wT rather than the last point wT , are standard in subgradient optimization. The main
reason that this weaker result occurs is due to the fact that we cannot guarantee a strict descent
direction when using arbitrary subgradients (see, for example, Theorem 3.2.2 from Nesterov, 2004).
Another consequence of using non-differentiable functions means that analyses such as those carried
out by Tseng (2000) and Chen and Rockafellar (1997) are difficult to apply, as the stronger rates
rely on the existence and Lipschitz continuity of ∇f(w). However, it is possible to show linear
convergence rates under suitable smoothness and strong convexity assumptions. When ∇f(w) is
Lipschitz continuous, a more detailed analysis yields convergence rates of 1/ε (namely, 1/T in terms
of number of iterations needed to be ǫ close to the optimum). A more complicated algorithm related
to Nesterov’s “estimate functions” (Nesterov, 2004) leads to O(1/

√
ε) convergence (Nesterov, 2007).

For completeness, we give a simple proof of 1/T convergence in Appendix C. Finally, the above
proof can be modified slightly to give convergence of the stochastic gradient method. In particular,
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we can replace g
f
t in the iterates of Fobos with a stochastic estimate of the gradient g̃

f
t , where

E[g̃f
t ] ∈ ∂f(wt). We explore this approach in slightly more depth after performing a regret analysis

for Fobos below in Sec. 4 and describe stochastic convergence rates in Corollary 10.
We would like to make further comments on our proof of convergence for Fobos and the as-

sumptions underlying the proof. It is often not necessary to have a Lipschitz loss to guarantee
boundedness of the subgradients of f and r, so in practice an assumption of bounded subgradients
(as in Corollary 5 and in the sequel for online analysis) is not restrictive. If we know that an optimal
w

⋆ lies in some compact set Ω and that Ω ⊆ dom(f + r), then Theorem 24.7 of Rockafellar (1970)
guarantees that ∂f and ∂r are bounded. The lingering question is thus whether we can guarantee
that such a set Ω exists and that our iterates wt remain in Ω. The following simple setting shows
that ∂f and ∂r are indeed often bounded.

If r(w) is a norm (possibly scaled) and f is lower bounded by 0, then we know that r(w⋆) ≤
f(w⋆) + r(w⋆) ≤ f(w1) + r(w1). Using standard bounds on norms, we get that for some γ > 0

‖w⋆‖∞ ≤ γr(w⋆) ≤ γ(f(w1) + r(w1)) = γf(w1) ,

where for the last inequality we used the assumption that r(w1) = 0. Thus, we obtain that w
⋆ lies

in a hypercube. We can easily project onto this box by truncating elements of wt lying outside it
at any iteration without affecting the bounds in Eq. (15) or Eq. (18). This additional Euclidean
projection ΠΩ to an arbitrary convex set Ω with w

⋆ ∈ Ω satisfies ‖ΠΩ(wt+1)−w
⋆‖ ≤ ‖wt+1 −w

⋆‖.
Furthermore, so long as Ω is an ℓp-norm ball, we know that

r(ΠΩ(wt+1)) ≤ r(wt+1) . (19)

Thus, looking at Eq. (14), we notice that r(w⋆)− r(wt+1) ≤ r(w⋆)− r(ΠΩ(wt+1)) and the series of
inequalities through Eq. (15) still hold (so long as cηt+ 1

2
A ≤ 1, which it will if Ω is compact so that

we can take A = 0). In general, so long as Eq. (19) holds and w
⋆ ∈ Ω, we can project wt+1 into Ω

without affecting convergence guarantees. This property proves to be helpful in the regret analysis
below.

4. Regret Analysis of Fobos

In this section we provide regret analysis for Fobos in online settings. In an online learning problem,
we are given a sequence of functions ft : R

n → R. The learning goal is for the sequence of predictions
wt to attain low regret when compared to a single optimal predictor w

⋆. Formally, let ft(w) denote
the loss suffered on the tth input loss function when using a predictor w. The regret of an online
algorithm which uses w1, . . . ,wt, . . . as its predictors w.r.t. a fixed predictor w

⋆ while using a
regularization function r is

Rf+r(T ) =

T
∑

t=1

[ft(wt) + r(wt) − (ft(w
⋆) + r(w⋆))] .

Ideally, we would like to achieve 0 regret to a stationary w
⋆ for arbitrary length sequences.

To achieve an online bound for a sequence of convex functions ft, we modify arguments of Zinke-
vich (2003). Using the bound from Lemma 1, we can readily state and prove a theorem on the online
regret of Fobos. It is possible to avoid the boundedness assumptions in the proof of the theorem
(getting a bound similar to that of Theorem 2 but for regret), however, we do not find it significantly
more interesting. Aside from its reliance on Lemma 1, this proof is quite similar to Zinkevich’s, so
we defer it to Appendix A.

Theorem 6 Assume that ‖wt − w
⋆‖ ≤ D for all iterations and the norm of the subgradient sets

∂ft and ∂r are bounded above by G. Let c > 0 an arbitrary scalar. Then, the regret bound of Fobos

8
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with ηt = c/
√

t satisfies

Rf+r(T ) ≤ 2GD +

(

D2

2c
+ 7G2c

)√
T .

The following Corollary is immediate from Theorem 6.

Corollary 7 Assume the conditions of Theorem 6 hold. Then, setting ηt = D
4G

√
t
, the regret of

Fobos is
Rf+r(T ) ≤ 2GD + 4GD

√
T .

We can also obtain a better regret bound for Fobos when the sequence of loss functions ft(·)
or the function r(·) is strongly convex. As demonstrated by Hazan et al. (2006), with the projected
gradient method and strongly convex functions, it is possible to achieve regret on the order of
O(log T ) by using the curvature of the sequence of functions ft rather than simply using convexity
and linearity as in Theorems 2 and 6. We can extend these results to Fobos for the case in which
ft(w) + r(w) is strongly convex, at least over the domain ‖w − w

⋆‖ ≤ D. For completeness, we
recap a few definitions and provide the logarithmic regret bound for Fobos. A function f is called
H-strongly convex if

f(w) ≥ f(wt) + 〈∇f(wt),w − wt〉 +
H

2
‖w − wt‖2.

Thus, if r and the sequence of functions ft are strongly convex with constants Hf ≥ 0 and Hr ≥ 0,
we have H = Hf + Hr and H-strong convexity gives

ft(wt) − f(w⋆) + r(wt) − r(w⋆) ≤
〈

g
f
t + g

r
t ,wt − w

⋆
〉

− H

2
‖wt − w

⋆‖2 . (20)

We do not need to assume that both ft and r are strongly convex. We only need assume that at
least one of them attains a positive strong convexity constant. For example, if r(w) = λ

2 ‖w‖2, then
H ≥ λ so long as the functions ft are convex. With Eq. (20) in mind, we can readily build on Hazan
et al. (2006) and prove a stronger regret bound for the online learning case. The proof is similar to
that of Hazan et al., so we defer it also to Appendix A.

Theorem 8 Assume as in Theorem 6 that ‖wt−w
⋆‖ ≤ D and that ∂ft and ∂r are bounded above by

G. Assume further that ft +r is H-strongly convex for all t. Then, when using step sizes ηt = 1/Ht,
the regret of Fobos is

Rf+r(T ) = O

(

G2

H
log T

)

.

We now provide an easy lemma showing that for Lipschitz losses with ℓ22 regularization, the bound-
edness assumptions above hold. This, for example, includes the interesting case of support vector
machines. The proof is not difficult but relies tacitly on a later result, so we leave it to Appendix A.

Lemma 9 Let the functions ft be G-Lipschitz so that ‖∂ft(w)‖ ≤ G. Let r(w) = λ
2 ‖w‖2. Then

‖w⋆‖ ≤ G/λ and the iterates wt generated by Fobos satisfy ‖wt‖ ≤ G/λ.

Using the regret analysis for online learning, we are able to return to learning in a batch setting
and give stochastic convergence rates for Fobos. We build on results of Shalev-Shwartz et al. (2007)
and assume as in Sec. 3 that we are minimizing f(w) + r(w). Indeed, suppose that on each step

of Fobos, we choose instead of some g
f
t ∈ ∂f(wt) a stochastic estimate of the gradient g̃

f
t where

9
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E[g̃f
t ] ∈ ∂f(wt). We assume that we still use the true r (which is generally easy, as it is simply the

regularization function). It is straightforward to use theorems 6 and 8 above as in the derivation of
theorems 2 and 3 from Shalev-Shwartz et al. (2007) to derive the following corollary on the expected
convergence rate of Fobos as well as a guarantee of convergence with high probability.

Corollary 10 Assume that the conditions on ∂f , ∂r, and w
⋆ hold as in the previous theorems and

let Fobos be run for T iterations. Let s be an integer chosen uniformly at random from {1, . . . , T}.
If ηt = D

4G
√

t
, then

Es[f(ws) + r(ws)] ≤ f(w⋆) + r(w⋆) +
2GD + 4GD

√
T

T
.

With probability at least 1 − δ,

f(ws) + r(ws) ≤ f(w⋆) + r(w⋆) +
2GD + 4GD

√
T

δT
.

If f + r is H-strongly convex and we choose ηt ∝ 1/t, we have

Es[f(ws) + r(ws)] = f(w⋆) + r(w⋆) + O

(

G2 log T

HT

)

and with probability at least 1 − δ,

f(ws) + r(ws) = f(w⋆) + r(w⋆) + O

(

G2 log T

HδT

)

.

5. Derived Algorithms

In this section we derive a few variants of Fobos by considering different regularization functions.
The emphasis of the section is on non-differentiable regularization functions, such as the ℓ1 norm of w,
which lead to sparse solutions. We also derive simple extensions to mixed-norm regularization (Zhao
et al., 2006) that build on the first part of this section.

First, we make a few changes to notation. To simplify our derivations, we denote by v the vector
wt+ 1

2
= wt − ηtg

f
t and let λ̃ denote ηt+ 1

2
· λ. Using this newly introduced notation the problem

given in Eq. (5) can be rewritten as

minimize
w

1

2
‖w − v‖2 + λ̃ r(w). (21)

Let [z]+ denote max {0, z}. For completeness, we provide full derivations for all the regularization
functions we consider, but for brevity we do not state formally well established technical lemmas.
We note that many of the following results were given tacitly by Wright et al. (2009).

5.1 Fobos with ℓ1 regularization

The update obtained by choosing r(w) = λ ‖w‖1 is simple and intuitive. First note that the objective
is decomposable as we can rewrite Eq. (21) as

minimize
w

n
∑

j=1

(

1

2
(wj − vj)

2 + λ̃|wj |
)

.

Let us focus on a single coordinate of w and for brevity omit the index j. Let w⋆ denote the
minimizer of 1

2 (w − v)2 + λ̃|w|. Clearly, w⋆ · v ≥ 0. If it were not, then we would have w⋆ · v < 0,

10
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however 1
2v2 < 1

2v2−w⋆ ·v + 1
2 (w⋆)2 < 1

2 (v−w⋆)2 + λ̃|w⋆|, contradicting the supposed optimality of
w⋆. The symmetry of the objective in v also shows us that we can assume that v ≥ 0; we therefore
need to minimize 1

2 (w − v)2 + λ̃w subject to the constraint that w ≥ 0. Introducing a Lagrange

multiplier β ≥ 0 for the constraint, we have the Lagrangian 1
2 (w − v)2 + λ̃w − βw. By taking the

derivative of the Langrangian with respect to w and setting the result to zero, we get that the
optimal solution is w⋆ = v− λ̃+β. If w⋆ > 0, then from the complimentary slackness condition that
the optimal pair of w⋆ and β must have w⋆β = 0 (Boyd and Vandenberghe, 2004) we must have
β = 0, and therefore w⋆ = v − λ̃. If v < λ̃, then v − λ̃ < 0, so we must have β > 0 and again by
complimentary slackness, w⋆ = 0. The case when v ≤ 0 is analogous and amounts to simply flipping
signs. Summarizing and expanding notation, the components of the optimal solution w

⋆ = wt+1

are computed from wt+ 1
2

as

wt+1,j = sign
(

wt+ 1
2 ,j

) [

|wt+ 1
2 ,j | − λ̃

]

+
= sign

(

wt,j − ηtg
f
t,j

) [∣

∣

∣wt,j − ηtg
f
t,j

∣

∣

∣− ηt+ 1
2
· λ
]

+
. (22)

Note that this update can lead to sparse solutions. Whenever the absolute value of a component of
wt+ 1

2
is smaller than λ̃, the corresponding component in wt+1 is set to zero. Thus, Eq. (22) gives a

simple online and offline method for minimizing a convex f with ℓ1 regularization.
Such soft-thresholding operations are common in the statistics literature and have been used

for some time (Donoho, 1995; Daubechies et al., 2004). Langford et al. (2008) recently proposed
and analyzed the same update, terming it the “truncated gradient.” The analysis presented here is
different from the analysis in the aforementioned paper as it stems from a more general framework.
Indeed, as illustrated in this section, the derivation and method is also applicable to a wide variety
of regularization functions. Nevertheless, both analyses merit consideration as they shed light from
different angles on the problem of learning sparse models using gradients, stochastic gradients, or
online methods. This update can also be implemented very efficiently when the support of g

f
t is

small (Langford et al., 2008), but we defer details to Sec. 6, where we give a unified view that
facilitates efficient implementation for all the norm regularization functions we discuss.

5.2 Fobos with ℓ22 regularization

When r(w) = λ
2 ‖w‖2

2, we obtain a very simple optimization problem,

minimize
w

1

2
‖w − v‖2 +

1

2
λ̃‖w‖2,

where for conciseness of the solution we replace λ̃ with 1
2 λ̃. Differentiating the above objective and

setting the result equal to zero, we have w
⋆−v+ λ̃w

⋆ = 0, which, using the original notation, yields
the update

wt+1 =
wt − ηtg

f
t

1 + λ̃
. (23)

Informally, the update simply shrinks wt+1 back toward the origin after each gradient-descent step.
In Sec. 7 we briefly compare the resulting Fobos update to modern stochastic gradient techniques
and show that the Fobos update exhibits similar empirical behavior.

5.3 Fobos with ℓ2 regularization

A lesser used regularization function is the ℓ2 norm of the weight vector. By setting r(w) = λ̃‖w‖
we obtain the following problem,

minimize
w

1

2
‖w − v‖2 + λ̃‖w‖. (24)

11
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The solution of Eq. (24) must be in the direction of v and takes the form w
⋆ = sv where s ≥ 0. To

show that this is indeed the form of the solution, let us assume for the sake of contradiction that
w

⋆ = sv + u where u is in the null space of v (if u has any components parallel to v, we can add
those to sv and obtain an orthogonal u

′) and s may be negative. Since u is orthogonal to v, the
objective function can be expressed in terms of s, v, and u as

1

2
(1 − s)2‖v‖2 +

1

2
‖u‖2 + λ̃(‖v‖ + ‖u‖) ≥ 1

2
(1 − s)2‖v‖2 + λ̃‖v‖.

Thus, u must be equal to the zero vector, u = 0, and we can write the optimization problem as

minimize
s

1

2
(1 − s)2‖v‖2 + λ̃s‖v‖ . (25)

Next note that a negative value for s cannot constitute the optimal solution. Indeed, if s < 0, then

1

2
(1 − s)2‖v‖2 + λ̃s‖v‖ <

1

2
‖v‖2 .

This implies that by setting s = 0 we can obtain a lower objective function, and this precludes
a negative value for s as an optimal solution. We therefore end again with a constrained scalar
optimization problem, minimizes≥0

1
2 (1 − s)2‖v‖2 + λ̃s‖v‖. The Lagrangian of this problem is

1

2
(1 − s)2‖v‖2 + λ̃s‖v‖ − βs ,

where β ≥ 0. By taking the derivative of the Langrangian with respect to s and setting the result
to zero, we get that (s − 1)‖v‖2 + λ̃‖v‖ − β = 0 which gives the following closed form solution:
s = 1 − λ̃/‖v‖ + β/‖v‖2. Whenever s > 0 then the complimentary slackness conditions imply that
β = 0 and s can be further simplified and written as s = 1 − λ̃/‖v‖. The last expression is positive
iff ‖v‖ > λ̃. If ‖v‖ < λ̃, then β must be positive and complimentary slackness implies that s = 0.

Summarizing, the second step of the Fobos update with ℓ2 regularization amounts to

wt+1 =

[

1 − λ̃

‖wt+ 1
2
‖

]

+

wt+ 1
2

=

[

1 − λ̃

‖wt − ηtg
f
t ‖

]

+

(wt − ηtg
f
t ) .

Thus, the ℓ2 regularization results in a zero weight vector under the condition that ‖wt−ηtg
f
t ‖ ≤ λ̃.

This condition is rather more stringent for sparsity than the condition for ℓ1 (where a weight is
sparse based only on its value, while here, sparsity happens only if the entire weight vector has
ℓ2-norm less than λ̃), so it is unlikely to hold in high dimensions. However, it does constitute a very
important building block when using a mixed ℓ1/ℓ2-norm as the regularization function, as we show
in the sequel.

5.4 Fobos with ℓ∞ regularization

We now turn to a less explored regularization function, the ℓ∞ norm of w. This form of regularization
is not capable of providing strong guarantees against over-fitting on its own as many of the weights
of w may not be penalized. However, there are settings in which it is desirable to consider blocks of
variables as a group, such as ℓ1/ℓ∞ regularization. We continue to defer the discussion on mixing
different norms and focus merely on the ℓ∞ norm as it serves as a building block. That is, we are
interested in obtaining an efficient solution to the following problem,

minimize
w

1

2
‖w − v‖2 + λ̃ ‖w‖∞ . (26)

12
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It is possible to derive an efficient algorithm for finding the minimizer of Eq. (26) using properties
of the subgradient set of ‖w‖∞. However, a solution to the dual form of Eq. (26) is well established.
Recalling that the conjugate of the quadratic function is a quadratic function and the conjugate of
the ℓ∞ norm is the ℓ1 barrier function, we immediately obtain that the dual of the problem given
by Eq. (26) is

maximize
α

−1

2
‖α − v‖2

2 s.t. ‖α‖1 ≤ λ̃ . (27)

Moreover, the vector of dual variables α satisfies the relation α = v −w. Thus, by solving the dual
form in Eq. (27) we can readily obtain a solution for Eq. (26). The problem defined by Eq. (27) is
equivalent to performing Euclidean projection onto the ℓ1 ball and has been studied by numerous
authors. The solution that we overview here is based on recent work of Duchi et al. (2008). The
maximizer of Eq. (27), denoted α

⋆, is of the form

α⋆
j = sign(vj) [|vj | − θ]+ , (28)

where θ is a non-negative scalar. Duchi et al. (2008) describe a linear time algorithm for finding θ.
We thus skip the analysis of the algorithm and focus on its core properties that affect the solution
of the original problem Eq. (26). To find θ we need to locate a pivot element in v, denoted by the
ρth order statistic v(ρ) (where v(1) is the largest magnitude entry of v), with the following property,
v(ρ) is the smallest magnitude element in v such that

∑

j:|vj |>|v(ρ)|

(

|vj | − |v(ρ)|
)

< λ̃ .

If all the elements in v (assuming that we have added an extra 0 element to handle the smallest
entry of v) satisfy the above requirement then the optimal choice for θ is 0. Otherwise,

θ =
1

ρ





∑

j:|vj |>|v(ρ)|
|vj | − λ̃



 .

Thus, the optimal choice of θ is zero when
∑n

j=1 |vj | ≤ λ̃ (this is, not coincidentally, simply the
subgradient condition for optimality of the zero vector in Eq. (26)).

Using the linear relationship α = v − w ⇒ w = v − α along with the solution of the dual
problem as given by Eq. (28), we obtain the following solution for Eq. (26),

wt+1,j = sign
(

wt+ 1
2 ,j

)

min
{∣

∣

∣
wt+ 1

2 ,j

∣

∣

∣
, θ
}

. (29)

As stated above, θ = 0 iff ‖wt+ 1
2
‖1 ≤ λ̃ and otherwise θ > 0 and can be found in O(n) steps. In

words, the components of the vector wt+1 are the result of capping all of the components of wt at
θ where θ is zero when the 1-norm of wt+ 1

2
is smaller than λ̃. Interestingly, this property shares

a duality resemblance with the ℓ2-regularized update, which results in a zero weight vector when
the 2-norm (which is self-dual) of v is less than λ̃. We can exploit these properties in the context
of mixed-norm regularization to achieve sparse solutions for complex prediction problems, which we
describe in the sequel and for which we present preliminary results in Sec. 7. Before doing so, we
present one more norm-related regularization.

5.5 Fobos with Berhu regularization

We now consider a regularization function which is a hybrid of the ℓ1 and ℓ2 norms. Similar to ℓ1 reg-
ularization, Berhu (for inverse Huber) regularization results in sparse solutions, but its hybridization
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with ℓ22 regularization prevents the weights from being excessively large. Berhu regularization (Owen,
2006) is defined as

r(w) = λ
n
∑

j=1

b(wj) = λ
n
∑

j=1

[

|wj | [[|wj | ≤ γ]] +
w2

j + γ2

2γ
[[|wj | > γ]]

]

.

In the above, [[·]] is 1 if its argument is true and is 0 otherwise. The positive scalar γ controls
the value for which the Berhu regularization switches from ℓ1 mode to ℓ2 mode. Formally, when
wj ∈ [−γ, γ], r(w) behaves as ℓ1, and for wj outside this region, the Berhu penalty behaves as ℓ22.
The Berhu penalty is convex and differentiable except at 0, where it has the same subdifferential set
as λ ‖w‖1.

To find a closed form update from wt+ 1
2

to wt+1, we minimize in each variable 1
2 (w−v)+ λ̃b(w);

the derivation is fairly standard but technical and is provided in Appendix B. The end result is
aesthetic and captures the ℓ1 and ℓ2 regions of the Berhu penalty,

wt+1,j =



















0
∣

∣

∣
wt+ 1

2 ,j

∣

∣

∣
≤ λ̃

sign(wt+ 1
2 ,j)

[

|wt+ 1
2 ,j | − λ̃

]

λ̃ < |wt+ 1
2 ,j | ≤ λ̃ + γ

w
t+ 1

2
,j

1+λ̃/γ
γ + λ̃ <

∣

∣

∣wt+ 1
2 ,j

∣

∣

∣

. (30)

Indeed, as Eq. (30) indicates, the update takes one of two forms, depending on the magnitude of
the coordinate of wt+ 1

2 ,j . If |wt+ 1
2 ,j | is greater than γ + λ̃, the update is identical to the update

for ℓ22-regularization of Eq. (23), while if the value is no larger than γ + λ̃, the resulting update is
equivalent to the update for ℓ1-regularization of Eq. (22).

5.6 Extension to mixed norms

We saw above that when using either the ℓ2 or the ℓ∞ norm as the regularization function, we obtain
an all zeros vector if ||wt+ 1

2
||2 ≤ λ̃ or ||wt+ 1

2
||1 ≤ λ̃, respectively. The zero vector does not carry

any generalization properties, which surfaces a concern regarding the usability of the these norms
as a form of regularization. This seemingly problematic phenomenon can, however, be useful in the
setting we discuss now. In many applications, the set of weights can be grouped into subsets where
each subset of weights should be dealt with uniformly. For example, in multiclass categorization
problems each class r may be associated with a different weight vector w

r. The prediction for an
instance x is a vector

〈

w
1,x
〉

, . . . ,
〈

w
k,x

〉

where k is the number of different classes. The predicted

class is the index of the inner-product attaining the largest of the k values, argmaxj

〈

w
j ,x
〉

. Since
all the weight vectors operate over the same instance space, in order to achieve a sparse solution, it
may be beneficial to tie the weights corresponding to the same input feature. That is, we would like
to employ a regularization function that tends to zero the row of weights w1

j , . . . , wk
j simultaneously.

In these circumstances, the nullification of the entire weight vector by ℓ2 and ℓ∞ regularization
becomes a powerful tool.

Formally, let W represent a n×k matrix where the jth column of the matrix is the weight vector
w

j associated with class j. Thus, the ith row corresponds to the weight of the ith feature with respect
to all classes. The mixed ℓr/ℓs-norm (Obozinski et al., 2007) of W , denoted ‖W‖ℓr/ℓs

, is obtained
by computing the ℓs-norm of each row of W and then applying the ℓr-norm to the resulting n
dimensional vector, for instance, ‖W‖ℓ1/ℓ∞

=
∑n

j=1 maxj |Wi,j |. Thus, in a mixed-norm regularized

optimization problem (such as multiclass learning), we seek the minimizer of the objective function

f(W ) + λ ‖W‖ℓr/ℓs
.

Given the specific variants of various norms described above, the Fobos update for the ℓ1/ℓ∞ and
the ℓ1/ℓ2 mixed-norms is readily available. Let w̄

r denote the rth row of W . Analogously to the
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standard norm-based regularization, we let V = Wt+ 1
2

be a shorthand for the result of the gradient
step. For the ℓ1, ℓp mixed-norm, where p = 2 or p = ∞, we need to solve the problem

minimize
W

1

2
‖W − V ‖2

Fr + λ̃ ‖W‖ℓ1/ℓ2
≡ minimize

w̄1,...,w̄k

n
∑

i=1

(

1

2

∥

∥w̄
i − v̄

i
∥

∥

2

2
+ λ̃

∥

∥w̄
i
∥

∥

p

)

, (31)

where v̄
i is the ith row of V . It is immediate to see that the problem given in Eq. (31) is decomposable

into n separate problems of dimension k, each of which can be solved by the procedures described in
the prequel. The end result of solving these types of mixed-norm problems is a sparse matrix with
numerous zero rows. We demonstrate the merits of Fobos with mixed-norms in Sec. 7.

6. Efficient Implementation in High Dimensions

In many settings, especially online learning, the weight vector wt and the gradients g
f
t reside in a

very high-dimensional space, but only a relatively small number of the components of g
f
t are non-

zero. Such settings are prevalent, for instance, in text-based applications: in text categorization,
the full dimension corresponds to the dictionary or set of tokens that is being employed while each
gradient is typically computed from a single or a few documents, each of which contains words
and bigrams constituting only a small subset of the full dictionary. The need to cope with gradient
sparsity becomes further pronounced in mixed-norm problems, as a single component of the gradient
may correspond to an entire row of W . Updating the entire matrix because a few entries of g

f
t are

non-zero is clearly undesirable. Thus, we would like to extend our methods to cope efficiently with
gradient sparsity. For concreteness, we focus in this section on the efficient implementation of ℓ1, ℓ2,
and ℓ∞ regularization, recognizing that the extension to mixed-norms (as in the previous section)

is straightforward. The upshot of following proposition is that when g
f
t is sparse, we can use lazy

evaluation of the weight vectors and defer to later rounds the update of components of wt whose
corresponding gradient entries are zero. We detail this after the proposition, which is technical so
the interested reader may skip the proof to see the simple algorithms for lazy evaluation.

Proposition 11 Let wT be the end result of solving a succession of T self-similar optimization
problems for t = 1, . . . , T ,

P.1 : wt = argmin
w

1

2
‖w − wt−1‖2 + λt‖w‖q . (32)

Let w
⋆ be the optimal solution of the following optimization problem:

P.2 : w
⋆ = argmin

w

1

2
‖w − w0‖2 +

(

T
∑

t=1

λt

)

‖w‖q . (33)

Then for q ∈ {1, 2,∞} the vectors wT and w
⋆ are identical.

Proof It suffices to show that the proposition is correct for T = 2 and then use an inductive
argument, because the proposition trivially holds for T = 1. We provide here a direct proof for each
norm separately by examining the updates we derived in Sec. 5 and showing that w2 = w

⋆.
Note that the objective functions are separable for q = 1. Therefore, for ℓ1-regularization it

suffices to prove the proposition for any component of the vector w. We omit the index of the
component and denote by w0, w1, w2, w3, . . . one coordinate of w along the iterations of P.1 and by
w⋆ the result for the same component when solving P.2. We need to show that w⋆ = w2. Expanding
the ℓ1-update of Eq. (22) over two iterations we get the following,

w2 = sign(w1) [|w1| − λ2]+ = sign(w1)
[∣

∣sign(w0) [|w0| − λ1]+
∣

∣− λ2

]

+
= sign(w0) [|w0| − λ1 − λ2]+ ,
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where we used the positivity of | · |. Examining P.2 and using Eq. (22) again we get

w⋆ = sign(w0) [|w0| − λ1 − λ2]+ .

Therefore, w⋆ = w2 as claimed.
Next we prove the proposition for ℓ2, returning to using the entire vector for the proof. Using

the explicit ℓ2-update from Eq. (23), we can expand the norm of the vector w1 due to the program
P.1 as follows,

‖w1‖ =

[

1 − λ1

‖w0‖

]

+

‖w0‖ = [ ‖w0‖ − λ1]+ .

Similarly, we get that ‖w2‖ = [‖w1‖ − λ2]+. Combining the norm equalities we see that the norm
of w2 due to the succession of the two updates is

‖w2‖ =
[

[‖w0‖ − λ1]+ − λ2

]

+
= [‖w0‖ − λ1 − λ2]+ .

Computing directly the norm of w
⋆ due to the update given by Eq. (23) yields

‖w⋆‖ =

[

1 − λ1 + λ2

‖w0‖

]

+

‖w0‖ = [‖w0‖ − λ1 − λ2]+ .

Thus, w
⋆ and w2 have the same norm. Since the update itself retains the direction of the original

vector w0, we get that w
⋆ = w2 as needed.

We now turn to the most complicated update and proof of the three norms, the ℓ∞ norm. We
start by recapping the programs P.1 and P.2 for T = 2 and q = ∞,

P.1 : w1 = argmin
w

{

1

2
‖w − w0‖2 + λ1 ‖w‖∞

}

(34)

w2 = argmin
w

{

1

2
‖w − w1‖2 + λ2 ‖w‖∞

}

, (35)

P.2 : w
⋆ = argmin

w

{

1

2
‖w − v‖2

2 + (λ1 + λ2) ‖w‖∞
}

. (36)

We prove the equivalence of the two programs in two stages. First, we examine the case ‖w0‖1 >
λ1 + λ2, and then consider the complement case ‖w0‖1 ≤ λ1 + λ2. For concreteness and simplicity,
we assume that w0 � 0, since, clearly, the objective is symmetric in w0 and −w0. We thus can
assume that all entries of w0 are non-negative. In the proof we use the following operators: [v]+ now
denotes the positive component of each entry of v, min{v, θ} denotes the component-wise minimum
between the elements of v and θ, and likewise max{v, θ} is the component-wise maximum. Starting
with the case ‖w0‖1 > λ1 + λ2, we examine Eq. (34). From Lagrange duality we know that that
w1 = w0 − α1, where α1 is the solution of

minimize
α

1

2
‖α − w0‖2

2 s.t. ‖α‖1 ≤ λ1 .

As described by Duchi et al. (2008) and reviewed above in Sec. 5, α1 = [w0 − θ1]+ for some θ1 ∈ R+.
The form of α1 readily translates to the following form for w1: w1 = w0 − α1 = min(w0, θ1).
Applying similar reasoning to the second step of P.1 yields w2 = w1 − α2 = w0 − α1 − α2, where
α2 is the minimizer of

1

2
‖α − w1‖2

2 =
1

2
‖α − (w0 − α1)‖2

2 s.t. ‖α‖1 ≤ λ2 .

Again, we have α2 = [w1 − θ2]+ = [w0 − α1 − θ2]+ for some θ2 ∈ R+. The successive steps then
imply that

w2 = min{w1, θ2} = min {min{w0, θ1}, θ2} .
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We next show that regardless of the ℓ1-norm of w0, θ2 ≤ θ1. Intuitively, if θ2 > θ1, the
second minimization step of P.1 would perform no shrinkage of w1 to get w2. Formally, assume
for the sake of contradiction that θ2 > θ1. Under this assumption, we would have that w2 =
min{min{w0, θ1}, θ2} = min{w0, θ1} = w1. In turn, we obtain that 0 belongs to the subgradient
set of Eq. (35) when evaluated at w = w1, thus,

0 ∈ w1 − w1 + λ2∂ ‖w1‖∞ = λ2∂ ‖w1‖∞ .

Clearly, the set ∂ ‖w1‖∞ can contain 0 only when w1 = 0. Since we assumed that λ1 < ‖w0‖1, and
hence that α1 � w0 and α1 6= w0, we have that w1 = w0 − α1 6= 0. This contradiction implies
that θ2 ≤ θ1.

We now examine the solution vectors to the dual problems of P.1, α1 and α2. We know that
‖α1‖1 = λ1 so that ‖w0 − α1‖1 > λ2 and hence α2 is at the boundary ‖α2‖1 = λ2 (see again Duchi
et al., 2008). Furthermore, the sum of the these vectors is

α1 + α2 = [w0 − θ1]+ +
[

w0 − [w0 − θ1]+ − θ2

]

+
. (37)

Let v denote a component of w0 greater than θ1. For any such component the right hand side of
Eq. (37) amounts to

[v − (v − θ1) − θ2]+ + [v − θ1]+ = [θ1 − θ2]+ + v − θ1 = v − θ1 = [v − θ1]+ ,

where we used the fact that θ2 ≤ θ1 to eliminate the term [θ1 − θ2]+. Next, let u denote a component
of w0 smaller than θ1. In this case, the right hand side of Eq. (37) amounts to [u − 0 − θ2]+ + 0 =
[u − θ2]+. Recapping, the end result is that the vector sum α1 + α2 equals [w0 − θ2]+. Moreover,
α1 and α2 are in R

n
+ as we assumed that w0 � 0, and thus

‖ [w0 − θ2]+ ‖1 = ‖α1 + α2‖1 = λ1 + λ2 . (38)

We now show that P.2 has the same dual solution as the sequential updates above. The dual of
P.2 is

minimize
α

1

2
‖α − w0‖2

2 s.t. ‖α‖1 ≤ λ1 + λ2.

Denoting by α0 the solution of the above dual problem, we have w
⋆ = w0 −α0 and α0 = [w0 − θ]+

for some θ ∈ R+. Examining the norm of α0 we obtain that

‖α0‖1 =
∥

∥[w0 − θ]+
∥

∥

1
= λ1 + λ2 (39)

because we assumed that ‖w0‖1 > λ1 + λ2. We can view the terms
∥

∥[w0 − θ2]+
∥

∥

1
from Eq. (38)

and
∥

∥[w0 − θ]+
∥

∥

1
from Eq. (39) as functions of θ2 and θ, respectively. The functions are strictly

decreasing functions of θ and θ2 over the interval [0, ‖w0‖∞]. Therefore, they are invertible for
0 < λ1 + λ2 < ‖w0‖1. Since

∥

∥[w0 − θ]+
∥

∥

1
=
∥

∥[w0 − θ2]+
∥

∥

1
, we must have θ2 = θ. Recall that

the solution of Eq. (36) is w
⋆ = min{w0, θ}, and the solution of the sequential update induced by

Eq. (34) and Eq. (35) is min{min{w0, θ1}, θ2} = min{w0, θ2}. The programs P.1 and P.2 therefore
result in the same vector min{w0, θ2} = min{w0, θ} and their induced updates are equivalent.

We now examine the case when ‖w0‖1 ≤ λ1 + λ2. If the 1-norm of w0 is also smaller than
λ1, ‖w0‖1 ≤ λ1, then the dual solution for the first step of P.1 is α1 = w0, which makes
w1 = w0 − α1 = 0 and hence w2 = 0. The dual solution for the combined problem is clearly
α0 = w0; again, w

⋆ = w0 − α0 = 0. We are thus left with the case λ1 < ‖w0‖1 ≤ λ1 + λ2. We
straightforwardly get that the solution to Eq. (36) is w

⋆ = 0. We now prove that the iterated solu-
tion obtained by P.1 results in the zero vector as well. First, consider the dual solution α1, which
is the minimizer of ‖α − w0‖2 subject to ‖α‖1 ≤ λ1. Since α1 = [w0 − θ1]+ for some θ1 ≥ 0, we
know that each component of α1 is between zero and its corresponding component in w0, therefore,

17



Duchi and Singer

‖w0 − α1‖1 = ‖w0‖1 − ‖α‖1 = ‖w0‖1 − λ1 ≤ λ2. The dual of the second step of P.1 distills to the
minimization 1

2‖α − (w0 − α1)‖2 subject to ‖α‖1 ≤ λ2. Since we showed that ‖w0 − α‖1 ≤ λ2, we
get α2 = w0 − α1. This means that θ2 = 0. Recall that the solution of P.1 is min{w0, θ2}, which
amounts to the zero vector when θ2 = 0. We have thus showed that both optimization problems
result in the zero vector. This proves the equaivalence of P.1 and P.2 for q = ∞.

The algorithmic consequence of Proposition 11 is that it is possible to perform a lazy update on
each iteration by omitting the terms of wt (or whole rows of the matrix Wt when using mixed-norms)

that are outside the support of g
f
t , the gradient of the loss at iteration t. However, we do need to

maintain the step-sizes used on each iteration and have them readily available on future rounds
when we need to update coordinates of w or W that were not updated in previous rounds. Let Λt

denote the sum of the step sizes times regularization multipliers ληt used from round 1 through t.
Then a simple algebraic manipulation yields that instead of solving

wt+1 = argmin
w

{

1

2
‖w − wt‖2

2 + ληt‖w‖q

}

repeatedly when wt is not being updated, we can simply cache the last time t0 that w (or a coordinate
in w or a row from W ) was updated and, when it is needed, solve

wt+1 = argmin
w

{

1

2
‖w − wt‖2

2 + (Λt − Λt0)‖w‖q

}

.

The advantage of the lazy evaluation is pronounced when using mixed-norm regularization as it lets
us avoid updating entire rows so long as the row index corresponds to a zero entry of the gradient
g

f
t . We would like to note that the lazy evaluation due to Proposition 11 includes as a special case

the efficient implementation for ℓ1-regularized updates first outlined by Langford et al. (2008). In
sum, at the expense of keeping a time stamp t for each entry of w or row of W and maintaining a list
of the cumulative sums Λ1,Λ2, . . ., we can get O(s) updates of w when the gradient g

f
t is s-sparse,

that is, it has only s non-zero components.

7. Experiments

In this section we describe the results of experiments we performed whose goal are to demonstrate
the merits and underscore a few weaknesses of Fobos. To that end, we also evaluate specific
instantiations of Fobos with respect to several state-of-the-art optimizers and projected subgradient
methods on different learning problems. In the experiments that focus on efficiency and speed of
convergence, we evaluate the methods in terms of their number of operations, which is approximately
the number of floating point operations each method performs. We believe that this metric offers a
fair comparison of the different algorithms as it lifts the need to cope with specific code optimization
such as cache locality or different costs per iteration of each of the methods.

7.1 Sensitivity experiments

We begin our experiments by performing a sensitivity analysis of Fobos. We perform some of the
analysis in later sections during our comparisons to other methods, but we discuss the bulk of it here.
We focus on two tasks in our sensitivity experiments: minimizing the hinge loss (used in Support
Vector Machines) with ℓ22 regularization and minimizing the ℓ1-regularized logistic loss. These set
the loss function f as

f(w) =
1

n

n
∑

i=1

[1 − yi 〈xi,w〉]+ +
λ

2
‖w‖2

2 and f(w) =
1

n

n
∑

i=1

log
(

1 + e−yi〈xi,w〉
)

+ λ ‖w‖1
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respectively. Note that both loss functions have subgradient sets bounded by 1
n

∑n
i=1 ‖yixi‖2. There-

fore, if all the instances are of bounded norm, so are the subgradients of the empirical loss functions.
We perform analysis using dimensions d ∈ {50, 100, 200, 400, 800} and dataset sizes n ∈ {200, 400}.

We investigate the effect of correlation of the features xij with one another by generating uncorre-
lated, moderately correlated, and highly correlated features. Specifically, to generate feature vectors
xi ∈ R

d, we sample n random vectors zi ∼ N(0, I), zi ∈ R
d. We then construct a random covari-

ance matrix Σ whose correlations |ρij | = |Σij |/
√

ΣiiΣjj have mean .2 for the moderately correlated
experiments and .3 for the highly correlated experiments (on the highly correlated data, more than
one-tenth of the features were more than 80% correlated). To get x, we then set xi = Lzi, where
L is the Cholesky decomposition of Σ (the identity in the uncorrelated case), and normalize xi to
have ‖xi‖∞ = 1. We compared different stochastic gradient estimators that were based on varying
sample sizes: a single example, 10% of the training set, 20% of the training set, and deterministic
gradient using the entire dataset. We also tested ten different initial step sizes. However, we give in
the graphs results for only a subset of the initial steps that reveals the overall dependency on the
step size. Further, we also checked three schemes for decaying the step size: ηt ∝ 1/t, ηt ∝ 1/

√
t, and

ηt ∝ 1 (constant step size). We discuss the results attained by constant step sizes only qualitatively,
though, to keep the clarity of the figures. When ηt was a constant we divided the initial step size
by

√
T , the total number of iterations being taken. We performed each experiment 10 times and

averaged the results.
We distill the large number of experiments into a few figures here, deferring some of the analysis

to the sequel. Thus in this section we focus on the case when n = 400 and d = 800, since the
experiments with other training set sizes and dimensions gave qualitatively similar results. Most of
the results in this section focus on the consequences of the initial step size η1, though we also discuss
different schedules of the learning rate and the sample size for computing the subgradients. In each
experiment, we set λ = .25/

√
n, which in the logistic case gave roughly 50% sparsity. Before our

discussion, we note that we can bound the ℓ2-norm of w
⋆ for both the logistic and the hinge loss.

In the case of the logistic, we have λ ‖w⋆‖2 ≤ λ ‖w⋆‖1 ≤ f(0) = log 2. Similarly, for the hinge loss

we have λ
2 ‖w⋆‖2

2 ≤ f(0) = 1. In both cases we can bound G by the norm of the ‖xi‖, which is in

our settings approximately 9. Thus, looking at the bounds from Sec. 3 and Sec. 4, when ηt ∝ 1/
√

T ,
the initial step size amounts to η1 ≈ D/

√
7G ≈ 2.3 and when ηt ∝ 1/

√
t, the initial step should be

η1 ≈ D/4G ≈ 1.5 for logistic regression. For the hinge loss, when ηt ∝ 1/
√

t, and the initial step
ends being η1 ≈ D/4G ≈ .35. We see in the sequel that these approximate step sizes yield results
competitive with the best initial step sizes, which can be found only in hindsight.

We begin by considering the effect of initial step size for ℓ1-regularized logistic regression. We
plot results for the moderately correlated datasets, as we investigate the effect of correlation later on.
The results are given in Figures 1 and 2, where we plot the objective value at each time step minus
the optimal objective value attained, f(wt) + r(wt) − f(w⋆) − r(w⋆). We plot the function values
of the initial step size that was chosen automatically, by estimating D and G as described above,
in bold red in the figures. Interestingly, the left side of Fig. 1 suggests that the best performing
initial steps when ηt ∝ 1/

√
t are near 1.5: η1 = 2.15 gives good regret (we also saw that η1 = 4.6

performed well, but do not include it in the plot). In Fig. 2, we see similar behavior for stochastic
Fobos when using 10% of the samples to estimate the gradient. Though we do not plot these results,
the stochastic case with constant step sizes also performs well when the step sizes are ηt ≈ 2.2/

√
T .

The deterministic variant of Fobos could not not take as many steps in the allotted time as the
stochastic versions, so its performance was not competitive. All methods are somewhat sensitive to
initial step size. Nonetheless, for these types of learning problems it seems plausible to estimate an
initial step size based on the arguments given in the previous paragraph, especially when using the
step rate of ηt ∝ 1/

√
t that was suggested by the analysis in Sec. 4.
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Figure 1: Sensitivity of deterministic Fobos to initial step size on logistic regression. Key is initial
step size. Left: ηt ∝ 1/

√
t. Right: ηt ∝ 1/t.
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Figure 2: Sensitivity of stochastic Fobos to initial step size on logistic regression. Key is initial step
size. Left: ηt ∝ 1/

√
t. Right: ηt ∝ 1/t.

We performed similar experiments with the hinge loss with ℓ22 regularization. As the objective is
strongly convex,2 our analysis from Sec. 4 and Theorem 8 suggests a step rate of ηt = 1/λt. From
the right plot in Fig. 3, we see that the best performing step sizes where the two largest, which
is consistent with our analysis since 1/λ = 80. For the the 1/

√
t steps, which we present on the

left of Fig. 3 respectively, such initial step sizes are too large. However, we can see again that the
approximation suggested by our arguments above gives good performance. In sum, it seems that
while Fobos and stochastic Fobos are fairly sensitive to initial step sizes and rate schedule, our
theoretical results from the previous sections give relatively good initial step size heuristics. We will
see similar behavior in the sequel.

2. We assume there is no bias term in the objective, since any optimization method must deal with this so we find

it outside the scope of the paper.

20



Efficient Learning using Forward Backward Splitting

0 2 4 6 8 10

x 10
7

10
−2

10
−1

10
0

10
1

10
2

Approximate Operations

f(
w

t) 
+

 r
(w

t) 
−

 f
(w

*)
 −

 r
(w

*)

0 2 4 6 8 10

x 10
7

10
−2

10
−1

10
0

10
1

10
2

Approximate Operations

f(
w

t) 
+

 r
(w

t) 
−

 f
(w

*)
 −

 r
(w

*)

 

 

0.10
0.46
2.15
10.00
46.42
100.00

Figure 3: Sensitivity of stochastic methods to initial step size on hinge loss minimization with ℓ22-
regularization. Key is initial step size. Left: ηt ∝ 1/

√
t. Right: ηt ∝ 1/t.

7.2 Comparison to subgradient optimizers

We now move on to the description of experiments using Fobos to solve ℓ22-regularized learning
problems, focusing on comparison to the state-of-the-art subgradient optimizer Pegasos (Shalev-
Shwartz et al., 2007). Pegasos was originally implemented and evaluated on Support Vector Machine
(SVM) problems by using the hinge-loss as the empirical loss function along with an ℓ22 regularization
term. Nonetheless, Pegasos can be rather simply extended to the binary logistic loss function.
We thus experimented with both the hinge and logistic loss functions. To generate data for our
experiments, we chose a vector w with entries distributed normally with a zero mean and unit
variance, while randomly zeroing 50% of the entries in the vector. The examples xi ∈ R

d were also
chosen at random with entries i.i.d. normally distributed. We also performed experiments using
correlated data. The results attained on correlated data were similar, so we do not report them
in our comparison to Pegasos. To generate target values, we set yi = sign(〈xi,w〉), and negated
the sign of 10% of the examples to add label noise. In all experiments, we used n = 1000 training
examples of dimension d = 400.

The graphs of Fig. 4 show (on a log-scale) the objective function, namely, the regularized empirical
loss of the algorithms, minus the optimal value of the objective function. These results were averaged
over 20 independent runs of the algorithms. In all experiments with a regularization of the form
1
2λ ‖w‖2

2, we used step sizes of the form ηt = 1/(λt) to achieve the logarithmic regret bound of Sec. 4.
The left graph of Fig. 4 conveys that Fobos performs comparably to Pegasos on hinge (SVM) loss.
Both algorithms quickly approach the optimal value. In this experiment we let both Pegasos and
Fobos employ a projection after each gradient step onto a ℓ2 norm ball in which w

⋆ must lie (see
Shalev-Shwartz et al., 2007 and the discussion following the proof of Theorem 2). However, in the
experiment corresponding to the right plot of Fig. 4, we eliminated the additional projection step
and ran the algorithms with the logistic loss. In this case, Fobos slightly outperforms Pegasos.
We hypothesize that the slightly faster rate of Fobos is due to the explicit shrinkage that Fobos

performs in the ℓ22 update (see Eq. (23) and Lemma 9).

7.3 Comparison to other methods for smooth problems

As mentioned in our discussion of related work, many methods have been proposed in the optimiza-
tion and machine learning literature for minimizing Eq. (1) when f is smooth, particularly when
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Figure 4: Comparison of Fobos with Pegasos on the SVM (left) and logistic regression (right). The
right hand side plot shows the performance of the algorithms without a projection step.

f has a Lipschitz-continuous gradient. For the case of ℓ1-regularized logistic regression, Koh et al.
(2007) propose an efficient interior point method. Tseng and Yun (2007) give analysis of a (block)
coordinate descent method that uses approximations to the Hessian matrix and an Armijo-type
backtracking line search to solve non-smooth regularized problems with smooth objectives; their
method was noted to be effective for ℓ1/ℓ2-regularized logistic regression, for example, by Meier
et al. (2008). We also compare Fobos and its stochastic variants to the SpaRSA method of Wright
et al. (2009), which shares the same update as Fobos but uses a simple line search strategy to choose
the its steps. Note that none of these methods apply when f is non-smooth. Lastly, we compare
Fobos to projected-gradient methods. For ℓ1-regularized problems, Duchi et al. (2008) show how
to compute projections to an ℓ1-ball in linear time, and Schmidt et al. (2009) extend the method to
show that projection of a matrix W ∈ R

d×k to an ℓ1/ℓ2-constraint can be computed in O(dk) time.
To compare our methods to projected gradient methods, we first solve the regularized version of the
problem. We then constrain the norm of w or the mixed-norm of W to lie within a ball of radius
λ ‖w⋆‖1 or λ ‖W ⋆‖ℓ1/ℓ2

.
We compared Fobos to each of the above methods on many different synthetic datasets, and we

report a few representative results. In our experiments, SpaRSA seemed to outperform Fobos and
the projected gradient methods when using full (deterministic) gradient information. The additional
function evaluations incurred by the line search in SpaRSA seem to be insignificant to runtime,
which is a plausible explanation for SpaRSA’s superior performance. We therefore do not report
results for the deterministic versions of Fobos and projected gradient methods to avoid clutter in
the figures.

In the first set of experiments, we compare Fobos’s performance on ℓ1-regularized logistic re-
gression to each of the above methods. That is, we set f(w) to be the average logistic loss and
r(w) = λ ‖w‖1 and use a dataset with n = 1000 examples and d = 400 dimensions. We compare the
performance of stochastic Fobos to the other algorithms in terms of two aspects. The first is the
value of λ, which we set to five logarithmically spaced values that gave solution vectors w

⋆ ranging
from 100% non-zero entries to only 5% non-zero entries. The second aspect is on the correlation
of the features. We generated random datasets with uncorrelated features, features that were on
average 20% correlated with one another, and features that were on average 30% correlated with
one another. In the latter case about 350 pairs of features had above 80% correlation (see the de-
scription of feature generation at the beginning of the section). We normalized each example x to
have features in the range [−1, 1]. We assigned labels for each example by randomly choosing a 50%
sparse vector w, setting yi = sign(〈w,xi〉), and negating 5% of the y values.
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Figure 5: Performance of ℓ1-regularized logistic regression methods with different settings of λ on
correlated synthetic data. Left to right, top to bottom: w

⋆ has 0% sparsity, w
⋆ has 25%

sparsity, w
⋆ has 40% sparsity, w

⋆ has 70% sparsity, and w
⋆ has 95% sparsity.
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Figure 6: Performance of ℓ1-regularized logistic regression methods with different correlations on
synthetic data. Left: uncorrelated data. Right: highly correlated data.

The results comparing Fobos to the other algorithms for different settings of the regularizer λ
are in Fig. 5. The y-axis is f(wt)+r(wt)−f(w⋆)−r(w⋆), the distance of the current value from the
optimal value, and the x-axis is the approximate number of operations (FLOPs) for each method.
We used the approximation we derived based on Corollary 7 in our earlier discussion of sensitivity to
set the initial step size and used ηt ∝ 1/

√
t. Tseng and Yun’s method requires setting of constants

for the backtracking-based line search. We thus use the settings in Meier et al. (2008). In attempt to
make the comparisons as fair as possible, we used some of Tseng and Yun’s code yet reimplemented
the method to take advantage of the specific structure of logistic regression. Similarly, we used the
line-search parameters in Wright et al.’s publicly available Matlab code for SpaRSA, though we
slightly modified their code to handle arbitrary loss functions. From the figure, we see that as λ
grows, yielding sparser solutions for w

⋆, the performance of coordinate descent and especially the
interior point method start to degrade relative to the stochastic methods and SpaRSA.

In our experiments we found that the stochastic methods were quite resilient to overly-large initial
step-sizes, as they quickly took a large number of steps. SpaRSA employs an easy to implement and
efficient line search, and in general yielded good performance. The coordinate descent method, with
its somewhat complicated backtracking line search, was difficult to implement correctly. Therefore,
our experiments and experience suggest that SpaRSA is likely to be preferred for smooth problems.
Nonetheless, stochastic Fobos quickly obtains a solution within about 10−2 of the optimal value.
Since the regularized empirical loss serves as a proxy for attaining good generalization performance,
we found that in numerous cases this accuracy sufficed to achieve competitive test loss.

In Fig. 6 we compare Fobos to the other methods on data with uncorrelated, moderately cor-
related, and very correlated features. These plots all have λ set so that w

⋆ has approximately 40%
sparsity. From the plots, we see that stochastic Fobos and projected gradient actually perform very
well on the more correlated data, very quickly getting to within 10−2 of the optimal value, though
after this they essentially jam. As in the earlier experiments, SpaRSA seems to perform quite well
for these moderately sized experiments, though the interior point method’s performance improves
as the features become more correlated.
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Figure 7: Performance of ℓ1/ℓ2-regularized multiclass logistic regression methods with different set-
tings of λ on correlated synthetic data. Left: w

⋆ has 60% sparsity. Right: w
⋆ has 30%

sparsity.

The last set of experiments with synthetic datasets was on mixed-norm-regularized multiclass
logistic regression. The objective that we used in this case is

1

n

n
∑

i=1

log



1 +
∑

j 6=yi

e〈xi,w
j−w

yi〉


+ λ‖W‖ℓ1/ℓq
. (40)

In the above equation q represents the norm over rows of the matrix W , and in our experiments it
is either 1, 2, or ∞ (in this section, q = 2). The goal is to classify correctly examples whose labels
are in {1, . . . , k} while jointly regularizing entries of the vectors w

j . We used n = 5000 datapoints
of dimension d = 1000 with k = 10 classes, meaning we minimize a loss over a matrix W ∈ R

d×k

with 10000 parameters. To generate data, we sample examples xi from a normal distribution with
moderate correlation, randomly choose a matrix W , and set yi = argmaxj

〈

xi,w
j
〉

with 5% label
noise. We show results in Fig. 7. In the three figures, vary λ to give solutions W ⋆ with roughly
60% zero rows, 30% zero rows, and completely non-sparse W ⋆. From the figures, it is apparent that
the stochastic methods, both Fobos and projected gradient, exhibit very good initial performance
but eventually lose to the coordinate descent method in terms of optimization speed. As before, if
one is willing to use full gradient information, SpaRSA seems a better choice than the deterministic
counterpart of Fobos and projected gradient algorithms. We thus again do not present results for
deterministic Fobos without any line search.

7.4 Experiments with real datasets

Though in the prequel we focus on optimization speed, the main goal in batch learning problems
is attaining good test-set error rates rather than rapid minimization of f(w) + r(w). In order to
better understand the merits of different optimization methods, we compared the performance of
different optimizers on achieving a good test-set error rate on different datasets. Nonetheless, for
these tests the contours for the training objective value were qualitatively very similar to the test-set
error rate curves. We used the StatLog LandSat Satellite dataset (Spiegelhalter and Taylor, 1994),
the MNIST handwritten digit database, and a sentiment classification dataset (Blitzer et al., 2007).

The MNIST database consists of 60,000 training examples and a 10,000 example test set with
10 classes. We show average results over ten experiments using random 15,000 example subsamples
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Figure 8: Comparison test error rate of Fobos, SpaRSA, projected gradient, and coordinate descent
on MNIST digit recognition dataset. Right: magnified view of left plot.

of the training set. For MNIST, each digit is a 28 × 28 gray scale image z which is represented as
a 282 = 784 dimensional vector. Direct linear classifiers do not perform well on this dataset. Thus,
rather than learning weights for the original features, we learn the weights for a kernel machine with
Gaussian kernels, where the value of the jth feature for the ith example is

xij = K(zi,zj) , e−
1
2‖zi−zj‖2

.

We used ℓ1/ℓ2 regularization and compared Fobos, SpaRSA, coordinate descent, and projected
gradient methods on this test (as well as stochastic gradient versions of Fobos and projected gra-
dient). The results for deterministic Fobos and projected gradient were similar to SpaRSA, so we
do not present them. We also experimented with stochastic group sizes of 100 and 200 examples
for Fobos, but the results were similar, so we plot only the results from the 100 example runs. As
before, we used the ℓ1/ℓ2 norm of the solution vectors for Fobos, SpaRSA, and coordinate descent
as the constrained value for the projected gradient method. For each of the gradient methods, we
estimated the diameter D and maximum gradient G as in the synthetic experiments, which led us to
use a step size of ηt = 30/

√
t. The test set error rate as a function of number of operations for each

of the methods are shown in Fig. 8. From Fig. 8, it is clear that the stochastic gradient methods
(Fobos and projected gradient) were significantly faster than any of the other methods. Before the
coordinate descent method has even visited every coordinate once, stochastic Fobos (and similarly
stochastic projected gradient) have attained the minimal test-set error. The inferior performance
of coordinate descent and deterministic gradient methods can be largely attributed to the need to
exhaustively scan the dataset. Even if we use only a subset of 15,000 examples, it takes a nontrivial
amount of time to simply handle each example. Moreover, the objective values attained during
training are qualitatively very similar to the test loss, so that stochastic Fobos much more quickly
reduces the training objective than the deterministic methods.

We also performed experiments on a dataset that was very qualitatively different from the MNIST
and LandSAT datasets. For this experiment, we used the multi-domain sentiment dataset of Blitzer
et al. (2007), which consists of product reviews taken from Amazon.com for many product types.
The prediction task is to decide whether an article is a positive or negative review. The features
are bigrams that take values in {0, 1}, totalling about 630,000 binary features. In any particular
example, at most a few thousand features are non-zero. We used 10,000 examples in each experiment
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Figure 9: Comparison of Fobos and SpaRSA on sentiment classification task.

and performed 10 repetitions while holding out 1000 of the examples as a test set and using 9000 of
the examples for training. We used ℓ1-regularized logistic regression and set λ = 3 ·10−5, which gave
the best generalization performance and resulted in roughly 5% non-zeros in the final vector w. We
compare stochastic Fobos to SpaRSA in Fig. 9, since the projected gradient method is much slower
than Fobos (detailed in the sequel). For Fobos we use 900 examples to compute each stochastic
gradient. We use two different initial step sizes, one estimated using the approximation described
earlier and a second where we scale it by 1/5. The left plot in Fig. 9 shows the training objective
value as a function of the number of operations for each of the three methods as well as error bars
equal to the standard deviation of the objective. The right plot shows the error rates on the test
sets. The behavior in the experiment is similar to that in Fig. 8, where the stochastic methods
very quickly attain a small test error. Effectively, before SpaRSA finishes two steps, the stochastic
methods have arrived at approximate solutions that attain the minimal test set error rates.

We now change our focus from training time to the attained sparsity levels for multiclass classi-
fication with ℓ1, ℓ1/ℓ2, and ℓ1/ℓ∞ regularization on MNIST and the StatLog LandSat dataset. For
the LandSat dataset we attempt to classify 3 × 3 neighborhoods of pixels in a satellite image as a
particular type of ground, and we expanded the input 36 features into 1296 features by taking the
product of all features.

In the left plot of Fig. 10, we show the test set error and sparsity level of W as a function of training
time (100 times the number of single-example gradient calculations) for the ℓ1-regularized multiclass
logistic loss with 720 training examples. The green lines show results for using all 720 examples
to calculate the gradient, black using 20% of the examples, and blue using 10% of the examples to
perform stochastic gradient. Each used the same learning rate ηt ∝ 1/

√
t, and the reported results

are averaged over 5 independent runs with different training datasets. The righthand figure shows
a similar plot for training Fobos on the MNIST dataset with ℓ1/ℓ2-regularization. The objective
value in training has a similar contour to the test loss. As expected, Fobos with stochastic gradient
descent gets to its minimum test classification error, and as the training set size increases this
behavior is consistent. However, the deterministic version increases the level of sparsity throughout
its run, while the stochastic-gradient version has highly variable sparsity levels and does not give
solutions as sparse as the deterministic counterpart. We saw similar behavior when using stochastic
versus deterministic projected gradient methods. The slowness of the deterministic gradient means
that we do not see the sparsification immediately in larger tests; nonetheless, for longer training
times similar sparsifying behavior emerges.
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Figure 10: Left: Fobos sparsity and test error for LandSat dataset with ℓ1-regularization. Right:
Fobos sparsity and test error for MNIST dataset with ℓ1/ℓ2-regularization. Key is
identical for both plots.

As yet, we do not have a compelling justification for the difference in sparsity levels between
stochastic and deterministic gradient Fobos. We give here some intuitive arguments, leaving a
more formal analysis to future work. We develop one possible explanation by exploring the effect of
taking a stochastic gradient step starting from the true solution vector w

⋆. Consider ℓ1-regularized
Fobos with regularization multiplier λ. Let g

f be the gradient of f(w⋆). For j such that w⋆
j > 0,

we have gf
j = −λ, for j with w⋆

j < 0, gf
j = λ, and for zero entries in w

⋆, we have gf
j ∈ [−λ, λ]. The

Fobos step then amounts to w+
j = sign(w⋆

j )
[

|w⋆
j − ηtg

f
j | − ηtλ

]

+
, which by inspection simply yields

w
⋆. Now suppose that instead of g

f , we use a stochastic estimate g̃
f of g

f . Then the probability
that the update w+

j of w⋆
j is zero is

P

(∣

∣

∣
w⋆

j − ηtg̃
f
j

∣

∣

∣
≤ ηtλ

)

= P

(

g̃f
j ∈

[

w⋆
j

ηt
− λ,

w⋆
j

ηt
+ λ

])

.

When w⋆
j = 0, the probability is simply P(g̃f

j ∈ [−λ, λ]), which does not change as a function of ηt.

However, when w⋆
j > 0, we have E[g̃f

j ] = −λ, while w⋆
j /ηt → ∞ as ηt shrinks (and analogously for

w⋆
j < 0). In essence, the probability of a non-zero parameter staying non-zero is high, however, the

probability of a zero parameter staying zero is constant. Intuitively, then, we expect that stochastic
gradient descent will result in more non-zero coefficients than the deterministic variant of Fobos.

7.5 Experiments with sparse gradient vectors

In this section, we consider the implications of Proposition 11 for learning with sparse data. We show
that it is much more efficient to use the updates described in Proposition 11 than to maintain ℓ1-
constraints on w as in Duchi et al. (2008). Intuitively, the former requires rather simple bookkeeping
for maintaining the sum Λt discussed in Sec. 6, and it is significantly easier to implement and more
efficient than Duchi et al.’s red-black tree-based implementation. Indeed, whereas a red-black tree
requires at least a thousand of lines of code for its balancing, joining, and splitting operations, the
efficient Fobos updates require fewer than 100 lines of code.

We simulated updates to a weight vector w with a sparse gradient g
f
t for different dimensions

d of w ∈ R
d and different sparsity levels s for g

f
t with card(gf

t ) = s. To do so, we generate a
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completely dense w whose ℓ1-norm is at most a pre-specified value b and add a random vector
g to w with s non-zeros. We then either project w + g back to the constraint ‖w‖1 ≤ b using
the algorithm of Duchi et al. (2008) or perform a Fobos update to w + g using the algorithm in
Sec. 6. We chose λ in the Fobos update to give approximately the same sparsity as the constraint
on b. In Table 1 we report timing results averaged over 100 independent experiments for different
dimensions d of w and different cardinalities s of g. Though theoretically the sparse Fobos updates
should have no dependence on the dimension d, we found that cache locality can play a factor when
performing updates to larger dimensional vectors. Nonetheless, it is clear from the table that the
efficient Fobos step is on the order of ten to twenty times faster than its projected counterpart.
Furthermore, the sparse Fobos updates apply equally as well to mixed norm regularization, and
while there are efficient algorithms for both projection to both ℓ1/ℓ2 and ℓ1/ℓ∞ balls (Schmidt et al.,
2009; Quattoni et al., 2009), they are more complicated than the Fobos steps. Lastly, though it
may be possible to extend the efficient data structures of Duchi et al. (2008) to the ℓ1/ℓ2 case, there
is no known algorithm for efficient projections with sparse updates to an ℓ1/ℓ∞ constraint.

Dimension d s = 5000 s = 10000 s = 20000
Project Fobos Project Fobos Project Fobos

5 · 104 0.72 0.07 2.12 0.12 4.53 0.23
2 · 105 0.80 0.10 2.06 0.16 5.09 0.34
8 · 105 0.86 0.15 2.22 0.17 5.34 0.39

3.2 · 106 1.07 0.13 2.75 0.16 6.31 0.52
6.4 · 106 1.20 0.10 2.83 0.29 6.62 0.48

Table 1: Comparison of the average time (in hundredths of a second) required to compute projection
of w + g onto an ℓ1-constraint to the analogous update required by the Fobos step.

7.6 Effects of regularization

Our final experiments focus mostly on sparsity recovery of the different regularizers and their effects
on test-set performance. While these are somewhat orthogonal to the previous experiments, we
believe there is a relative paucity of investigation of the effects of mixed-norm regularization on
classifier performance.

As a verification experiment of Fobos with a mixed-norm regularizer, we solved a multiclass
logistic regression problem whose objective is given in Eq. (40). To solve this task, we randomly
generated a matrix W of dimension 200× 30. The instances had d = 200 dimensions, the number of
classes was k = 30, and we zeroed out the first 100 rows of W . We next generated n = 1000 samples
xi ∈ R

d with zero mean and unit variance. We set yi = argmaxj

〈

xi,w
j
〉

and added 10% label
noise. We then used Fobos to find an approximate minimizer of the objective defined by Eq. (40).

To compare the effects of different regularizers, we minimized Eq. (40) using ℓ1/ℓ1, ℓ1/ℓ2, and
ℓ1/ℓ∞ regularization. We repeated the experiment 20 times with different randomly selected W
that had the same sparsity pattern. On the left side of Fig. 11 we illustrate the sparsity pattern
(far left) of the weight vector that generated the data and color-coded maps of the sparsity patterns
learned using Fobos with the different regularization schemes. The colors indicate the fraction of
times a weight of W was set to be zero. A white color indicates that the weight was found (or
selected) to be zero in all of the experiments while a black color means that it was never zero.
The regularization value λ was set so that the learned matrix W would have approximately 50%
zero weights. From Fig. 11, we see that both ℓ1/ℓ2 and ℓ1/ℓ∞ were capable of zeroing entire rows
of parameters and often learned a sparsity pattern that was close to the sparsity pattern of the
matrix that was used to generate the examples. The standard ℓ1 regularizer (far right) performed
very poorly in terms of structure recovery. In fact, the ℓ1-regularizer did not yield a single row of

29



Duchi and Singer

True l
1
/l

2 l
1
/l

∞
l
1 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fobos Steps

S
pa

rs
ity

 P
ro

po
rt

io
n

Figure 11: The sparsity patterns attained by Fobos using mixed-norm and ℓ1 regularization for a
multiclass logistic regression problem.

% Non-zero ℓ1 Test ℓ1/ℓ2 Test ℓ1/ℓ∞ Test
5 .43 .29 .40
10 .30 .25 .30
20 .26 .22 .26
40 .22 .19 .22

Table 2: LandSat classification error versus sparsity

zeros in any of the experiments, underscoring one of the merits of using mixed-norm regularization
in structured problems. Quantitatively, 96.3% and 94.5% of the zero rows of W were correctly
identified when using Fobos with ℓ1/ℓ2 and ℓ1/ℓ∞ regularization, respectively. In contrast, not one
of the zero rows of W was identified correctly as an all zero row using pure ℓ1 regularization.

The right plot in Fig. 11 shows the sparsity levels (fraction of non-zero weights) achieved by
Fobos as a function of the number of iterations of the algorithm. Each line represents a different
synthetic experiment as λ is modified to give more or less sparsity to the solution vector w

⋆. The
results demonstrate that Fobos quickly selects the sparsity pattern of w

⋆, and the level of sparsity
persists throughout its execution. We found this sparsity pattern common to all problems we tested,
including mixed-norm problems. This is not particularly surprising, as Hale et al. (2007) recently
gave an analysis showing that after a finite number of iterations, Fobos-like algorithms attain the
sparsity of the true solution w

⋆.
For comparison of the different regularization approaches, we report in Table 2 and Table 3 the

test set error as a function of row sparsity of the learned matrix W . For the LandSat data, we
see that using the block ℓ1/ℓ2 regularizer yields better performance for a given level of structural
sparsity. However, on the MNIST data the ℓ1 regularization and the ℓ1/ℓ2 achieve comparable
performance for each level of structural sparsity. Moreover, for a given level of structural sparsity,
the ℓ1-regularized solution matrix W attains significantly higher overall sparsity, roughly 90% of the
entries of each non-zero row are zero. The different performance on the different datasets might
indicate that structural sparsity is effective only when the set of parameters indeed exhibit natural
grouping.

For our final experiment, we show the power of Fobos with mixed-norm regularization in the
context of image compression. For this experiment, we represent each image as a set of patches
where each patch is in turn represented as a 79 dimensional vector as described by Grangier and
Bengio (2008). The goal is to jointly describe the set of patches by a single high-dimensional yet
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% Non-zero ℓ1 Test ℓ1/ℓ2 Test ℓ1/ℓ∞ Test
5 .37 .36 .47
10 .26 .26 .31
20 .15 .15 .24
40 .08 .08 .16

Table 3: MNIST classification error versus sparsity
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Figure 12: Image reconstruction error as a function of group sparsity.

sparse set of dictionary features. Each of the dictionary terms is also in R
79. Let xj denote the

jth patch of an image with k patches to be compressed and ci be the ith dictionary vector from a
dictionary of n vectors. The regularized objective is thus

1

2

k
∑

j=1

∥

∥

∥

∥

∥

xj −
n
∑

i=1

wijci

∥

∥

∥

∥

∥

2

2

+ λ
n
∑

i=1

‖w̄i‖q .

In our experiments, the number of dictionary vectors n was 1000 and the number of patches k was
around 120 on average. We report results averaged over 100 different images. We experiment with
the three settings for q we have used in prior experiments, namely q ∈ {1, 2,∞}. In Fig. 12 we report
the average reconstruction error as a function of the fraction of dictionary vectors actually used. As
one would expect, the mixed-norm regularizers (ℓ1/ℓ2 and ℓ1/ℓ∞) achieve lower reconstruction error
as a function of dictionary sparsity than strict ℓ1-regularization. The ℓ1/ℓ2-regularization also gives
a slight, but significant, reconstruction improvement over ℓ1/ℓ∞-regularization. We hypothesize that
this is related to the relative efficiency of ℓ1/ℓ∞ as a function of the geometry of the input space, as
was theoretically discussed in Negahban and Wainwright (2008). Further investigation is required
to shed more light into this type of phenomenon, and we leave it for future research.
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8. Conclusions and Future Work

In this paper we analyzed a framework for online and batch convex optimization with a diverse class
of regularization functions. We provided theoretical justification for a type of convex programming
method we call Fobos, which is known also as forward-backward splitting, iterative shrinkage and
thresholding for the special case of ℓ1-regularized problems, or SpaRSA. Specifically, we described
both offline convergence rates for arbitrary convex functions with regularization as well as regret
bounds for online convex programming of regularized losses. Our derivation includes as a corollary
the case of ℓ1 regularization, which was concretely studied by Langford et al. (2008). Our approach
provides a simple mechanism for solving online convex programs with many regularization functions,
giving sparsity in parameters and different types of block or group regularization straightforwardly.
Furthermore, the Fobos framework is general and able to minimize any convex subdifferentialable
function f so long as the forward looking step of Eq. (5) can be computed.

We have also provided a good deal of empirical evaluation of the method in comparison to other
modern optimization methods for similar problems. Our practical experience suggests that for small
to medium problems, SpaRSA is effective and simple to implement (as opposed to more complicated
coordinate descent methods), while for large scale problems, performing stochastic Fobos is probably
preferable. We have also shown that Fobos is efficient for online learning with sparse data.

A few directions for further research suggest themselves, but we list here only two. The first is
the question of whether we can modify the algorithm to work with arbitrary Bregman divergences
of a function h instead of squared Euclidean distance, that is, we would like to form a generalized
Fobos update which is based on instantaneous optimization problems with Bregman divergences for
convex differentiable h, where Bh(u,v) = h(u)−h(v)−〈∇h(v),u − v〉. We assume the generalized
update would, loosely speaking, be analogous to nonlinear projected subgradient methods and the
mirror descent (see, e.g., Beck and Teboulle, 2003). This might allow us to give bounds for our
algorithms in terms of other dual norms, such as ℓ1/ℓ∞ norms on the gradients or diameter of the
space, rather than simply ℓ2. We believe the attainment and rate of sparsity when using stochastic
gradient information, as suggested by the discussion of Fig. 10, merits deeper investigation that will
be fruitful and interesting.
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Appendix A. Online Regret Proofs

Proof of Theorem 6 Looking at Lemma 1, we immediately see that if ‖∂f‖ and ‖∂r‖ are bounded
by G,

ft(wt) − ft(w
⋆) + r(wt+1) − r(w⋆) ≤ 1

2ηt

(

‖wt − w
⋆‖2 − ‖wt+1 − w

⋆‖2
)

+
7

2
G2ηt. (41)

Now we use Eq. (41) to obtain that

Rf+r(T ) =

T
∑

t=1

(ft(wt) − ft(w
⋆) + r(wt) − r(w⋆)) + r(wT+1) − r(w⋆) − r(w1) + r(w⋆)

≤ GD +

T
∑

t=1

1

2ηt

(

‖wt − w
⋆‖2 − ‖wt+1 − w

⋆‖2
)

+
7G2

2

T
∑

t=1

ηt
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since r(w) ≤ r(0) + G‖w‖ ≤ GD. We can rewrite the above bound and see

Rf+r(T ) ≤ GD +
1

2η1
‖w1 − w

⋆‖2 +
1

2

T
∑

t=2

‖wt − w
⋆‖2

(

1

ηt
− 1

ηt−1

)

+
7G2

2

T
∑

t=1

ηt

≤ GD +
D2

2η1
+

D2

2

T
∑

t=2

(

1

ηt
− 1

ηt−1

)

+
7G2

2

T
∑

t=1

ηt ,

where we used again the bound on the distance of each wt to w
⋆ for the last inequality. Lastly, we

use the fact that the sum 1
η1

+
∑T

t=2(
1
ηt

− 1
ηt−1

) telescopes and get that

Rf+r(T ) ≤ GD +
D2

2ηT
+

7G2

2

T
∑

t=1

ηt .

Setting ηt = c/
√

t and recognizing that
∑T

t=1 ηt ≤ 2c
√

T concludes the proof.

Proof of Theorem 8 The proof builds straightforwardly on Theorem 1 from Hazan et al. (2006)
and our proof of Theorem 6. We sum Eq. (20) from t = 1 to T and get

Rf+r(T ) ≤
T
∑

t=1

(

〈

g
f
t + g

r
t ,wt − w

⋆
〉

− H

2
‖wt − w

⋆‖2

)

≤ 2GD +
1

2

T−1
∑

t=1

(

1

ηt
‖wt − w

⋆‖2 − 1

ηt
‖wt+1 − w

⋆‖2 − H‖wt − w
⋆‖2

)

+
7G2

2

T−1
∑

t=1

ηt

≤ 2GD +
1

2

T−1
∑

t=2

‖wt − w
⋆‖2

(

1

ηt
− 1

ηt−1
− H

)

+
1

η1
‖w1 − w

⋆‖2 +
7G2

2

T−1
∑

t=1

ηt

The second inequality follows from Eq. (41) and the third inequality from a rearrangement of the
sum and removal of the negative term (1/ηT−1)‖wT − w

⋆‖2. Taking ηt = 1
Ht , we see that 1/ηt −

1/ηt−1 − H = Ht − H(t − 1) − H = 0, so we can bound the regret by

Rf+r(T ) ≤ 2GD + HD2 +
7G2

2

T−1
∑

t=1

1

Ht
≤ 2GD + HD2 +

7G2

2H
(1 + log T ) = O

(

G2

H
log T

)

.

Proof of Lemma 9 The triangle inequality implies that

∥

∥

∥

∥

∥

T
∑

t=1

∂ft(wt)

∥

∥

∥

∥

∥

≤
T
∑

t=1

‖∂ft(wt)‖ ≤ TG .

Let g
⋆
t ∈ ∂ft(w

⋆) be such that

0 =

T
∑

t=1

g
⋆
t + Tλw

⋆ ∈
T
∑

t=1

∂ft(w
⋆) + T∂r(w⋆)

so ‖w⋆‖ = ‖∑T
t=1 g

⋆
t ‖/(Tλ) ≤ G/λ.
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For the second part, assume that w0 = 0, and for our induction that wt satisfies ‖wt‖ ≤ G/λ.
Then computing the Fobos update from Eq. (23),

‖wt+1‖ =
‖wt − ηtg

f
t ‖

1 + ληt
≤ ‖wt‖ + ηt‖gf

t ‖
1 + ληt

≤ G/λ + ηtG

1 + ληt
=

G(1 + ληt)

λ(1 + ληt)
.

Appendix B. Update for Berhu Regularization

Recalling the Berhu regularizer and combining it with Eq. (21) for one variable, we see that we want
to minimize

1

2
(w − v)2 + λ̃b(w) =

1

2
(w − v)2 + λ̃

[

|w| [[|w| ≤ γ]] +
w2 + γ2

2γ
[[|w| > γ]]

]

.

First, if |v| ≤ λ̃, then exactly reasoning to that for minimization of the ℓ1-regularized minimization
step implies that the optimal solution is w = 0.

When |v| > λ̃, there are two remaining cases to check. Let us assume without loss of generality
that v > λ̃. It is immediate to verify that w ≥ 0 at the optimum. Now, suppose that v − λ̃ ≤ γ.
Taking w = v − λ̃ ≤ γ (so that w > 0) gives us that ∂b(w) = {λ̃}. Thus, the subgradient set of our
objective contains a single element, w − v + λ̃∂|w| = v − λ̃− v + λ̃1 = 0. Therefore, when v − λ̃ ≤ γ
the optimal value of w is v − λ̃. The last case we need to examine is when v − λ̃ > γ, which we as
we show shortly puts the solution w⋆ in the ℓ22 realm of b(w). By choosing w = v

1+ λ̃
γ

we get that,

w =
v

1 + λ̃
γ

=
vγ

γ + λ̃
>

(γ + λ̃)γ

γ + λ̃
= γ .

Therefore, w > γ and thus w is in the ℓ22 region of the Berhu penalty b(w). Furthermore, for this
choice of w the derivative of the penalty is

w − v + λ̃
w

γ
=

vγ

γ + λ̃
− v + λ̃

vγ

γ(γ + λ̃)
=

vγ

γ + λ̃
− v(γ + λ̃)

γ + λ̃
+ λ̃

v

γ + λ̃
= 0.

Combining the above results, inserting the conditions on the sign, and expanding v = wt+ 1
2 ,j gives

Eq. (30).

Appendix C. Fast Convergence Rate for Smooth Objectives

In this appendix, we describe an analsys of Fobos which yields an O(1/T ) rate of convergence when
f has Lipschitz-continuous gradient. Our analysis is by no means new. It is a distilled and simplified
adaptation of the analysis of Nesterov (2007) to our setting.

Throughout the appendix we assume that ∇f(w) is Lipschitz continuous with a constant L,
that is, ‖∇f(w) −∇f(v)‖ ≤ L‖w − v‖. The fundamental theorem of calculus then readily implies
that (Nesterov, 2004, Lemma 1.2.3)

|f(w) − f(v) − 〈∇f(v),w − v〉 | ≤ L

2
‖w − v‖2 . (42)
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To see that Eq. (42) holds, add and subtract 〈∇f(v),w − v〉 to note that

f(w) − f(v) =

∫ 1

0

〈∇f(v + t(w − v)),w − v〉 dt

= 〈∇f(v),w − v〉 +

∫ 1

0

〈∇f(v + t(w − v)) −∇f(v),w − v〉 dt

which, by using Cauchy-Shwartz inequality, yields

|f(w) − f(v) − 〈∇f(v),w − v〉 | ≤
∫ 1

0

|〈∇f(v + t(w − v)) −∇f(v),w − v〉| dt

≤
∫ 1

0

‖∇f(v + t(w − v)) −∇f(v)‖‖w − v‖dt ≤
∫ 1

0

tL‖w − v‖2dt =
L

2
‖w − v‖2 .

For the remainder of this section, we assume that f(w) + r(w) is coercive, so that as ‖w‖ → ∞,
f(w)+r(w) → ∞. We thus have that the level sets of f(w)+r(w) are bounded: ‖w−w

⋆‖ ≤ D for
all w such that f(w) + r(w) ≤ f(0) + r(0). Consider the “composite gradient mapping” (Nesterov,
2007)

m(v,w) = f(v) + 〈∇f(v),w − v〉 +
L

2
‖w − v‖2 + r(w) . (43)

Before proceeding with the proof of fast convergence rate, we would like to underscore the equivalence
of the Fobos update and the composite gradient mapping. Formally, minimizing m(v,w) with
respect to w is completely equivalent to taking a Fobos step with η = 1/L and v = wt. To obtain
the Fobos update from Eq. (43) we simply need to divide m(v,w) by L = 1/η, omit terms that

solely depend on v = wt, and use the fact that wt+ 1
2

= wt − ηtg
f
t = v −∇f(v)/L.

For notational convenience, let φ(w) = f(w) + r(w). Denote by w
+ the vector minimizing

m(v,w). Then from Eq. (42) we get that

φ(w+) = f(w+) + r(w+) ≤ f(v) +
〈

∇f(v),w+ − v
〉

+
L

2
‖w+ − v‖2 + r(w+) = inf

w

m(v,w) (44)

Further, because f(v) + 〈∇f(v),w − v〉 ≤ f(w) for all w, we have

inf
w

m(v,w) ≤ inf
w

[

f(w) +
L

2
‖w − v‖2 + r(w)

]

= inf
w

[

φ(w) +
L

2
‖w − v‖2

]

. (45)

Now we consider the change in function value from wt to wt+1 for the Fobos update with
η = 1/L. To do this, we take an arbitrary optimal point w

⋆ and restrict wt+1 to lie on the line
between wt and w

⋆, which constrains the set of infimum values above and allows us to carefully
control them. With this construction, along with Eqs. (44) and (45) we get that

φ(wt+1) ≤ inf
w

[

φ(w) +
L

2
‖w − wt‖2

]

≤ inf
α∈[0,1]

[

φ(αw
⋆ + (1 − α)wt) +

L

2
‖αw

⋆ + (1 − α)wt − wt‖2

]

≤ inf
α∈[0,1]

[

αφ(w⋆) + (1 − α)φ(wt) +
α2L

2
‖w⋆ − wt‖2

]

. (46)

The bound in Eq. (46) follows due to the convexity of φ. One immediate consequence of Eq. (46) is
that φ(wt+1) ≤ φ(wt), since at α = 0 we obtain the same objective for φ. Thus, all iterates of the
method satisfy ‖wt − w

⋆‖ ≤ D. We therefore can distill the bound to be

φ(wt+1) ≤ inf
α∈[0,1]

[

φ(wt) + α (φ(w⋆) − φ(wt)) + α2 LD2

2

]

.
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The argument of the infimum of the equation above is a quadratic equation in α. We need to
analyze two possible cases for the optimal solution. In the first case when φ(wt) − φ(w⋆) > LD2,
the optimal value of α is 1 and φ(wt+1) ≤ φ(w⋆) + LD2/2. Therefore, we will never encounter
again this case in future iterations. The second occurs when φ(wt) − φ(w⋆) ≤ LD2, so we have
α = (φ(wt) − φ(w⋆))/LD2 ∈ [0, 1], which yields

φ(wt+1) ≤ φ(wt) −
(φ(wt) − φ(w⋆))

2

2LD2
. (47)

To obtain the form of the convergence rate let us define the inverse residual value ρt = 1/(φ(wt)−
φ(w⋆)). By analysing the rate at which ρt tends to infinity we obtain our desired convergence rate.
From the definition of ρt and the bound of Eq. (47) we get that

ρt+1 − ρt =
1

φ(wt+1) − φ(w⋆)
− 1

φ(wt) − φ(w⋆)
=

φ(wt) − φ(w⋆) − φ(wt+1) + φ(w⋆)

(φ(wt+1) − φ(w⋆))(φ(wt) − φ(w⋆))

= ρtρt+1(φ(wt) − φ(wt+1)) ≥ ρtρt+1
(φ(wt) − φ(w⋆))2

2LD2
=

ρtρt+1

2ρ2
t LD2

≥ 1

LD2
,

where the last inequality is due to the fact that ρt+1 ≥ ρt and therefore ρtρt+1/ρ2
t ≥ 1. Summing

the differences ρt+1 − ρt from t = 0 through T − 1, we get ρT ≥ T/2LD2. Thus, for t ≥ 1 we have

φ(wt) − φ(w⋆) = 1/ρt ≤
2LD2

t
.

To recap, by setting η = 1/L while relaying on the fact that f has Lipschitz continuous gradient
with constant L, we obtain a 1/T rate of convergence

f(wT ) + r(wT ) ≤ f(w⋆) + r(w⋆) +
2LD2

T
.
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L. Meier, S. van de Geer, and P. Bühlmann. The group lasso for logistic regression. Journal of the
Royal Statistical Society Series B, 70(1):53–71, 2008.
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