
Boosting with Structural Sparsity

John Duchi jduchi@cs.berkeley.edu

University of California, Berkeley

Berkeley, CA 94720 USA

Yoram Singer singer@google.com

Google

Mountain View, CA 94043 USA

Abstract

Despite popular belief, boosting algorithms and related coordinate descent methods are prone to

overfitting. We derive modifications to AdaBoost and related gradient-based coordinate descent

methods that incorporate, along their entire run, sparsity-promoting penalties for the norm of the

predictor that is being learned. The end result is a family of coordinate descent algorithms that

integrates forward feature induction and back-pruning through sparsity promoting regularization

along with an automatic stopping criterion for feature induction. We study penalties based on the

ℓ1, ℓ2, and ℓ∞ norm of the learned predictor and also introduce mixed-norm penalties that build

upon the initial norm-based penalties. The mixed-norm penalties facilitate structural sparsity

of the parameters of the predictor, which is a useful property in multiclass prediction and other

related learning tasks. We report empirical results that demonstrate the power of our approach in

building accurate and structurally sparse models from high dimensional data.

Keywords: Boosting, coordinate descent, group sparsity, feature induction and pruning.

1. Introduction and problem setting

Boosting is a highly effective and popular method for obtaining an accurate classifier from a set of
inaccurate predictors. Boosting algorithms construct high precision classifiers by taking a weighted
combination of base predictors, known as weak hypotheses. Rather than give a detailed overview
of boosting, we refer the reader to Meir and Rätsch (2003) or Schapire (2003) and the numerous
references therein. While the analysis of boosting algorithms suggests that boosting attempts to
find large ℓ1 margin predictors subject to their weight vectors belonging to the simplex (Schapire
et al., 1998), AdaBoost and boosting algorithms in general do not directly use the ℓ1-norm of their
weight vectors. Many boosting algorithms can also be viewed as forward-greedy feature induction
procedures. In this view, the weak-learner provides new predictors which seem to perform well
either in terms of their error-rate with respect to the distribution that boosting maintains or in
terms of their potential of reducing the empirical loss (see, e.g. Schapire and Singer (1999)). Thus,
once a feature is chosen, typically in a greedy manner, it is associated with a weight which remains
intact through the reminder of the boosting process. The original AdaBoost algorithm (Freund
and Schapire, 1997) and its confidence-rated counterpart (Schapire and Singer, 1999) are notable
examples of this forward-greedy feature induction and weight assignment procedure, where the
difference between the two variants of AdaBoost boils down mostly to the weak-learner’s feature
scoring and selection scheme.

The aesthetics and simplicity of AdaBoost and other forward greedy algorithms, such as Log-
itBoost (Friedman et al., 2000), also facilitate a tacit defense from overfitting, especially when
combined with early stopping of the boosting process (Zhang and Yu, 2005). The empirical success
of Boosting algorithms helped popularize the view that boosting algorithms are relatively resilient
to overfitting. However, several researchers have noted the deficiency of the forward-greedy boosting

1

algorithm and suggested alternative coordinate descent algorithms, such as totally-corrective boost-
ing (Warmuth et al., 2006) and a combination of forward induction with backward pruning (Zhang,
2008). The algorithms that we present in this paper build on existing boosting and other coordinate
descent procedures while incorporating, throughout their run, regularization on the weights of the
selected features. The added regularization terms influence both the induction and selection of new
features and the weight assignment steps. Moreover, as we discuss below, the regularization term
may eliminate (by assigning a weight of zero) previously selected features. The result is a simple
procedure that includes forward induction, weight estimation, backward pruning, entertains conver-
gence guarantees, and yields sparse models. Furthermore, the explicit incorporation of regularization
also enables us to group features and impose structural sparsity on the learned weights, which is the
focus and one of the main contributions of the paper.

Our starting point is a simple yet effective modification to AdaBoost that incorporates, along
the entire run, an ℓ1 penalty for the norm of the weight vector it constructs. The update we devise
can be used both for weight optimization and induction of new accurate hypotheses while taking the
resulting ℓ1-norm into account, and it also gives a criterion for terminating the boosting process. A
closely related approach was suggested by Dud́ık et al. (2007) in the context of maximum entropy.
We provide new analysis for the classification case that is based on an abstract fixed-point theorem.
This rather general theorem is also applicable to other norms, in particular the ℓ∞ norm which
serves as a building block for imposing structural sparsity.

We now describe more formally our problem setting. As mentioned above, our presentation
and analysis is for classification settings, though our derivation can be easily extended to and used
in regression and other prediction problems (as demonstrated in the experimental section and the
appendix). For simplicity of exposition, we assume that the class of weak hypotheses is finite
and contains n different hypotheses. We thus map each instance x to an n dimensional vector
(h1(x), . . . , hn(x)), and we overload notation and simply denote the vector as x ∈ R

n. We discuss in
Sec. 8 the use of our framework in the presence of countably infinite features, also known as the task of
feature induction. In the binary case, each instance xi is associated with a label yi ∈ {−1,+1}. The
goal of learning is then to find a weight vector w such that the sign of w ·xi is equal to yi. Moreover,
we would like to attain large inner-products so long as the predictions are correct. We build on the
generalization of AdaBoost from Collins et al. (2002), which analyzes the the exponential-loss and
the log-loss, as the means to obtain this type of high confidence linear prediction. Formally, given a
sample S = {(xi, yi)}m

i=1, the algorithm focuses on finding w for which one of the following empirical
losses is small:

m∑

i=1

log (1 + exp(−yi(w · xi)) (LogLoss)
m∑

i=1

exp (−yi(w · xi)) (ExpLoss) . (1)

We give our derivation and analysis for the log-loss as it also encapsulates the derivation for the
exp-loss. We first derive an adaptation that incorporates the ℓ1-norm of the weight vector into the
empirical loss,

Q(w) =

m∑

i=1

log (1 + exp(−yi(w · xi))) + λ‖w‖1. (2)

This problem is by no means new. It is often referred to as ℓ1-regularized logistic regression and
several advanced optimization methods have been designed for the problem (see for instance Koh
et al. (2007) and the references therein). This regularization has many advantages, including its
ability to yield sparse weight vectors w and, under certain conditions, to recover the true sparsity of
w (Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006). Our derivation shares similarity with the
analysis in Dud́ık et al. (2007) for maximum-entropy models, however, we focus on boosting and more
general regularization strategies. We provide an explicit derivation and proof for ℓ1 regularization
in order to make the presentation more accessible and to motivate the more complex derivation
presented in the sequel.

2

Next, we replace the ℓ1-norm penalty with an ℓ∞-norm penalty, proving an abstract primal-dual
fixed point theorem on sums of convex losses with an ℓ∞ regularizer that we use throughout the
paper. While this penalty cannot serve as a regularization term in isolation, as it is oblivious to the
value of most of the weights of the vector, it serves as an important building block for achieving
structural sparsity by using mixed-norm regularization, denoted ℓ1/ℓp. Mixed-norm regularization
is used when there is a partition of or structure over the weights that separates them into disjoint
groups of parameters. Each group is tied together through an ℓp-norm regularizer. For concreteness
and in order to leverage existing boosting algorithms, we specifically focus on settings in which we
have a matrix W = [w1 · · ·wk] ∈ R

n×k of weight vectors, and we regularize the weights in each
row of W (denoted wj) together through an ℓp-norm. We derive updates for two important settings
that generalize binary logistic-regression. The first is multitask learning (Obozinski et al., 2007). In
multitask learning we have a set of tasks {1, . . . , k} and a weight vector wr for each task. Without
loss of generality, we assume that all the tasks share training examples (we could easily sum only
over examples specific to a task and normalize appropriately). Our goal is to learn a matrix W that
minimizes

Q(W) = L(W) + λR(W) =

m∑

i=1

k∑

r=1

log (1 + exp(−yi,r(wr · xi))) + λ

n∑

j=1

‖wj‖p . (3)

The other generalization we describe is the multiclass logistic loss. In this setting, we assume
again there are k weight vectors w1, . . . ,wk that operate on each instance. Given an example xi,
the classifier’s prediction is a vector [w1 · xi, . . . ,wk · xi], and the predicted class is the index of
the inner-product attaining the largest of the k values, argmaxr wr · xi. In this case, the loss of
W = [w1 · · ·wk] is

Q(W) = L(W) + λR(W) =
m∑

i=1

log

1 +
∑

r 6=yi

exp(wr · xi − wyi
· xi)

+ λ
n∑

j=1

‖wj‖p . (4)

In addition to the incorporation of ℓ1/ℓ∞ regularization we also derive a completely new upper
bound for the multiclass loss. Since previous multiclass constructions for boosting assume that the
each base hypothesis provides a different prediction per class, they are not directly applicable to
the more common multiclass setting discussed in this paper, which allocates a dedicated predictor
per class. The end result is an efficient boosting-based update procedures for both multiclass and
multitask logistic regression with ℓ1/ℓ∞ regularization. Our derivation still follows the skeleton of
templated boosting updates from Collins et al. (2002) in which multiple weights can be updated on
each round.

We then shift our focus to an alternative apparatus for coordinate descent with the log-loss that
does not stem from the AdaBoost algorithm. In this approach we bound above the log-loss by a
quadratic function. We term the resulting update GradBoost as it updates one or more coordinates
in a fashion that follows gradient-based updates. Similar to the generalization of AdaBoost, we
study ℓ1 and ℓ∞ penalties by reusing the fixed-point theorem. We also derive an update with
ℓ2 regularization. Finally, we derive GradBoost updates with both ℓ1/ℓ∞ and ℓ1/ℓ2 mixed-norm
regularizations.

The end result of our derivations is a portfolio of coordinate descent-like algorithms for updating
one or more blocks of parameters (weights) for logistic-based problems. These types of problems
are often solved by techniques based on Newton’s method (Koh et al., 2007; Lee et al., 2006), which
can become inefficient when the number of parameters n is large since they have complexity at least
quadratic (and usually cubic) in the number of features. In addition to new descent procedures, the
bounds on the loss-decrease made by each update can serve as the means for selecting (inducing)
new features. By re-updating previously selected weights we are able to prune-back existing fea-
tures. Moreover, we can alternate between pure weight updates (restricting ourselves to the current

3

set of hypotheses) and pure induction of new hypotheses (keeping the weight of existing hypotheses
intact). Further, our algorithms provide sound criteria for terminating boosting. As demonstrated
empirically in our experiments, the end result of boosting with the structural sparsity based on ℓ1,
ℓ1/ℓ2, or mixed-norm ℓ1/ℓ∞ regularizations is a compact and accurate model. The structural spar-
sity is especially useful in complex prediction problems, such as multitask and multiclass learning,
when features are expensive to compute. The mixed-norm regularization avoids the computation of
features at test time since entire rows of W may set to be zero.

The paper is organized as follows. In the reminder of this section we give a brief overview of re-
lated work. In Sec. 2 we describe the modification to AdaBoost which incorporates ℓ1 regularization.
We then switch to ℓ∞ norm regularization in Sec. 3 and provide a general primal-dual theorem which
also serves us in later sections. We use the two norms in Sec. 4, where describe our first structural
ℓ1/ℓ∞ regularization. We next turn the focus to gradient-based coordinate descent and describe in
Sec. 5 the GradBoost update with ℓ1 regularization. In Sec. 6 we describe the GradBoost version
of the structural ℓ1/ℓ∞ regularization and in Sec. 7 a GradBoost update with ℓ1/ℓ2 regularization.
In Sec. 8 we discuss the implications of the various updates for learning sparse models with forward
feature induction and backward pruning, showing how to use the updates during boosting and for
termination of the boosting process. In Sec. 9 we briefly discuss the convergence properties of the
various updates. Finally, in Sec. 10 we describe the results of experiments with binary classification,
regression, multiclass, and multitask problems.

Related work: Our work intersects with several popular settings, builds upon existing work, and
is related to numerous boosting and coordinate descent algorithms. It is clearly impossible to cover
in depth the related work. We recap here the connections made thus far, and also give a short
overview in attempt to distill the various contributions of this work. Coordinate descent algorithms
are well studied in the optimization literature. An effective use of coordinate descent algorithms for
machine learning tasks was given for instance in Zhang and Oles (2001), which was later adapted
by Madigan and colleagues for text classification (2005). Our derivation follows the structure of
template-based algorithm from Collins et al. (2002) while incorporating regularization and scoring
the regularized base-hypotheses in a way analogous to the maximum-entropy framework of Dud́ık
et al. (2007). The base GradBoost algorithm we derive shares similarity with LogitBoost (Friedman
et al., 2000), while similar bounding techniques to ours were first suggested by Dekel et al. (2005).

Learning sparse models for the logistic loss and other convex loss functions with ℓ1 regularization
is the focus of a voluminous amount of work in different research areas, from statistics to information
theory. For instance, see Duchi et al. (2008) or Zhang (2008) and the numerous references therein
for two recent machine learning papers that focus on ℓ1 domain constraints and forward-backward
greedy algorithms in order to obtain sparse models with small ℓ1 norm. The alternating induction
with weight-updates of Zhang (2008) is also advocated in the boosting literature by Warmuth and
colleagues, who term the approach “totally corrective” (2006). In our setting, the backward-pruning
is not performed in a designated step or in a greedy manner but is rather a different facet of the weight
update. Multiple authors have also studied the setting of mixed-norm regularization. Negahban
and Wainwright (2008) recently analyzed the structural sparsity characteristic of the ℓ1/ℓ∞ mixed-
norm, and ℓ1/ℓ2-regularization was analyzed by Obozinski et al. (2008). Group Lasso and tied
models through absolute penalties are of great interest in the statistical estimation literature. See
for instance Meinshausen and Bühlmann (2006); Zhao and Yu (2006); Zhao et al. (2006); Zhang
et al. (2008), where the focus is on consistency and recovery of the true non-zero parameter rather
on efficient learning algorithms for large scale problems. The problem of simultaneously learning
multiple tasks is also the focus of many studies, see Evgeniou et al. (2005); Rakotomamonjy et al.
(2008); Jacob et al. (2008) for recent examples and the references therein. In this paper we focus on
a specific aspect of multiple task learning through structured regularization, which can potentially
be used in other multitask problems such as multiple kernel learning.

4

Input: Training set S = {(xi, yi)}m
i=1 ;

Update templates A ⊆ R
n
+ s.t. ∀a ∈ A maxi

∑n
j=1 aj |xi,j | ≤ 1

regularization λ ; number of rounds T
For t = 1 to T

// Compute importance weights
For i = 1 to m

Set qt(i) = 1
1+exp(yi(wt·xi))

Choose a ∈ A
// Compute feature correlations
For j s.t. aj 6= 0

µ+
j =

∑

i:yixi,j>0

qt(i)|xi,j | , µ−
j =

∑

i:yixi,j<0

qt(i)|xi,j |

// Compute change in weights (δt
j = 0 for all j s.t. aj = 0)

δt
j =

−wt
j if

∣
∣
∣µ+

j ewt
j/aj − µ−

j e−wt
j/aj

∣
∣
∣ ≤ λ

aj log
−λ+

q

λ2+4µ+
j

µ−

j

2µ−

j

if µ+
j ewt

j/aj > µ−
j e−wt

j/aj + λ

aj log
λ+

q

λ2+4µ+
j

µ−

j

2µ−

j

if µ+
j ewt

j/aj < µ−
j e−wt

j/aj − λ

wt+1 = wt + δt

Figure 1: AdaBoost for ℓ1-regularized log-loss.

2. AdaBoost with ℓ1 regularization

In this section we describe our ℓ1 infused modification to AdaBoost using the general framework
developed in Collins et al. (2002). In this framework, the weight update taken on each round of
boosting is based on a template that selects and amortizes the update over (possibly) multiple
features. The pseudocode for the algorithm is given in Fig. 1. On each round t of boosting an
importance weight qt is calculated for each example. These weights are simply the probability the
current weight vector wt assigns to the incorrect label for example i, and they are identical to the
distribution defined over examples in the standard AdaBoost algorithm for the log-loss.

Let us defer the discussion on the use of templates to the end of Sec. 8 and assume that the
template a simply selects a single feature to examine, i.e. aj > 0 for some index j and ak = 0 for
all k 6= j. Once a feature is selected we compute its correlation and inverse correlation with the
label according to the distrubution qt, denoted by the variables µ+

j and µ−
j . These correlations are

also calculated by AdaBoost. The major difference is the computation of the update to the weight
j, denoted δt

j . The value of δt
j of standard confidence-rated AdaBoost is 1

2 log(µ+
j /µ−

j), while our
update incorporates ℓ1-regularization with a multiplier λ. However, if we set λ = 0, we obtain
the weight update of AdaBoost. We describe a derivation of the updates of for AdaBoost with
ℓ1-regularization that constitutes the algorithm described in Fig. 1. While we present a complete
derivation in this section, the algorithm can be obtained as a special case of the analysis presented
in Sec. 3. The later analysis is rather lengthy and detailed, however, and we thus provide a concrete
and simple analysis for the important case of ℓ1 regularization.

We begin by building on existing analyses of AdaBoost and show that each round of boosting is
guaranteed to decrease the penalized loss. In the generalized version of boosting, originally described
by Collins et al. (2002), the booster selects a vector a from a set of templates A on each round of
boosting. The template selects the set of features, or base hypotheses, whose weight we update.
Moreover, the template vector can may specify a different budget for each feature update so long as
the vector a satisfies the condition

∑

j aj |xi,j | ≤ 1. Classical boosting sets a single coordinate in the

5

vector a to a non-zero value, while the simultaneous update described in Collins et al. (2002) sets
all coordinates of a to be the same. We start by recalling the progress bound for AdaBoost with
the log-loss when using a template vector.

Lemma 1 (Boosting progress bound (Collins et al., 2002)) Define importance weights qt(i) =
1/(1 + exp(yiw

t · xi)) and correlations

µ+
j =

∑

i:yixi,j>0

qt(i)|xi,j | and µ−
j =

∑

i:yixi,j<0

qt(i)|xi,j | .

Let wt+1 = wt + δt such that δt
j = ajd

t
j and the vector a satisfies

∑

j aj |xi,j | ≤ 1. Then, the change

in the log-loss, ∆t = L(wt) − L(wt+1), between two iterations of boosting is lower bounded by

∆t ≥
n∑

j=1

aj

(

µ+
j

(

1 − e−dt
j

)

+ µ−
j

(

1 − edt
j

))

=
∑

j:aj>0

aj

(

µ+
j

(

1 − e−δt
j/aj

)

+ µ−
j

(

1 − eδt
j/aj

))

.

For convenience and completeness, we provide a derivation of the above lemma using the notation
established in this paper in section A of the appendix. Since the ℓ1 penalty is an additive term, we
incorporate the change in the 1-norm of w to bound the overall decrease in the loss when updating
wt to wt + δt with

Q(wt) − Q(wt+1) ≥
n∑

j=1

aj

(

µ+
j

(

1 − e−δt
j/aj

)

+ µ−
j

(

1 − eδt
j/aj

))

− λ‖δt + wt‖1 + λ‖wt‖1 . (5)

By construction, Eq. (5) is additive in j, so long as aj > 0. We can thus maximize the progress
individually for each such index j,

ajµ
+
j

(

1 − e−δt
j/aj

)

+ ajµ
−
j

(

1 − eδt
j/aj

)

− λ
∣
∣δt

j + wt
j

∣
∣+ λ

∣
∣wt

j

∣
∣ . (6)

Omitting the index j and eliminating constants, we are left with the following minimization problem
in δ:

minimize
δ

aµ+e−δ/a + aµ−eδ/a + λ |δ + w| . (7)

We now give two lemmas that aid us in finding the δ⋆ minimizing Eq. (7).

Lemma 2 If µ+ew/a − µ−e−w/a > 0, then the minimizing δ⋆ of Eq. (7) satisfies δ⋆ + w ≥ 0.
Likewise, if µ+ew/a − µ−e−w/a < 0, then δ⋆ + w ≤ 0.

Proof Without loss of generality, we focus on the case when µ+ew/a > µ−e−w/a. Assume for the
sake of contradiction that δ⋆ + w < 0. We now take the derivative of Eq. (7) with respect to δ,
bearing in mind that the derivative of |δ + w| is −1. Equating the result to zero, we have

−µ+e−δ⋆/a + µ−eδ⋆/a − λ = 0 ⇒ µ+e−δ⋆/a ≤ µ−eδ⋆/a.

We assumed, however, that δ⋆ +w < 0, so that e(δ⋆+w)/a < 1 and e−(δ⋆+w)/a > 1. Thus, multiplying
the left side of the above inequality by e(δ⋆+w)/a < 1 and the right by e−(δ⋆+w)/a > 1, we have that

µ+e−δ⋆/aeδ⋆/a+w/a < µ−eδ/ae−δ/a−w/a ⇒ µ+ew/a < µ−e−w/a.

This is a contradiction, so we must have that δ⋆ + w ≥ 0. The proof for the symmetric case follows
similarly.

In light of Lemma 2, we can eliminate the absolute value from the term |δ + w| in Eq. (7) and
force δ + w to take a certain sign. This property helps us in the proof of our second lemma.

6

Lemma 3 The optimal solution of equation Eq. (7) with respect to δ is δ⋆ = −w if and only if
∣
∣µ+ew/a − µ−e−w/a

∣
∣ ≤ λ.

Proof Again, let δ⋆ denote the optimal solution of Eq. (7). Based on Lemma 2, we focus without
loss of generality on the case where µ+ew/a > µ−e−w/a, which allows us to remove the absolute
value from Eq. (7). We replace it with δ + w and add the constraint that δ + w ≥ 0, yielding the
following scalar optimization problem:

minimize
δ

aµ+e−δ/a + aµ−eδ/a + λ(δ + w) s.t. δ + w ≥ 0 .

The Lagrangian of the above problem is L(δ, β) = aµ+e−δ/a + aµ−eδ/a + λ(δ + w) − β(δ + w). To
find the Lagrangian’s saddle point for δ we take its derivative and obtain ∂

∂δL(δ, β) = −µ+e−δ/a +

µ−eδ/a + λ− β. Let us first suppose that µ+ew/a − µ−e−w/a ≤ λ. If δ⋆ + w > 0 (so that δ⋆ > −w),
then by the complementarity conditions for optimality (Boyd and Vandenberghe, 2004), β = 0,
hence,

0 = −µ+e−δ⋆/a + µ−eδ⋆/a + λ > −µ+ew/a + µ−e−w/a + λ .

This implies that µ+ew/a − µ−e−w/a > λ, a contradiction. Thus, we must have that δ⋆ + w =
0. To prove the other direction we assume the that δ⋆ = −w. Then, since β ≥ 0 we get
−µ+ew/a + µ−e−w/a + λ ≥ 0, which implies that λ ≥ µ+ew/a − µ−e−w/a ≥ 0, as needed. The
proof for the symmetric case is analogous.

Equipped with the above lemmas, the update to wt+1
j is straightforward to derive. Let us assume

without loss of generality that µ+
j ewt

j/aj − µ−
j e−wt

j/aj > λ, so that δ⋆
j 6= −wj and δ⋆

j + wj > 0. We
need to solve the following equation:

−µ+
j e−δj/aj + µ−

j eδj/aj + λ = 0 or µ−
j β2 + λβ − µ+

j = 0 ,

where β = eδj/aj . Since β is strictly positive, it is equal to the positive root of the above quadratic,
yielding

β =
−λ +

√

λ2 + 4µ+
j µ−

j

2µ−
j

⇒ δ⋆
j = aj log

−λ +
√

λ2 + 4µ+
j µ−

j

2µ−
j

. (8)

In the symmetric case, when δ⋆
j + wt

j < 0, we get that δ⋆
j = aj log

λ+
q

λ2+4µ+
j

µ−

j

2µ−

j

. Finally, when the

absolute value of the difference between µ+
j exp(wt

j/aj) and µ−
j exp(−wt

j/aj) is less than or equal

to λ, Lemma 3 implies that δ⋆
j = −wt

j . When one of µ+
j or µ−

j is zero but |µ+
j ewt

j/aj | > λ of

|µ−
j e−wt

j/aj | > λ, the solution is simpler. If µ−
j = 0, then δ⋆

j = aj log(µ+
j /λ), and when µ+

j = 0, then

δ⋆
j = aj log(λ/µ−

j). Omitting for clarity the cases when µ±
j = 0, the different cases constitute the

core of the update given in Fig. 1.

3. Incorporating ℓ∞ regularization

Here we begin to lay the framework for multitask and multiclass boosting with mixed norm reg-
ularizers. In particular, we derive boosting-style updates for the multitask and multiclass losses
of equations (3) and (4). The derivation in fact encompasses the derivation of the updates for
ℓ1-regularized AdaBoost, which we also discuss below.

Before we can derive updates for boosting, we make a digression to consider a more general
framework of minimizing a separable function with ℓ∞ regularization. In particular, the problem that
we solve assumes that we have a sum of one-dimensional, convex, bounded below and differentiable

7

functions fj(d) (where we assume that if f ′
j(d) = 0, then d is uniquely determined) plus an ℓ∞-

regularizer. That is, we want to solve

minimize
d

k∑

j=1

fj(dj) + λ ‖d‖∞ . (9)

The following theorem characterizes the solution d⋆ of Eq. (9), and it also allows us to develop
efficient algorithms for solving particular instances of Eq. (9). In the theorem, we allow the un-
constrained minimizer of fj(dj) to be infinite, and we use the shorthand [k] to mean {1, 2, . . . , k}
and [z]+ = max{z, 0}. The intuition behind the theorem and its proof is that we can move the
values of d in their negative gradient directions together in a block, freezing entries of d that satisfy
f ′

j(dj) = 0, until the objective in Eq. (9) begins to increase.

Theorem 4 Let d̃j satisfy f ′
j(d̃j) = 0. The optimal solution d⋆ of Eq. (9) satisfies the following

properties:

(i) d⋆ = 0 if and only if
∑k

j=1 |f ′
j(0)| ≤ λ.

(ii) For all j, f ′
j(0)d⋆

j ≤ 0 and f ′
j(d

⋆
j)d

⋆
j ≤ 0.

(iii) Let B =
{
j : |d⋆

j | = ‖d⋆‖∞
}

and U = [k] \ B. Then

(a) For all j ∈ U , d̃j = d⋆
j and f ′

j(d
⋆
j) = 0.

(b) For all j ∈ B, |d̃j | ≥ |d⋆
j | = ‖d⋆‖∞

(c) When d⋆ 6= 0,
∑k

j=1 |f ′
j(d

⋆
j)| =

∑

j∈B |f ′
j(d

⋆
j)| = λ.

Proof Before proving the particular statements (i), (ii), and (iii) above, we perform a few prelimi-
nary calculations with the Lagrangian of Eq. (9) that will simplify the proofs of the various parts.
Minimizing

∑

j fj(dj) + λ ‖d‖∞ is equivalent to solving the following problem:

minimize
∑k

j=1 fj(dj) + λξ

s.t. −ξ ≤ dj ≤ ξ ∀j, and ξ ≥ 0 .
(10)

Although the positivity constraint on ξ is redundant, it simplifies the proof. To solve Eq. (10), we
introduce Lagrange multiplier vectors α � 0 and β � 0 for the constraints that −ξ ≤ dj ≤ ξ and
the multiplier γ ≥ 0 for the non-negativity of ξ. This gives the Lagrangian

L(d, ξ,α,β, γ) =

k∑

j=1

fj(dj) + λξ +

k∑

j=1

αj(dj − ξ) +

k∑

j=1

βj(−dj − ξ) − γξ . (11)

To find the saddle point of Eq. (11), we take the infimum of L with respect to ξ, which is −∞ unless

λ −
k∑

j=1

αj −
k∑

j=1

βj − γ = 0 . (12)

The non-negativity of γ implies that
∑k

j=1 αj + βj ≤ λ. Complimentary slackness (Boyd and

Vandenberghe, 2004) then shows that if ξ > 0 at optimum, γ = 0 so that
∑k

j=1 βj + αj = λ.
We are now ready to start proving assertion (i) of the theorem. By taking derivatives of L to

find the saddle point of the primal-dual problem, we know that at the optimal point d⋆ the following
equality holds:

f ′
j(d

⋆
j) − βj + αj = 0 . (13)

8

Suppose that d⋆ = 0 so that the optimal ξ = 0. By Eq. (12), Eq. (13), and complimentary slackness
on α and β we have

k∑

j=1

|f ′
j(0)| =

k∑

j=1

|αj − βj | ≤
k∑

j=1

αj + βj ≤ λ .

This completes the proof of the first direction of (i). We now prove the converse. Suppose that
∑k

j=1 |f ′
j(0)| ≤ λ. In this case, if we set αj =

[
−f ′

j(0)
]

+
and βj =

[
f ′

j(0)
]

+
, we have |f ′

j(0)| = βj +αj

and
∑k

j=1 αj + βj ≤ λ. Simply setting ξ = 0 and letting γ = λ −∑k
j=1(αj + βj) ≥ 0, we have

∑k
j=1 αj + βj + γ = λ. The KKT conditions for the problem are thus satisfied and 0 is the optimal

solution. This proves part (i) of the theorem.
We next prove statement (ii) of the theorem. We begin by proving that if f ′

j(0) ≤ 0, then d⋆
j ≥ 0

and similarly, that if f ′
j(0) ≥ 0, d⋆

j ≤ 0. If f ′
j(0) = 0, we could choose d⋆

j = 0 without incurring
any penalty in the ℓ∞ norm. Thus, suppose that f ′

j(0) < 0. Then, we have fj(−δ) > fj(0) for all
δ > 0, since the derivative of a convex function is non-decreasing. As such, the optimal setting of
dj must be non-negative. The argument for the symmetric case is similar, and we have shown that
f ′

j(0)d⋆
j ≤ 0.

The second half of (ii) is derived similarly. We know from Eq. (13) that f ′
j(d

⋆
j) = βj − αj . If

f ′
j(0) < 0, the complimentary slackness condition implies that βj = 0 and αj ≥ 0. These two

properties together imply that f ′
j(d

⋆
j) ≤ 0 whenever f ′

j(0) < 0. An analogous argument is true
when f ′

j(0) > 0, which implies that f ′
j(d

⋆
j) ≥ 0. Combining these properties with the statements of

previous paragraph, we have that f ′
j(d

⋆
j)d

⋆
j ≤ 0. This completes the proof of part (ii) of the theorem.

Let us now consider part (iii) of the theorem. If d⋆ = 0, then the set U is empty, thus (a), (b),
and (c) are trivially satisfied. For the remainder of the proof, we assume that d⋆ 6= 0. In this case
we must have ξ > 0, and complimentary slackness guarantees that γ = 0 and that at most one of
αj and βj are nonzero. Consider the indices in U , that is, j such that −ξ < d⋆

j < ξ. For any such
index j, both αj and βj must be zero by complimentary slackness. Therefore, from Eq. (13) we

know f ′
j(d

⋆
j) = 0. The assumption that d̃j is the unique minimizer of fj means that d⋆

j = d̃j , i.e.
coordinates not at the bound ξ simply take their unconstrained solutions. This proves point (a) of
part (iii).

We now consider point (b) of statement (iii) from the theorem. For j ∈ B, we have |d̃j | ≥ ξ.

Otherwise we could take d⋆
j = d̃j and have |d̃j | < ξ. This clearly decreases the objective for fj

because fj(d̃j) < fj(d
⋆
j). Further, |d̃j | < ξ so the constraints on ξ would remain intact, and we

would have j 6∈ B. We therefore must have |d̃j | ≥ ξ = |d⋆
j |, which finishes the proof of part (b).

Finally, we arrive at part (c) of statement (iii). Applying Eq. (12) with γ = 0, we have λ =
∑k

j=1 αj + βj , and applying Eq. (13) gives

k∑

j=1

|f ′
j(d

⋆
j)| =

k∑

j=1

|βj − αj | =

k∑

j=1

αj + βj = λ . (14)

This proves point (c) for the first of the two sums. Next, we divide the solutions d⋆
j into the two

sets B (for bounded) and U (for unbounded), where

B = {j : |d⋆
j | = ξ = ‖d⋆‖∞} and U = {j : |d⋆

j | < ξ}.

Clearly, B is non-empty, since otherwise we could decrease ξ in the objective from Eq. (10). Recalling
that for j ∈ U , f ′

j(d
⋆
j) = 0, Eq. (14) implies that the second equality of point (c) holds, namely

k∑

j=1

|f ′
j(d

⋆
j)| =

∑

j∈B

|f ′
j(d

⋆
j)| +

∑

j∈U

|f ′
j(d

⋆
j)|

︸ ︷︷ ︸

=0

= λ .

9

Input: Convex functions {fr}k
r=1, regularization λ

If
∑k

r=1 |f ′
r(0)| ≤ λ

Return d⋆ = 0
// Find sign of optimal solutions
Set sr = − sign(f ′

r(0))
// Get ordering of unregularized solutions

Solve d̃r = argmind fr(srd)

// We have d̃(1) ≥ d̃(2) ≥ . . . ≥ d̃(k)

Sort {d̃r} (descending) into {d̃(r)}; d̃(k+1) = 0
For l = 1 to k

Solve for ξ such that
∑l

i=1 f ′
(i)(siξ) = −λ

If ξ ≥ d̃(l+1)

Break

Return d⋆ such that d⋆
r = sr min{d̃r, ξ}

Figure 2: Algorithm for minimizing
∑

r fr(dr) + λ ‖d‖∞.

In Fig. 2, we present a general algorithm that builds directly on the implications of Thm. 4 for
finding the minimum of

∑

j fj(dj)+λ ‖d‖∞. The algorithm begins by flipping signs so that all dj ≥ 0
(see part (ii) of the theorem). It then iteratively adds points to the bounded set B, starting from the
point with largest unregularized solution d̃(1) (see part (iii) of the theorem). When the algorithm
finds a set B and bound ξ = ‖d‖∞ so that part (iii) of the theorem is satisfied (which is guaranteed
by (iii.b), since all indices in the bounded set B must have unregularized solutions greater than the
bound ‖d⋆‖∞), it terminates. Note that the algorithm näıvely has runtime complexity of O(k2). In
the following sections, we show that this complexity can be brought down to O(k log k) by exploiting
the structure of the functions fj that we consider (this could be further decreased to O(k) using
generalized median searches, however, this detracts from the main focus of this paper).

Revisiting AdaBoost with ℓ1-regularization We can now straightforwardly derive lemmas 2
and 3 as special cases of Theorem 4. Recall the ℓ1-regularized minimization problem we faced for the
exponential loss in Eq. (7): we had to minimize a function of the form aµ+e−δ/a+aµ−eδ/a+λ|δ+w|.
Replacing δ + w with θ, this minimization problem is equivalent to minimizing

aµ+ew/ae−θ/a + aµ−e−w/aeθ/a + λ|θ|.

The above problem amounts to a simple one-dimensional version of the type of problem considered
in Thm. 4. We take the derivative of the first two terms with respect to θ, which at θ = 0 is
−µ+ew/a + µ−e−w/a. If this term is positive, then θ⋆ ≤ 0, otherwise, θ⋆ ≥ 0. This result is
equivalent to the conditions for δ⋆ + w ≤ 0 and δ⋆ + w ≥ 0 in Lemma 2. Lemma 3 can also be
obtained as an immediate corollary of Thm. 4 since θ⋆ = 0 if and only if |µ+ew/a − µ−e−w/a| ≤
λ, which implies that w + δ⋆ = 0. The solution in Eq. (8) amounts to finding the θ such that
|µ+ew/ae−θ/a − µ−e−w/aeθ/a| = λ.

4. AdaBoost with ℓ1/ℓ∞ mixed-norm regularization

In this section we build on the results presented in the previous sections and present extensions of
the AdaBoost algorithm to multitask and multiclass problems with mixed-norm regularization given
in Eq. (3) and Eq. (4).

10

We start with a bound on the logistic loss to derive boosting-style updates for the mixed-norm
multitask loss of Eq. (3) with p = ∞. To remind the reader, the loss we consider is

Q(W) = L(W) + λR(W) =

m∑

i=1

k∑

r=1

log (1 + exp(−yi,r(wr · xi))) + λ

n∑

j=1

‖wj‖∞ .

In the above, wr represents the rth column of W while wj represents the jth row. In order to extend
the boosting algorithm from Fig. 1, we first need to extend the progress bounds for binary logistic
regression to the multitask objective.

The multitask loss is decomposable into sums of losses, one per task. Hence, for each separate
task we obtain the same bound as that of Lemma 1. However, we now must update rows wj from
the matrix W while taking into account the mixed-norm penalty. Given a row j, we calculate
importance weights qt(i, r) for each example i and task r as qt(i, r) = 1/(1 + exp(yi,rwr · xi)) and
the correlations µ±

r,j for each task r through a simple generalization of the correlations in Lemma 1
as

µ+
r,j =

∑

i:yi,rxi,j>0

qt(i, r)|xi,j | and µ−
r,j =

∑

i:yi,rxi,j<0

qt(i, r)|xi,j | .

Defining δj = [δj,1 · · · δj,k] and applying lemma 1 yields that when we update W t+1 = W t +
[δt

1 · · · δt
n]⊤, we can lower bound the change in the loss ∆t = L(W t+1) − L(W t) between iterations

t and t + 1 by

∆t ≥
n∑

j=1

aj

k∑

r=1

(

µ+
r,j

(

1 − e−δt
j,r/aj

)

+ µ−
r,j

(

1 − eδt
j,r/aj

))

. (15)

As before, the template vector should satisfy the constraint that
∑

j aj |xi,j | ≤ 1 for all i.
Before proceeding to the specifics of the algorithm, we revisit the multiclass objective from Eq. (4)

and bound it as well. Again, we have

Q(W) = L(W) + λR(W) =

m∑

i=1

log

1 +
∑

r 6=yi

exp(wr · xi − wyi
· xi)

+ λ

n∑

j=1

‖wj‖∞ .

A change in the definition of the importance weights to be the probability that the weight matrix
W assigns to a particular class, along with an updated definition of the correlations µ±

r,j , gives us a
bound on the change in the multiclass loss. In particular, the following lemma modifies and extends
the multiclass boosting bounds of Collins et al. (2002).

Lemma 5 (Multiclass boosting progress bound) Let qt(i, r) denote importance weights for each
example index i and class index r ∈ {1, . . . , k}, where

qt(i, r) =
exp(wt

r · xi)
∑

l exp(wt
l · xi)

.

Define the importance-weighted correlations as

µ+
r,j =

∑

i:yi 6=r,xi,j<0

qt(i, r)|xi,j | +
∑

i:yi=r,xi,j>0

(1 − qt(i, yi))|xi,j |

µ−
r,j =

∑

i:yi 6=r,xi,j>0

qt(i, r)|xi,j | +
∑

i:yi=r,xi,j<0

(1 − qt(i, yi))|xi,j | .

Let the update to the jth row of the matrix W t is wt+1
j = wt

j + δt
j and that the vector a satisfies

maxi 2
∑

j aj |xi,j | ≤ 1. Then the change in the multiclass logistic loss, ∆t = L(W t+1) − L(W t), is

11

lower bounded by

∆t ≥
n∑

j=1

aj

k∑

r=1

(

µ+
r,j

(

1 − e−δt
j,r/aj

)

+ µ−
r,j

(

1 − eδt
j,r/aj

))

. (16)

The proof of the lemma is provided in Appendix A. The standard boosting literature usually assumes
that instead of having multiple class vectors wr, there is a single vector w and that features have
different outputs per-class, denoted h(xi, r). Our setting instead allows single view of xi with
multiple prediction vectors wr, arguably a more natural (and common) parameterization. With
the lemma in place, we note that the boosting bounds we have achieved for the multitask loss in
Eq. (15) and the multiclass loss in Eq. (16) are syntactically identical. They differ only in their
computation of the importance weights and weighted correlations. These similarities allow us to
attack the boosting update for both together, deriving one efficient algorithm for ℓ1/ℓ∞-regularized
boosting based on a corollary to Theorem 4 and the algorithm of Fig. 2.

Now we proceed with the derivation of AdaBoost with structural regularization. Adding ℓ∞-
regularization terms to Eq. (15) and Eq. (16), we have

Q(W t) − Q(W t+1) ≥
n∑

j=1

aj

k∑

r=1

(

µ+
r,j

(

1 − e−δj,r/aj

)

+ µ−
r,j

(

1 − eδj,r/aj

))

−λ

n∑

j=1

∥
∥wt

j + δj

∥
∥
∞

+ λ

n∑

j=1

∥
∥wt

j

∥
∥
∞

. (17)

For simplicity of our derivation, we focus on updating a single row j in W , and we temporarily
assume that wt

j = 0. We make the substitution ajdr = δj,r. Using these assumptions and a few
simple algebraic manipulations, we find that we need to solve the following minimization problem:

minimize
d

k∑

r=1

µ+
r e−dr + µ−

r edr + λ ‖d‖∞ . (18)

First, we note that the objective function of Eq. (18) is separable in d with an ℓ∞-regularization
term. Second, the derivative of each of the terms, dropping the regularization term, is −µ+

r e−dr +
µ−

r edr . Third, the un-regularized minimizers are d̃r = 1
2 log(µ+

r /µ−
r), where we allow d̃r = ±∞. We

immediately have the following corollary to Theorem 4:

Corollary 6 The optimal solution d⋆ of Eq. (18) is d⋆ = 0 if and only if
∑k

r=1 |µ+
r − µ−

r | ≤ λ.
Assume without loss of generality that µ+

r ≥ µ−
r . When d⋆ 6= 0, there are sets B = {r : |d⋆

r | =
‖d⋆‖∞} and U = [k] \ B such that

(a) For all r ∈ U , µ+
r e−d⋆

r − µ−
r ed⋆

r = 0

(b) For all r ∈ B, |d̃r| ≥ |d⋆
r | = ‖d⋆‖∞

(c)
∑

r∈B µ+
r e−‖d⋆‖

∞ − µ−
r e‖d⋆‖

∞ − λ = 0.

Based on the corollary above, we can derive an efficient procedure that first sorts the indices in
[k] by the magnitude of the unregularized solution d̃r (we can assume that µ+

r ≥ µ−
r and flip signs at

the end as in Fig. 2) to find d̃(ρ), where d̃(ρ) is the ρth largest unregularized solution. The algorithm
then solves the following equation in d for each ρ ∈ [k],

e−d
∑

r:d̃r≥d̃(ρ)

µ+
r − ed

∑

r:d̃r≥d̃(ρ)

µ−
r − λ = 0 . (19)

12

This process continues until we find an index ρ such that the solution d⋆ for Eq. (19) satisfies
d⋆ ≥ d̃(ρ+1). To develop an efficient algorithm, we define

M±
ρ =

∑

r:d̃r≥d̃(ρ)

µ±
r .

In order to solve Eq. (19) for each d, we can apply the reasoning for Eq. (8) and find

d⋆ = log
−λ +

√

λ2 + 4M+
ρ M−

ρ

2M−
ρ

. (20)

When M−
ρ = 0, we get d⋆ = log(λ/M+

ρ). We can use Eq. (20) successively in the algorithm of Fig. 2

by setting M±
ρ+1 = M±

ρ + µ±
(ρ). To recap, by sorting d̃r = 1

2 log(µ+
r /µ−

r) and incrementally updating

M±
ρ , we can use the algorithm of Fig. 2 to solve the multiclass and multitask extensions of AdaBoost

with ℓ1/ℓ∞-regularization.
It remains to show how to solve the more general update from Eq. (17). In particular, we would

like to find the minimum of

a

k∑

r=1

(
µ+

r e−dr + µ−
r edr

)
+ λ ‖w + ad‖∞ . (21)

We can make the transformation γr = wr/a+dr, which reduces our problem to finding the minimizer
of

k∑

r=1

(

µ+
r ewr/ae−γr + µ−

r e−wr/aeγr

)

+ λ ‖γ‖∞

with respect to γ. This minimization problem can be solved by using the same sorting-based
approach as in the prequel, and we then recover d⋆ = γ⋆ − w/a.

Combining our reasoning for the multiclass and multitask losses, we obtain an algorithm that
solves both problems by appropriately setting µ±

r,j while using the algorithm of Fig. 2. The combined
algorithm for both problems is presented in Fig. 3.

5. Gradient Boosting with ℓ1 regularization

We have presented thus far algorithms and analyses that are based on the original AdaBoost algo-
rithm. In this section we shift our attention to a lesser known approach and derive additive updates
for the logistic-loss based on quadratic upper bounds. The bounding techniques we use are based
on those described by Dekel et al. (2005). We follow popular naming conventions and term these
methods GradBoost for their use of gradients and bounds on the Hessian. We would like to note
that the resulting algorithms do not necessarily entertain the weak-to-strong learnability properties
of AdaBoost. Generally speaking, our methods can be view as guarded (block) coordinate descent
methods for binary and multivariate logistic losses. GradBoost gives a different style of updates,
which in some cases may be faster than the AdaBoost updates, while still enjoying the same feature
induction benefits and convergence guarantees as the previous algorithms (see the later sections 8
and 9). Furthermore, the use of the quadratic bounds on the logistic functions allows us to perform
boosting-style steps with ℓ2 and ℓ22 regularization in addition to the ℓ1 and ℓ∞ regularization studied
above. Concretely, we use bounds of the form

L(w + δej) ≤ L(w) + ∇L(w) · ejδ +
1

2
δej · Dejδ,

where D is chosen to upper bound ∇2L(w). In the binary case, for example, D = diag(1/4
∑m

i=1 x2
i,j).

13

Input: Training set S = {(xi,yi)}m
i=1

Regularization λ, number of rounds T
Update templates A ⊆ R

n
+ s.t.

∀a ∈ A maxi

∑n
j=1 aj |xi,j | ≤ 1 [MT]

∀a ∈ A maxi

∑n
j=1 aj |xi,j | ≤ 1/2 [MC]

For t = 1 to T
Choose j ∈ {1, . . . , n}
For i = 1 to m and r = 1 to k

Set qt(i, r) =

{
exp(wr·xi)

P

l exp(wl·xi)
[MC]

1
1+exp(yi,r(wt

r·xi))
[MT]

For r = 1 to k

µ+
r,j =

∑

i:yi,rxi,j>0

qt(i, r)|xi,j | [MT]

∑

i:yi=r,xi,j>0

(1 − qt(i, yi))|xi,j | +
∑

i:yi 6=r,xi,j<0

qt(i, r)|xi,j | [MC]

µ−
r,j =

∑

i:yi,rxi,j<0

qt(i, r)|xi,j | [MT]

∑

i:yi=r,xi,j<0

(1 − qt(i, yi))|xi,j | +
∑

i:yi 6=r,xi,j>0

qt(i, r)|xi,j | [MC]

Minimize for δj ∈ R
k such that aj 6= 0 (use Alg. 2)

∑n
j=1 aj

∑k
r=1

[
µ+

r,je
−δj,r/aj + µ−

r,je
δj,r/aj

]
+ λ

∥
∥wt

j + ajδj

∥
∥
∞

Update

W t+1 = W t + [δ1 · · · δn]⊤

Figure 3: Boosting algorithm for solving ℓ1/ℓ∞-regularized multitask or multiclass logistic regression
using Alg. 2

We first focus on the binary logistic loss of Eq. (2). GradBoost, similar to AdaBoost, uses a
template vector a to parameterize updates to the weight vectors. We can thus perform updates
ranging from a single feature, analogous to the AdaBoost algorithm, to all the features, in a manner
similar to the parallel version of AdaBoost from Collins et al. (2002). The following lemma provides
a quantitative statement on the amount of progress that GradBoost can make. We provide a proof
of the lemma in Appendix B.

Lemma 7 (GradBoost Progress Bound) Denote by g the gradient of the logistic loss so that
gj = −µ+

j + µ−
j , where µ+

j , µ−
j are defined as in lemma 1. Assume that we are provided an update

template a ∈ R
n
+ such that

∑

i,j ajx
2
i,j ≤ 1. Let wt+1 = wt + δt and δt

j = ajd
t
j. Then the change,

∆t = L(wt)−L(wt+1), in the logistic-loss between two consecutive iterations of GradBoost is lower
bounded by

∆t ≥ −
n∑

j=1

aj

(

gjd
t
j +

(dt
j)

2

8

)

= −
∑

j:aj>0

(

gjδ
t
j +

(δt
j)

2

8aj

)

.

The assumption on a at a first glance seems strong, but is in practice no stronger than the assumption
on the template vectors for AdaBoost in Lemma 1. AdaBoost requires that maxi

∑n
j=1 aj |xi,j | ≤ 1,

while GradBoost requires a bound on the average for each template vector. Indeed, had we used
the average logistic loss, dividing L(w) by m, and assumed that maxj |xi,j | = 1, AdaBoost and
GradBoost would have shared the same set of possible update templates. Note that the minus sign

14

in front of the bound also seems a bit odd upon a first look. However, we choose δt in the opposite
direction of g to decrease the logistic-loss substantially, as we show in the sequel.

To derive a usable bound for GradBoost with ℓ1-regularization, we replace the progress bound in
lemma 7 with a bound dependent on wt+1 and wt. Formally, we rewrite the bound by substituting
wt+1 − wt for δt. Recalling Eq. (2) to incorporate ℓ1-regularization, we get

Q(wt+1)−Q(wt) ≤
∑

j:aj>0

gj(w
t+1
j −wt

j) +
1

8

∑

j:aj>0

1

aj
(wt+1

j −wt
j)

2 + λ
∥
∥wt+1

∥
∥

1
− λ

∥
∥wt

∥
∥

1
. (22)

As the bound in Eq. (22) is separable in each wj , we can decompose it and minimize with respect
to the individual entries of w. Performing a few algebraic manipulations and letting w be short for
wt+1

j , we want to minimize
(

gj −
wt

j

4aj

)

w +
1

8aj
w2 + λ|w| . (23)

The minimizer of Eq. (23) can be derived using Lagrange multipliers or subgradient calculus. Instead,
we describe a solution that straightforwardly builds on Thm. 4.

First, note that when aj = 0, we simply set wt+1
j = wt

j . We can thus focus on an index j such
that aj > 0. Multiplying Eq. (23) by 4aj , the quadratic form we need to minimize is

1

2
w2 + (4ajgj − wt

j)w + 4ajλ|w| . (24)

To apply Thm. 4, we take derivatives of the terms in Eq. (24) not involving |w|, which results in
the term w + 4ajgj − wt

j . At w = 0, this expression becomes 4ajgj − wt
j , thus Thm. 4 implies that

w⋆ = − sign(4ajgj − wt
j)α for some α ≥ 0. If 4ajgj − wt

j ≤ −4ajλ, then we solve the equation
w + 4ajgj − wt

j + 4ajλ = 0 for w⋆, which gives w⋆ = wt
j − 4ajgj − 4ajλ. Note that wt

j − 4ajgj =
|wt

j − 4ajgj |. In the case 4ajgj − wt
j ≥ 4ajλ, the theorem indicates that w⋆ ≤ 0. Thus we solve

w + 4ajgj − wt
j − 4ajλ = 0 for w⋆ = wt

j − 4ajgj + 4ajλ. In this case, |wt
j − 4ajgj | = 4ajgj − wt

j ,
while sign(wt

j − 4ajgj) ≤ 0. Combining the above reasoning, we obtain that the solution is simply
a thresholded minimizer of the quadratic without ℓ1-regularization,

w⋆ = sign(wt
j − 4ajgj)

[
|wt

j − 4ajgj | − 4ajλ
]

+
. (25)

We now can use Eq. (25) to derive a convergent GradBoost algorithm for the ℓ1-regularized logistic
loss. The algorithm is presented in Fig. 4. On each round of the algorithm a vector of importance
weights, qt(i), is computed, a template vector a is chosen, and finally the update implied by Eq. (25)
is performed.

6. GradBoost with ℓ1/ℓ∞ mixed-norm regularization

We now transition to the problem of minimizing the non-binary losses considered in Sec. 4. Specif-
ically, in this section we describe ℓ1/ℓ∞ mixed-norm regularization for multitask and multiclass
logistic losses. We begin by examining the types of steps GradBoost needs to take in order to min-
imize the losses. Our starting point is the quadratic loss with ℓ∞-regularization. Specifically, we
would like to minimize

k∑

r=1

1

2
arw

2
r + brwr + λ ‖w‖∞ . (26)

Omitting the regularization term, the minimizer of Eq. (26) is w̃r = −br

ar
. Equipped with Eq. (26)

and the form of its unregularized minimizer, we obtain the following corollary of Thm. 4.

15

Input: Training set S = {(xi, yi)}m
i=1;

Update templates A ⊆ R
n
+ s.t. ∀a ∈ A,

∑

i,j ajx
2
i,j ≤ 1

Regularization λ; number of rounds T
For t = 1 to T

For i = 1 to m
// Compute importance weights
Set qt(i) = 1/(1 + exp(yi(xi · wt)))

Choose update template a ∈ A
For j s.t. aj 6= 0

// Compute gradient term
Set gj = −

∑m
i=1 qt(i)xi,jyi

// Compute new weight for parameter j
wt+1

j = sign(wt
j − 4ajgj)

[
|wt

j − 4ajgj | − 4ajλ
]

+

Figure 4: GradBoost for the ℓ1-regularized log-loss.

Corollary 8 The optimal solution w⋆ of Eq. (26) is w⋆ = 0 if and only if
∑k

r=1 |br| ≤ λ. Assume
without loss of generality that br ≤ 0, so that w⋆

r ≥ 0. Let B = {r : |w⋆
r | = ‖w⋆‖∞} and U = [k] \B,

then

(a) For all r ∈ U , arw
⋆
r + br = 0, i.e. w⋆

r = w̃r = −br/ar

(b) For all r ∈ B, w̃r ≥ w⋆
r = ‖w⋆‖∞

(c)
∑

r∈B arw
⋆
r + br + λ = 0.

Similar to our derivation of AdaBoost with ℓ∞-regularization, we now describe an efficient procedure
for finding the minimizer of the quadratic loss with ℓ∞ regularization. First, we replace each br

with its negative absolute value while recording the original sign. This change guarantees the non-
negativity of the components in the solution vector. The procedure sorts the indices in [k] by the
magnitude of the unregularized solutions w̃r. It then iteratively solves for w satisfying the following
equality,

w
∑

r:w̃r≥w̃(ρ)

ar −
∑

r:w̃r≥w̃(ρ)

br + λ = 0 . (27)

As in the AdaBoost case, we solve Eq. (27) for growing values of ρ until we find an index ρ for which
the solution w⋆ satisfies the condition w⋆ ≥ w̃(ρ+1), where w̃(ρ) is the ρth largest unregularized
solution. Analogous to the AdaBoost case, we define

Aρ =
∑

r:w̃r≥w̃(ρ)

ar and Bρ =
∑

r:w̃r≥w̃(ρ)

br .

These variables allow us to efficiently update the sums in Eq. (27), making possible to compute its
solution in constant time. We can now plug the updates into the algorithm of Fig. 2 and get an
efficient procedure for minimizing Eq. (26). We would like to note that we can further improve the
run time of the search procedure and derive an algorithm has O(k) expected runtime, rather than
O(k log k) time. The linear algorithm is obtained by mimicking a randomized median search with
side information. We omit the details as this improvement is a digression from the focus of the paper
and is fairly straightforward to derive from the O(k log k) procedure.

We are left with the task of describing upper bounds for the multitask and multiclass losses of
Eq. (3) and Eq. (4) that result in quadratic terms of the form given by Eq. (26). We start with the
multitask loss.

16

Multitask GradBoost with regularization The multitask loss is decomposable into sums of
losses, one per task. Thus, Lemma 7 provides the same bound for each task as that for the binary
logistic loss. However, analogous to the bound derived for AdaBoost in Sec. 4, we need to redefine
our importance weights and gradient terms as,

qt(i, r) =
1

1 + exp(yi,r(wr · xi))
and gr,j = −

m∑

i=1

qt(i, r)yi,rxi,j .

Assuming as in lemma 7 that
∑

i,j ajx
2
i,j ≤ 1, we reapply the lemma and the bound used in Eq. (22)

to get,

Q(W t+1)−Q(W t) ≤
∑

j:aj>0

[
k∑

r=1

gr,j(w
t+1
j,r − wt

j,r) +

k∑

r=1

(wt+1
j,r − wt

j,r)
2

8aj
+ λ

∥
∥wt+1

j

∥
∥
∞

− λ
∥
∥wt

j

∥
∥
∞

]

.

(28)
The upper bound on Q(W t+1) from Eq. (28) is a separable quadratic function with an ℓ∞ regular-
ization term. We therefore can use verbatim the procedure for solving Eq. (26).

Multiclass GradBoost with regularization We next consider the multiclass objective of Eq. (4).
To derive a quadratic upper bound on the objective, we need to define per-class importance weights
and gradient terms. As for multiclass AdaBoost, the importance weight qt(i, r) (for r ∈ {1, . . . , k})
for a given example and class r is the probability that the current weight matrix W t assigns to label
r. The gradient as well is slightly different. Formally, we have gradient terms gr,j = ∂

∂wj,r
L(W)

defined by

qt(i, r) =
exp(wt

r · xi)
∑

s exp(ws · xi)
and gr,j =

m∑

i=1

(
qt(i, r) − 1 {r = yi}

)
xi,j . (29)

Similar to the previous losses, we can derive a quadratic upper bound on the multiclass logistic loss.
To our knowledge, as for multiclass AdaBoost, this also is a new upper bound on the multiclass loss.

Lemma 9 (Multiclass Gradboost Progress) Define gr,j as in Eq. (29). Assume that we are
provided an update template a ∈ R

n
+ such that

∑

i,j ajx
2
i,j ≤ 1. Let the update to row j of the matrix

W t be wt+1
j = wt

j +δt
j. Then the change in the multiclass logistic loss from Eq. (4) is lower bounded

by

L(W t) − L(W t+1) ≥ −
∑

j:aj>0

(
k∑

r=1

gr,jδ
t
j,r +

1

4

k∑

r=1

(δt
j,r)

2

aj

)

.

We prove the lemma in Appendix B. As in the case for the binary logistic loss, we typically set
δj to be in the opposite direction of the gradient gr,j . We can replace δt

j,r from the lemma with

wt+1
j,r − wt

j,r, which gives us the following upper bound:

L(W t+1) ≤ L(W t) +
∑

j:aj>0

k∑

r=1

(

gr,j −
wt

j,r

2aj

)

wt+1
j,r

+
1

4

∑

j:aj>0

k∑

r=1

(wt+1
j,r)2

aj
+

1

4

∑

j:aj>0

k∑

r=1

(wt
j,r)

2

aj
−
∑

j:aj>0

k∑

r=1

gr,jw
t
j,r . (30)

17

Input: Training set S = {(xi, 〈yi〉)}m
i=1

Regularization λ, number of rounds T ;
Update templates A s.t. ∀a ∈ A,

∑

i,j ajx
2
i,j ≤ 1

For t = 1 to T
Choose update template a ∈ A
For i = 1 to m and r = 1 to k

// Compute importance weights for each task/class

qt(i, r) =

{
exp(wr·xi)

P

l exp(wr·xi)
[MC]

1
1+exp(yi,r(wt

rxi))
[MT]

// Loop over rows of the matrix W
For j s.t. aj > 0

For r = 1 to k
// Compute gradient and scaling terms

gr,j =

{ ∑m
i=1 (qt(i, r) − 1 {r = yi}) xi,j [MC]

−∑m
i=1 qt(i, r)xi,jyi,r [MT]

a =

{
aj [MC]

2aj [MT]
// Compute new weights for the row wt+1

j using Alg. 2

wt+1
j = argminw

{

1
4a

∑k
r=1 w2

r +
∑k

r=1

(

gr,j −
wt

j,r

2a

)

wr + λ ‖w‖∞
}

Figure 5: GradBoost for ℓ1/ℓ∞-regularized multitask and multiclass boosting

Adding ℓ∞-regularization terms to Eq. (30), we can upper bound Q(W t+1) − Q(W t) by

Q(W t+1) − Q(W t) ≤
∑

j:aj>0

[
k∑

r=1

(

gr,j −
wt

j,r

2aj

)

wt+1
j,r +

1

4

k∑

r=1

(wt+1
j,r)2

aj
+ λ

∥
∥wt+1

j

∥
∥
∞

−
k∑

r=1

gr,jw
t
j,r +

1

4

k∑

r=1

(wt
j,r)

2

aj
− λ

∥
∥wt

j

∥
∥
∞

]

. (31)

As was the upper bound for the multitask loss, Eq. (31) is clearly a separable convex quadratic
function with ℓ∞ regularization for each row wj of W .

We conclude the section with the pseudocode of the unified GradBoost algorithm for the multitask
and the multiclass losses of equations (3) and (4). Note that the upper bounds of Eq. (28) and
Eq. (31) for both losses are almost identical. The sole difference between the two losses distills to
the definition of the gradient gr,j terms and that in Eq. (31) the constant on aj is half of that in
Eq. (28). The algorithm is simple: it iteratively calculates the gradient terms gr,j , then employs an
update template a ∈ A and calls the algorithm of Fig. 2 to minimize Eq. (31). The pseudocode of
the algorithm is given in Fig. 5.

7. GradBoost with ℓ1/ℓ2 Regularization

One form of regularization that has rarely been considered in the standard boosting literature is
ℓ2 or ℓ22 regularization. The lack thereof is a consequence of AdaBoost’s exponential bounds on
the decrease in the loss. Concretely, the coupling of the exponential terms with ‖w‖2 or ‖w‖
leads to non-trivial minimization problems. GradBoost, however, can straightforwardly incorporate
ℓ2-based penalties, since it uses linear and quadratic bounds on the decrease in the loss rather

18

than the exponential bounds of AdaBoost. In this section we focus on multiclass GradBoost. The
modification for multitask or standard boosting is straightforward and follows the lines of derivation
discussed thus far.

We focus particularly on mixed-norm ℓ1/ℓ2-regularization (Obozinski et al., 2007), in which rows
from the matrix W = [w1 · · ·wk] are regularized together in an ℓ2-norm. This leads to the following
modification of the multiclass objective from Eq. (4),

Q(W) =
m∑

i=1

log

1 +
∑

r 6=yi

exp(wr · xi − wyi
· xi)

+ λ
n∑

j=1

‖wj‖2 . (32)

Using the bounds from lemma 9 and Eq. (30) and the assumption that
∑

i,j ajx
2
i,j ≤ 1 as before, we

upper bound Q(W t+1) − Q(W t) by

∑

j:aj>0

[
k∑

r=1

(

gr,j −
wt

j,r

2aj

)

wt+1
j,r +

1

4

k∑

r=1

(wt+1
j,r)2

aj
+ λ

∥
∥wt+1

j

∥
∥

2
+

k∑

r=1

(

(wt
j,r)

2

4aj
− gr,jw

t
j,r

)

− λ
∥
∥wt

j

∥
∥

2

]

(33)
The above bound is evidently a separable quadratic function with ℓ2-regularization. We would like
to use Eq. (33) to perform block coordinate descent on the ℓ1/ℓ2-regularized loss Q from Eq. (32).
Thus, to minimize the upper bound with respect to wt+1

j,r , we would like to minimize a function of
the form

1

2
a

k∑

r=1

w2
r +

k∑

r=1

brwr + λ ‖w‖2 . (34)

The following lemma gives a closed form solution for the minimizer of the above.

Lemma 10 The minimizing w⋆ of Eq. (34) is

w⋆ = −1

a

[

1 − λ

‖b‖2

]

+

b .

Proof We first give conditions under which the solution w⋆ is 0. Characterizing the 0 solution can
be done is several ways. We give here an argument based on the calculus of subgradients (Bertsekas,
1999). The subgradient set of λ‖w‖ at w = 0 is the set of vectors {z : ‖z‖ ≤ λ}. Thus, the
subgradient set of Eq. (34) evaluated at w = 0 is b + {z : ‖z‖ ≤ λ}, which includes 0 if and only
if ‖b‖2 ≤ λ. When ‖b‖2 ≤ λ, we clearly have 1 − λ/ ‖b‖2 ≤ 0 which immediately implies that
[1 − λ/‖b‖2]+ = 0 and therefore w⋆ = 0 in the statement of the lemma. Next, consider the case
when ‖b‖2 > λ, so that w⋆ 6= 0 and ∂ ‖w‖2 = w/ ‖w‖2 is well defined. Computing the gradient of
Eq. (34) with respect to w, we obtain the optimality condition

aw + b +
λ

‖w‖2

w = 0 ⇒
(

1 +
λ

a ‖w‖2

)

w = −1

a
b ,

which implies that w = sb for some s ≤ 0. We next replace the original objective of Eq. (34) with

minimize
s

1

2
s2

(

a
k∑

r=1

b2
r

)

+ s
k∑

r=1

b2
r − λs ‖b‖2 .

Taking the derivative of the objective with respect to s yields,

s a ‖b‖2
2 + ‖b‖2

2 − λ ‖b‖2 = 0 ⇒ s =
λ ‖b‖2 − ‖b‖2

2

a ‖b‖2
2

=
1

a

(
λ

‖b‖2

− 1

)

.

19

Input: Training set S = {(xi, yi)}m
i=1;

Regularization λ; number of rounds T ;
Update templates A s.t. ∀a ∈ A,

∑

i,j ajx
2
ij ≤ 1

For t = 1 to T
Choose a ∈ A
For j s.t. aj > 0

For i = 1 to m and r = 1 to k
// Compute importance weights for each class

Set qt(i, r) = exp(wr·xi)
P

k
l=1 exp(wl·xi)

For r = 1 to k
// Compute gradient terms
Set gr,j =

∑m
i=1(q

t(i, r) − 1 {r = yi})xi,j

gj = [g1,j · · · gk,j]

wt+1
j =

(
wt

j − 2ajgj

)
[

1 − 2ajλ

‖wt
j
−2ajgj‖2

]

+

Figure 6: GradBoost for ℓ1/ℓ2-regularized multiclass boosting.

Combining the above result with the case when ‖b‖2 ≤ λ (which yields that w⋆ = 0) while noticing
that λ/ ‖b‖2 − 1 ≤ 0 when ‖b‖2 ≥ λ gives the lemma’s statement.

Returning to Eq. (33), we derive the update to the jth row of W . Defining the gradient vector
gj = [g1,j · · · gr,j]

⊤ and performing a few algebraic manipulations to Lemma 10, we obtain that the
update that is performed in order to minimize Eq. (33) with respect to row wj of W is

wt+1
j =

(
wj − 2ajgj

)

[

1 − 2ajλ
∥
∥wt

j − 2ajgj

∥
∥

2

]

+

. (35)

To recap, we obtain an algorithm for minimizing the ℓ1/ℓ2-regularized multiclass loss by iteratively
choosing update templates a and then applying the update provided in Eq. (35) to each index j for
which aj > 0. The pseudocode of the algorithm is given in Fig. 6.

8. Learning sparse models by feature induction and pruning

Boosting naturally connotes induction of base hypotheses, or features. Our infusion of regularization
into boosting and coordinate descent algorithms also facilitates the ability to prune back selected
features. The end result is an algorithmic infrastructure that facilitates forward induction of new
features and backward pruning of existing features in the context of an expanded model while
optimizing weights. In this section we discuss the merits of our paradigm as the means for learning
sparse models by introducing and scoring features that have not yet entered a model and pruning
back features that are no longer predictive. To do so, we consider the progress bounds we derived
for AdaBoost and GradBoost. We show how the bounds can provide the means for scoring and
selecting new features. We also show that, in addition to scoring features, each of our algorithms
provides a stopping criterion for inducing new features, indicating feature sets beyond which the
introduction of new hypotheses cannot further decrease the loss. We begin by considering AdaBoost
and then revisit the rest of the algorithms and regularizers, finishing the section with a discussion
of the boosting termination and hypothesis pruning benefits of our algorithms.

Scoring candidate hypotheses for ℓ1-regularized AdaBoost The analysis in Sec. 2 also
facilitates assessment of the quality of a candidate weak hypothesis (newly examined feature) during

20

the boosting process. To obtain a bound on the contribution of a new weak hypothesis we plug the
form for δt

j from Eq. (8) into the progress bound of Eq. (5). The progress bound can be written as
a sum over the progress made by each hypothesis that the chosen template a ∈ A activates. For
concreteness and overall utility, we focus on the case where we add a single weak hypothesis j. Since
j is as yet un-added, we assume that wj = 0, and as in standard analysis of boosting we assume
that |xi,j | ≤ 1 for all i. Furthermore, for simplicity we assume that aj = 1 and ak = 0 for k 6= j.
That is, we revert to the standard boosting process, also known as sequential boosting, in which we
add a new hypothesis on each round. We overload our notation and denote by ∆j the decrease in
the ℓ1-regularized log-loss due to the addition of hypothesis j, and if we define

ν−
j =

−λ +
√

λ2 + 4µ+
j µ−

j

2µ−
j

and ν+
j =

λ +
√

λ2 + 4µ+
j µ−

j

2µ−
j

,

routine calculations allow us to score a new hypothesis as

∆j =

µ+
j + µ−

j − µ+
j

ν−

j

− µ−
j ν−

j − λ
∣
∣log ν−

j

∣
∣ if µ+

j > µ−
j + λ

µ+
j + µ−

j − µ+
j

ν+
j

− µ−
j ν+

j − λ
∣
∣log ν+

j

∣
∣ if µ−

j > µ+
j + λ

0 if |µ+
j − µ−

j | ≤ λ .

(36)

We can thus score candidate weak hypotheses and choose the one with the highest potential to

decrease the loss. Indeed, if we set λ = 0 the decrease in the loss becomes
(√

µ+
j −

√

µ−
j

)2

, which

is the standard boosting progress bound (Collins et al., 2002).

Scoring candidate hypotheses for ℓ1/ℓ∞-regularized AdaBoost Similar arguments to those
for ℓ1-regularized AdaBoost show that we can assess the quality of a new hypothesis we consider
during the boosting process for mixed-norm AdaBoost. We do not have a closed form for the update
δ that maximizes the bound in the change in the loss from Eq. (17). However, we can solve for the
optimal update for the weights associated with hypothesis j as in Eq. (21) using the algorithm of
Fig. 2 and the analysis in Sec. 4. We can plug the resulting updates into the progress bound of
Eq. (17) to score candidate hypotheses. The process of scoring hypotheses depends only on the
variables µ±

r,j , which are readily available during the weight update procedure. Thus, the scoring
process introduces only minor computational burden over the weight update. We also would like
to note that the scoring of hypotheses takes the same form for multiclass and multitask boosting
provided that µ±

r,j have been computed.

Scoring candidate hypotheses for ℓ1-regularized GradBoost It is also possible to derive
a scoring mechanism for the induction of new hypotheses in GradBoost by using the lower bound
used to derive the GradBoost update. The process of selecting base hypotheses is analogous to
the selection process to get new weak hypotheses for AdaBoost with ℓ1-regularization, which we
considered above. Recall the quadratic upper bounds on the loss Q(w) from Sec. 5. Since we
consider the addition of new hypotheses, we can assume that wt

j = 0 for all candidate hypotheses.
We can thus combine the bound of Eq. (22) and the update of Eq. (25) to obtain

Q(wt) − Q(wt+1) ≥
{

2aj (|gj | − λ)
2 |gj | > λ

0 otherwise .
(37)

If we introduce a single new hypothesis at a time, that is, we use an update template a such that
aj 6= 0 for a single index j, we can score features individually. To satisfy the constraint that
∑

i ajx
2
i,j ≤ 1, we simply let aj = 1/

∑

i x2
i,j . In this case, Eq. (37) becomes

Q(wt) − Q(wt+1) ≥
{

2(|gj |−λ)2
P

m
i=1 x2

i,j

|gj | > λ

0 otherwise .

21

Note that the above progress bound incorporates a natural trade-off between the coverage of a
feature, as expressed by the term

∑

i x2
i,j , and its correlation with the label, expressed through the

difference |gj | = |µ+
j − µ−

j |. The larger the difference between µ+
j and µ−

j , the higher the potential

of the feature. However, this difference is scaled back by the sum
∑

i x2
i,j , which is proportional to

the coverage of the feature. A similar though more tacit tension between coverage and correlation
is also exhibited in the score for AdaBoost as defined by Eq. (36).

Scoring candidate hypotheses for mixed-norm regularized GradBoost The scoring of new
hypotheses for multiclass and multitask GradBoost is similar to that for mixed-norm AdaBoost.
The approach for ℓ1/ℓ∞ regularization is analogous to the scoring procedure for AdaBoost. When a
hypothesis or feature with index j is being considered for addition on round t, we know that wt

j = 0.
We plug the optimal solution of Eq. (28) (or equivalently Eq. (31)), into the progress bound and
obtain the potential loss decrease due to the introduction of a new feature. While we cannot provide
a closed form expression for the potential progress, the complexity of the scoring procedure requires
the same time as a single feature weight update.

The potential progress does take a closed-form solution when scoring features using ℓ1/ℓ2 mixed-
norm regularized GradBoost. We simply plug the update of Eq. (35) into the bound of Eq. (33)
while recalling the definition of the gradient terms gj = [g1,j · · · gk,j]

⊤ for multiclass or multitask

boosting. Since, again, wt
j = 0 for a new hypothesis j, a few algebraic manipulations yield that the

progress bound when adding a single new hypothesis j is

Q(W t+1) − Q(W t) ≥

([∥
∥gj

∥
∥

2
− λ

]

+

)2

∑m
i=1 x2

i,j

. (38)

Termination Conditions The progress bounds for each of the regularizers also provide us with
principled conditions for terminating the induction of new hypotheses. We have three different
conditions for termination, depending on whether we use ℓ1, ℓ1/ℓ∞, or ℓ1/ℓ2-regularization. Going
through each in turn, we begin with ℓ1. For AdaBoost, Eq. (36) indicates that when |µ+

j −µ−
j | ≤ λ,

our algorithm assigns the hypothesis zero weight and no progress can be made. For GradBoost,
gj = µ−

j − µ+
j , so the termination conditions are identical. In the case of ℓ1/ℓ∞-regularization,

the termination conditions for AdaBoost and Gradboost are likewise identical. For AdaBoost,
Corollary 6 indicates that when

∑k
r=1 |µ+

r,j −µ−
r,j | ≤ λ the addition of hypothesis j cannot decrease.

Analogously for GradBoost, Corollary 8 shows that when
∑k

r=1 |gr,j | ≤ λ then wt+1
j = 0, which is

identical since gr,j = µ−
r,j −µ+

r,j . For ℓ1/ℓ2-regularized GradBoost, examination of Eq. (38) indicates

that if
∥
∥gj

∥
∥

2
≤ λ, then adding hypothesis j does not decrease the loss.

As we discuss in the next section, each of our algorithms converges to the optimum of its respective
loss. Therefore, assume we have learned a model with a set of features such that the feature weights
are at the optimum for the regularized loss (using only the current features in the model) we are
minimizing. The convergence properties indicate that if our algorithm cannot make progress using
the jth hypothesis, then truly no algorithm that uses the jth hypothesis in conjunction with the
current model can make progress on the objective. The same property holds even in the case of
an infinite hypothesis space. We thus see that each algorithm gives a condition for terminating
boosting. Specifically, we know when we have exhausted the space of base hypotheses that can
contribute to a reduction in the regularized loss.

Backpruning In addition to facilitating simple scoring mechanisms, the updates presented for
AdaBoost and GradBoost in the various settings also enable resetting the weight of a hypothesis
if in retrospect (after further boosting rounds) its predictive power decreases. Take for example
the ℓ1-penalized boosting steps of AdaBoost. When the weight-adjusted difference between µ+

j and

µ−
j in the AdaBoost algorithm in Fig. 1 falls below λ, that is,

∣
∣
∣µ+

j ewt
j/aj − µ−

j e−wt
j/aj

∣
∣
∣ ≤ λ, we

22

set δt
j = −wt

j and we zero out the jth weight. Thus, the ℓ1-penalized boosting steps enable both
induction of new hypotheses along with backward pruning of previously selected hypotheses. Similar
statements apply to all of our algorithms, namely, when weight-adjusted correlations or gradients
fall below the regularization, the algorithms can zero weights or rows of weights.

As mentioned in the introduction, we can also alternate between pure weight updates (restricting
ourselves to the current set of hypotheses) and pure induction of new hypotheses (keeping the weight
of existing hypotheses intact). As demonstrated empirically in our experiments, the end result of
boosting with the sparsity promoting ℓ1, ℓ1/ℓ2, or ℓ1/ℓ∞-regularizers is a compact and accurate
model. This approach of alternating weight optimization and hypothesis induction is also reminiscent
of the recently suggested forward-backward greedy process for learning sparse representations in
least-squares models (Zhang, 2008). However, in our setting the backward pruning is not performed
in a greedy manner but is rather driven by the non-differentiable convex regularization penalties.

Template Selection Finally, the templating of our algorithms allows us to make the templates
a application and data dependent. If the computing environment consists of a few uncoupled
processors and the features are implicit (e.g. boosted decision trees), then the most appropriate
set of templates is the set of singleton vectors (we get the best progress guarantee from the highest
scoring singletons). When the features are explicit and the data is rather sparse, i.e.

∑

j |xi,j | ≪ n

where xi,j is the prediction of the jth base hypothesis on the ith example, we can do better by
letting the templates be dense. For example, for ℓ1-regularized AdaBoost, we can use a single
template vector a with aj = 1/maxi

∑

j |xi,j | for all j. For GradBoost, we can use the single

template a with that aj = 1/
(
n
∑m

i=1 x2
i,j

)
. Dense templates are particularly effective in parallel

computing environments where we can efficiently compute importance-weighted correlations µ+
j and

µ−
j or gradients gr,j for all possible features. We can then make progress simultaneously for multiple

features and use the full parallelism available.

9. Convergence properties

We presented several variants for boosting-based stepping with different regularized logistic losses
throughout this paper. To conclude the formal part of the paper, we discuss the convergence prop-
erties of these algorithms. Each of our algorithms is guaranteed to converge to an optimum of its
respective loss, provided that the weight of each feature is examined and potentially updated suffi-
ciently often. We thus discuss jointly the convergence of all the algorithms. Concretely, when the
number of hypotheses is finite, the boosting updates for both the AdaBoost and GradBoost algo-
rithms are guaranteed to converge under realistic conditions. The conditions require the templates
a ∈ A to span the entire space, assume that there are a finite number of hypotheses, and each
hypothesis is updated infinitely often. The optimal weights of the (finitely many) induced features
can then be found using a set of templates that touch each of the features. In particular, a single
template that updates the weight of all of the features simultaneously can be used, as could a set
of templates that iteratively selects one feature at a time. The following theorem summarizes the
convergence properties. Due to its technical nature we provide its proof in Appendix C. The proof
relies on the fact that the regularization term forces the set of possible solutions of any of the regu-
larized losses we discuss to be compact. In addition, each of the updates guarantees some decrease in
its respective regularized loss. Roughly, each sequence of weights obtained by any of the algorithms
therefore converges to a stationary point guaranteed to be the unique optimum by convexity. We
are as yet unable to derive rates of convergence for our algorithms, but we hope that recent views
of boosting processes as primal-dual games (Schapire, 1999; Shalev-Shwartz and Singer, 2008) or
analysis of randomized coordinate descent algorithms (Shalev-Shwartz and Tewari, 2009) can help
in deriving more refined results.

23

Theorem 11 Assume that the number of hypotheses is finite and each hypothesis participates in an
update based on either AdaBoost or GradBoost infinitely often. Then all the variants of regularized
boosting algorithms converge to the optimum of their respective objectives. Specifically,

i. AdaBoost with ℓ1-regularization converges to the optimum of Eq. (2).

ii. Multitask and Multiclass AdaBoost with ℓ1/ℓ∞-regularization converge to the optimum of Eq. (3)
and Eq. (4), respectively.

iii. GradBoost with ℓ1-regularization convergences to the optimum of Eq. (2).

iv. Multitask and Multiclass GradBoost with ℓ1/ℓ∞-regularization converge to the optimum of Eq. (3)
and Eq. (4), respectively.

v. GradBoost with ℓ1/ℓ2-regularization converges to the optimum of Eq. (32).

10. Experiments

In this section we focus on empirical evaluations of our algorithms. We compare the algorithms’
performance to a few other state-of-the-art learning algorithms for the problems we investigate and
discuss their relative performance. We emphasize in particular the ability to achieve structural
sparsity in multiclass problems.

Boosting Experiments For our first series of experiments, we focus on boosting and feature
induction, investigating the effect of ℓ1-regularization and its early stopping. We perform both
classification and regression. For the classification task, we used the Reuters RCV1 Corpus (Lewis
et al., 2004), which consists of 804,414 news articles; after stemming and stopwording, there are
around 100,000 unigram features in the corpus with a high degree of sparsity. Each article is labeled
as one or more of MCAT, CCAT, ECAT, or GCAT (medical, corporate/industrial, economics, or
government), and we trained boosted classifiers for each class separately (one vs. all classification).
We present average classification error rates and logistic loss rates over a series of tests using 30,000
(randomly chosen) articles with a 70/30 training/test split in Fig. 7. The top row of the figure shows
misclassification rates and the bottom log-loss rates for the four different classes.

As a baseline comparison, we used AdaBoost regularized with a smooth-ℓ1 penalty (Dekel et al.,
2005), which is an approximation to the ℓ1-norm that behaves similarly to ℓ2 when w is close to 0.
Specifically, in the smooth-ℓ1 version the weights are penalized as follows,

λ
[
log(1 + ew) + log(1 + e−w)

]
.

We also compared our base ℓ1-regularized versions to an ℓ2-regularized logistic regression with in-
telligently chosen features. The description of the feature selection process for ℓ2 logistic regression
is provided in Appendix D. For the ℓ1-regularized boosting, we chose a penalty of λ = 4 using
cross-validation. For the smooth-ℓ1 boosting we chose λ = 2, which gave the best performance of
the penalties we considered on test set error rates, and for the ℓ2-regularized a small penalty of
λ = 10−2 gave the best performance on validation and test data. For both boosting algorithms, we
ran “totally corrective” boosting (Warmuth et al., 2006) in which the weights of the selected features
are optimized after each induction step. We added the 30 top-scoring features at every iteration for
the ℓ1 booster and the single top-scoring feature for the smooth-ℓ1 regularized booster.

The graphs in Fig. 7 underscore an interesting phenomenon. In all of the graphs, the ℓ1-
regularized boosting algorithm ceases adding features at around iteration 30 (about 700 features
after the backward pruning steps). Hence, the error and loss lines for ℓ1-boosting terminate early,
while the smooth-ℓ1 variant starts over-fitting the training on set as early as iteration 200. In gen-
eral, the ℓ2-regularized logistic regression had test loss and error rates slightly better than smooth-ℓ1
boosted logistic regression, but worse than the ℓ1-regularized booster.

24

100 200 300 400 500 600 700 800

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

MCAT Error Rates

Smooth−train
Smooth−test
L1−train
L1−test
L2−test

100 200 300 400 500 600 700 800

0.06

0.08

0.1

0.12

0.14

0.16

0.18

CCAT Error Rates

100 200 300 400 500 600 700 800
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

ECAT Error Rates

100 200 300 400 500 600 700 800

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

GCAT Error Rates

100 200 300 400 500 600 700 800

0.1

0.15

0.2

0.25

MCAT Loss Rates

Smooth−train
Smooth−test
L1−train
L1−test
L2−test

100 200 300 400 500 600 700 800

0.15

0.2

0.25

0.3

0.35

0.4

CCAT Loss Rates

100 200 300 400 500 600 700 800

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

ECAT Loss Rates

100 200 300 400 500 600 700 800

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

GCAT Loss Rates

Figure 7: Error rates and losses on the Reutes corpus for various boosting-based algorithms. The
legend is the same for all graphs.

We also conducted various regression experiments. We describe here the results obtained for
the Boston housing data set from the UCI repository (Asuncion and Newman, 2007) and a dataset
on controlling an F16 aircraft, where the goal is to predict a control action on the ailerons of the
aircraft given its state (Camacho, 1997). We standardized both datasets so that their variables
are all in the range [0, 1] (for housing) or [−1, 1] (for ailerons). We then used boosted ε-insensitive
regression (Dekel et al., 2005) to learn a predictor w. In this case, our objective is

m∑

i=1

log
(
1 + ew·xi−yi−ε

)
+ log

(
1 + eyi−w·xi−ε

)
, (39)

which approximates ε-insensitive hinge regression [w · xi − yi − ε]+ + [yi − w · xi − ε]+ where
[x]+ = max{x, 0}. For ε-insensitive regression, an analysis similar to that for standard boosting
can be performed to compute µ+ and µ− for every feature (see appendix section A), which allows
us to perform scoring during feature induction and to take update steps identical to those already
described.

For these tests, we compared the unregularized “classical” sequential AdaBoost, ℓ1-regularized
totally corrective boosting with induction of eight top-scoring features at the end of each optimization
step, ℓ1-regularized least squares (Friedman et al., 2007), and ℓ2-regularized ε-insensitive hinge
loss. The boosters used a countably infinite set of features by examining products of features. All
algorithms were started with a single bias feature. Thus, the algorithms could construct arbitrarily
many products of raw features as base (weak) hypotheses and explore complex correlations between
the features. For ℓ1-regularized least squares, we simply trained on the base regressors, and for
ℓ2-regularized hinge loss we trained on the base regressors using projected subgradient methods
described in Shalev-Shwartz et al. (2007).

Fig. 8 illustrates the results of these experiments. The housing results are the left pair of graphs
while aileron results are the right. The left plot of each pair provides the root-mean-square error on
the test set, and the right of the pair the average absolute error on the test sets. In all experiments,
we set λ = .02 for the ℓ1-penalty, and the ℓ1-regularized booster stopped after inducing an average of
under 35 features. The last iteration of the ℓ1-regularized version is marked with a star in the graphs,
after which a dotted line indicates the resulting performance. We see that even when the sequential
(denoted Classical) boosting is allowed to run for 1000 iterations, its performance on test does not
meet the performance obtained by the 35 feature ℓ1-regularized model. As a further experiment,
we allowed the sequential boosting process to run for 3000 iterations, yet still its performance did

25

10
0

10
1

10
2

0.08

0.1

0.12

0.14

0.16

0.18

Boosting Iterations

R
M

S
E

L1−boost
Classical
Hinge
L1−LS

10
0

10
1

10
2

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Boosting Iterations

A
vg

. L
1

L1−boost
Classical
Hinge
L1−LS

10
0

10
1

10
2

0.05

0.1

0.15

0.2

0.25

Boosting Iterations

R
M

S
E

L1−boost
Classical
Hinge
L1−LS

10
0

10
1

10
2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Boosting Iterations

A
vg

. L
1

L1−boost
Classical
Hinge
L1−LS

Figure 8: Regression losses (mean squared error and absolute error) for Boston housing (left two)
and Aileron.

not match the 35-feature model built by the ℓ1-penalized version. Furthermore, the latter trains at
least order of magnitude faster than the sequentially learned regressor and results in a significantly
simpler model. The ℓ1-penalized AdaBoost also outperforms ℓ1-penalized least squares and the
ℓ2-regularized hinge loss with respect to both the squared and absolute errors.

Multiclass Experiments In this set of experiments, we compare the different structured regu-
larizers with multiclass logistic losses to one another and to unstructured ℓ1 and ℓ22 regularization,
providing examples in which the structured regularization can help improve performance. For our
multiclass experiments, we focus on two error metrics. The first is a simple misclassification error,
the proportion of examples classified incorrectly. The second is coverage. The idea behind coverage
is to measure how wrong our classifier is. Given k weight vectors wr and an example xi, the coverage
is the position in the sorted list of inner products wr · xi the correct weight vector is. For example,
if wyi

· xi is the largest, the coverage is 0, if it is third, the coverage is 2. So coverage is an upper
bound on the misclassification rate that also gives an indication of how wrong the classifier is in
predicting the rank of the correct class.

We used five datasets for our multiclass experiments. The first two were the StatLog Landsat
Satellite dataset (Spiegelhalter and Taylor, 1994) and the MNIST handwritten digits database.
We also experimented with three datasets from the UCI machine learning repository (Asuncion and
Newman, 2007): the Pendigit dataset, a vowel recognition dataset, and the noisy waveform database.
The purpose of the experiments is not to claim that we get better classification results across many
datasets than previous approaches, but rather to demonstrate the performance of our algorithms,
showing some of the trade-offs of different regularization and boosting strategies.

We begin with the StatLog Landsat Satellite dataset, which consists of spectral values of pixels
in 3 × 3 neighborhoods in a satellite image. We expanded the features by taking products of all
possible features, giving 1296 features for each example. The goal is to classify a pixel (a piece of
ground) as one of six ground types (e.g. red soil, crops, damp soil). We separated the data into a
training set of 3104 examples, 1331 validation examples, and 2000 test samples. In Fig. 9, we plot
coverage and log-loss on the test set as a function of sparsity and as a function of the number of
features actually used. The classifiers were all trained with a random training set using 240 examples
per class (results when training with fewer or more examples were similar). The plots on the left
show the test set coverage as a function of the proportion of zeros in the learned weight matrix W ⋆.
The far left plot shows test set coverage as a function of the actual number of features that need to
be computed to classify a piece of ground, that is, the proportion of zero rows in W . The middle left
plot shows test set coverage simply as a function of overall sparsity in W , and thus does not reflect
the number of features that we must compute. The plots on the right similarly show test set loss
as a function either of row sparsity in W or overall sparsity. We see from the plots that for a given
performance level, the ℓ1-regularized solution is sparser in terms of the absolute number of zeros in
W ⋆. However, the ℓ1-regularized classifier requires at least 50% more features to be computed than
does the ℓ1/ℓ2-regularized classifier for the same test accuracy. The results for misclassification rates

26

0 0.05 0.1 0.15 0.2 0.25
0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
ov

er
ag

e

Proportion features used

L1
L1/L2
L1/Linf

0 0.05 0.1 0.15 0.2 0.25

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
ov

er
ag

e

Proportion nonzero

0.1 0.2 0.3 0.4 0.5 0.6 0.7

550

600

650

700

750

800

850

900

950

1000

T
es

t l
os

s

Proportion features used

0.1 0.2 0.3 0.4 0.5 0.6 0.7

550

600

650

700

750

800

850

900

950

T
es

t l
os

s

Proportion nonzero

Figure 9: LandSat test coverage and losses. Far left: coverage versus row sparsity. Middle left:
coverage versus overall sparsity. Middle right: test loss versus row sparsity. Far right: test
loss versus overall sparsity.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
1

1.2

1.4

1.6

1.8

2

2.2

C
ov

er
ag

e

Proportion features used

L1
L1/L2
L1/Linf

0.2 0.3 0.4 0.5 0.6 0.7 0.8
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

C
ov

er
ag

e

Proportion nonzero

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
600

700

800

900

1000

1100

1200

1300

1400

1500

T
es

t l
os

s

Proportion features used

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
600

700

800

900

1000

1100

1200

1300

1400

1500

1600

T
es

t l
os

s

Proportion nonzero

Figure 10: Vowels test coverage and losses. Far left: coverage versus row sparsity. Middle left:
coverage versus overall sparsity. Middle right: test loss versus row sparsity. Far right:
test loss versus overall sparsity.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C
ov

er
ag

e

Proportion features used

L1
L1/L2
L1/Linf

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C
ov

er
ag

e

Proportion nonzero

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
500

1000

1500

2000

2500

3000

T
es

t l
os

s

Proportion features used

L1
L1/L2
L1/Linf

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800
T

es
t l

os
s

Proportion nonzero

L1
L1/L2
L1/Linf

Figure 11: Pendigit handwritten digits test coverage and losses. Far left: coverage versus row spar-
sity. Middle left: coverage versus overall sparsity. Middle right: test loss versus row
sparsity. Far right: test loss versus overall sparsity.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.165

C
ov

er
ag

e

Proportion features used

L1
L1/L2
L1/Linf

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.13

0.135

0.14

0.145

0.15

0.155

0.16

C
ov

er
ag

e

Proportion nonzero

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

800

850

900

950

1000

1050

1100

T
es

t l
os

s

Proportion features used

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

800

850

900

950

1000

T
es

t l
os

s

Proportion nonzero

Figure 12: Waveform test coverage and losses. Far left: coverage versus row sparsity. Middle left:
coverage versus overall sparsity. Middle right: test loss versus row sparsity. Far right:
test loss versus overall sparsity.

27

are similar. We computed these results over ten randomly chosen subsets of the training data and
the variance of each point in the plot is smaller than 10−3.

In figures 10, 11, and 12, we plot the results obtained on the remaining UCI datasets. The
vowel experiments require classifying a vowel spoken in the middle of a word as one of 11 different
vowels. We expanded the original 10 features by taking products of all features. We trained with 20
training examples per class (results are similar using 40 examples per class) over 10 different random
training runs. We plot test set coverage and loss as a function of sparsity in Fig. 10. In the Pendigit
experiments we classify a handwritten digit, with 16 features recorded from a pressure-sensitive
stylus, as one of 10 different digits. Again we expanded into products of features, and in Fig. 11 we
plot loss and coverage for this task versus sparsity in the solution matrix W . We trained with 300
examples per class (as with our other experiments, results were similar across training set sizes) and
used a test set of 3498 examples. The last UCI dataset we consider was the Waveform dataset, a
synthetic 3 class problem where the goal is to classify different randomly generated waves. Originally
consisting of 40 attributes, we expanded the feature space using products of feature and created 820
features. We then applied our multiclass boosting algorithms. We used a test set of 2500 examples
and training set of 600 examples per class. We plot our test loss and coverage results versus sparsity
in W in Fig. 12. We repeated each of our UCI experiments over 10 randomly sub-selected training
sets. Each of the plots in figures 10 and 11 exhibits results similar to the results obtained for the
Landsat dataset. Examining the performance as a function of the actual number of features that
must be computed, ℓ1/ℓ2 and ℓ1/ℓ∞ regularizations seem to yield better performance, while if we
are mainly concerned with overall sparsity of the learned matrix W , ℓ1-regularization gives better
performance. For the Waveform dataset (Fig. 12), it seems that performance was similar across
all the regularizers, which may be an artifact of the waveforms being synthetic, with performance
improving as the number of features used got very small.

We also conducted experiments using the MNIST handwritten digits database. The MNIST
dataset consists of 60,000 training examples and a 10,000 example test set and has 10-classes. Each
image is a gray-scale 28 × 28 matrix, which we represent as vector xi ∈ R

784. Rather than directly
using the input xi, we learned weights wj for Kernel-based weak-hypotheses

hj(x) = K(xj ,x), K(x,z) = e−
1
2‖x−z‖2

,

for j ∈ S, where S is a 2766 element support set. We generated the support set by running the Per-
ceptron algorithm once through the dataset while keeping examples on which it made classification
mistakes. We obtained this way a 27,660 dimensional multiclass problem to which we apply our
algorithms. On the left side of Fig. 13, we plot the coverage on the 10,000 example test set of each
algorithm versus the number of training examples used per class. We chose regularization values
using cross-validation. The performance improves as the number of training examples increases.
However, it is clear that the sparsity promoting regularizers, specifically the structural ℓ1/ℓ∞ and
ℓ1/ℓ2 regularizers, yield better performance than the others. The error rate on the test set is roughly
half the coverage value and behaves qualitatively similar.

To conclude this section we would like to attempt to provide a few insights into the relative merits
of AdaBoost versus GradBoost when both can be applied, namely, for ℓ1 and ℓ1/ℓ∞-regularized
problems. On the right side of Fig. 13, we plot the training objective as a function of training
time for both AdaBoost and GradBoost on the Landsat and MNIST datasets. On the same time
scale, we plot the test error rate and sparsity of the classifiers as a function of training time in
Fig. 14 (in the left and right plots, respectively). From Fig. 14, we see that both AdaBoost and
GradBoost indeed leverage induction during the first few thousand iterations, adding many features
that contribute to decreasing the loss. They then switch to a backward-pruning phase in which they
remove features that are not predictive enough without increasing the loss on the test set. We saw
similar behavior across many datasets, which underscores the ability of the algorithms to perform
both feature induction and backward pruning in tandem.

28

10
2

10
3

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Number examples/class

C
ov

er
ag

e

L
1

L
1
/L

2

L
1
/Linf

L
2
2

0 1 2 3 4 5 6 7 8 9

x 10
4

10
0

10
1

10
2

10
3

10
4

Iterations

Q
(W

t)
−

 Q
(W

*)

LandSat − Ada
LandSat − Grad
MNIST − Ada
MNIST− Grad

Figure 13: Left: Coverage in MNIST for different regularizers versus number of training examples
per class. Right: objective value versus number of iterations for AdaBoost and GradBoost
training on MNIST and LandSat.

0 1 2 3 4 5 6 7 8 9

x 10
4

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Iterations

T
es

t e
rr

or
 r

at
e

LandSat − Ada
LandSat − Grad
MNIST − Ada
MNIST− Grad

0 1 2 3 4 5 6 7 8 9

x 10
4

0

10

20

30

40

50

60

70

80

Iterations

%
 N

on
−

Z
er

o
R

ow
s

LandSat − Ada
LandSat − Grad
MNIST − Ada
MNIST− Grad

Figure 14: Left: Error rate for MNIST and LandSat versus training time. Right: Percent of non-zero
features for MNIST and LandSat versus training time.

11. Conclusion

We proposed and analyzed in this paper several new variants on boosting that allow both induction
and scoring of weak hypotheses as well as a new phase of backward-pruning to remove retrospectively
uninformative features. Our new boosting algorithms all enjoy the same convergence guarantees,
and they provide a simple termination mechanism for boosting. We described experimental results
across a range of benchmark datasets, showing that our algorithms improve over previous approaches
to boosting with early stopping and smooth regularization. In the experiments, the regularized ver-
sions indeed automatically terminate, typically avoid overfitting, and give good performance as a
function of the number of features that were selected by the classifiers. We plan to further investigate
the convergence rate of our algorithms. It may also be interesting to examine the generalization
and consistency properties of the boosting process for structurally-regularized boosters using tech-

29

niques from Schapire et al. (1998) or Zhang and Yu (2005) and other techniques for analyzing the
generalization properties of boosting.

Acknowledgements

A substantial part of the work of J. Duchi was performed at Google. We would like to thank Shai
Shalev-Shwartz for useful discussions.

References

A. Asuncion and D. J. Newman. UCI machine learning repository, 2007. URL
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Rui Camacho. Ailerons dataset. URL http://www.liaad.up.pt/ ltorgo/Regression/DataSets.html.
Available at http://www.liaad.up.pt/˜ltorgo/Regression/DataSets.html, 1997.

M. Collins, R.E. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman distances.
Machine Learning, 47(2/3):253–285, 2002.

O. Dekel, S. Shalev-Shwartz, and Y. Singer. Smooth epsilon-insensitive regression by loss sym-
metrization. Journal of Machine Learning Research, 6:711–741, May 2005.

J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the ℓ1-ball for
learning in high dimensions. In Proceedings of the 25th International Conference on Machine
Learning, 2008.

M. Dud́ık, S. J. Phillips, and R. E. Schapire. Maximum entropy density estimation with generalized
regularization and an application to species distribution modeling. Journal of Machine Learning
Research, 8:1217–1260, June 2007.

T. Evgeniou, C.Micchelli, and M. Pontil. Learning multiple tasks with kernel methods. Journal of
Machine Learning Research, 6:615–637, 2005.

Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and an appli-
cation to boosting. Journal of Computer and System Sciences, 55(1):119–139, August 1997.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting.
Annals of Statistics, 28(2):337–374, April 2000.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Pathwise coordinate optimization. Annals
of Applied Statistics, 1(2):302–332, 2007.

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

L. Jacob, F. Bach, and J.-P. Vert. Clustered multi-task learning: A convex formulation. In Advances
in Neural Information Processing Systems 22, 2008.

K. Koh, S.J. Kim, and S. Boyd. An interior-point method for large-scale ℓ1-regularized logistic
regression. Journal of Machine Learning Research, 8:1519–1555, 2007.

S. I. Lee, H. Lee, P. Abbeel, and A. Y. Ng. Efficient ℓ1-regularized logistic regression. In Proceedings
AAAI-06. American Association for Artificial Intelligence, 2006.

30

David Lewis, Yiming Yang, Tony Rose, and Fan Li. RCV1: A new benchmark collection for text
categorization research. Journal of Machine Learning Research, 5:361–397, 2004.

D. Madigan, A. Genkin, D. D. Lewis, and D. Fradkin. Bayesian multinomial logistic regression
for author identification. In 25th International Workshop on Bayesian Inference and Maximum
Entropy Methods in Science and Engineering, 2005.

N. Meinshausen and P. Bühlmann. High dimensional graphs and variable selection with the Lasso.
Annals of Statistics, 34:1436–1462, 2006.

R. Meir and G. Rätsch. An introduction to boosting and leveraging. In S. Mendelson and A. Smola,
editors, Advanced Lectures on Machine Learning, pages 119–184. Springer, 2003.

S. Negahban and M. Wainwright. Phase transitions for high-dimensional joint support recovery. In
Advances in Neural Information Processing Systems 22, 2008.

G. Obozinski, B. Taskar, and M. Jordan. Joint covariate selection for grouped classification. Tech-
nical Report 743, Dept. of Statistics, University of California Berkeley, 2007.

G. Obozinski, M. Wainwright, and M. Jordan. High-dimensional union support recovery in multi-
variate regression. In Advances in Neural Information Processing Systems 22, 2008.

A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. Journal of Machine Learning
Research, 9:2491–2521, 2008.

R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions.
Machine Learning, 37(3):1–40, 1999.

R.E. Schapire. The boosting approach to machine learning: An overview. In D.D. Denison, M.H.
Hansen, C. Holmes, B. Mallick, and B. Yu, editors, Nonlinear Estimation and Classification.
Springer, 2003.

R.E. Schapire. Drifting games. In Proceedings of the Twelfth Annual Conference on Computational
Learning Theory, 1999.

R.E. Schapire, Y. Freund, P. Bartlett, and W.S. Lee. Boosting the margin: A new explanation for
the effectiveness of voting methods. The Annals of Statistics, 26(5):1651–1686, October 1998.

S. Shalev-Shwartz and Y. Singer. On the equivalence of weak learnability and linear separability:
new relaxations and efficient algorithms. In Proceedings of the Twenty First Annual Conference
on Computational Learning Theory, 2008.

S. Shalev-Shwartz and A. Tewari. Stochastic methods for ℓ1-regularized loss minimization. In
Proceedings of the 26th International Conference on Machine Learning, 2009.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for
SVM. In Proceedings of the 24th International Conference on Machine Learning, 2007.

D. Spiegelhalter and C. Taylor. Machine Learning, Neural and Statistical Classification. Ellis
Horwood, 1994.

M. Warmuth, J. Liao, and G. Ratsch. Totally corrective boosting algorithms that maximize the
margin. In Proceedings of the 23rd international conference on Machine learning, 2006.

H. Zhang, H. Liu, Y. Wu, and J. Zhu. Variable selection for the multi-category SVM via adaptive
sup-norm regularization. Electronic Journal of Statistics, 2:1149–1167, 2008.

31

T. Zhang. Adaptive forward-backward greedy algorithm for sparse learning with linear models. In
Advances in Neural Information Processing Systems 22, 2008.

T. Zhang and F. J. Oles. Text categorization based on regularized linear classification methods.
Information Retrieval, 4:5–31, 2001.

T. Zhang and B. Yu. Boosting with early stopping: Convergence and consistency. The Annals of
Statistics, 33:1538–1579, 2005.

P. Zhao and B. Yu. On model selection consistency of Lasso. Journal of Machine Learning Research,
7:2541–2567, 2006.

P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through composite absolute
penalties. Technical Report 703, Statistics Department, University of California Berkeley, 2006.

Appendix A. Progress bounds for AdaBoost

AdaBoost is guaranteed to decrease the log-loss and the exp-loss on each boosting iteration. First,
we describe an alternate derivation for the progress of AdaBoost in Lemma 1. Next, we give a new
progress bound in Lemma 5 for the multiclass version of AdaBoost that we study in the paper.

Proof of Lemma 1 We begin by lower bounding the change in loss for a single example on iteration
t of the algorithm, which we denote by ∆t(i). As in the pseudocode given in Fig. 1, we denote by
δt the difference between wt+1 and wt. Simple algebraic manipulations yield that

∆t(i)

= log
(

1 + e−yi(w
t·xi)

)

− log
(

1 + e−yi(w
t+1·xi)

)

= − log

(

1 + e−yi(w
t+1·xi)

1 + e−yi(wt·xi)

)

= − log

(

1

1 + e−yi(wt·xi)
+

e−yi(w
t+1·xi)

1 + e−yi(wt·xi)

)

= − log

(

1 − 1

1 + eyi(wt·xi)
+

e−yi((w
t+1−wt)·xi)

1 + eyi(wt·xi)

)

= − log
(

1 − qt(i) + qt(i)e−yi(δ
t·xi)

)

(40)

where in Eq. (40)) we used the fact that δt = wt+1 − wt and we have defined qt(i) = 1

1+eyi(w
t
·xi)

.

Recalling that − log(1 − z) ≥ z for z < 1 we can bound ∆t(i):

∆t(i) ≥ qt(i)
(

1 − e−yi(δ
t·xi)

)

= qt(i)

1 − exp

∑

j

−si,jδ
t
j |xi,j |

where si,j = sign(yixi,j). Using the assumption that
∑

j aj |xi,j | ≤ 1 along with the convexity of the
exponential function we upper bound the exponential term via

exp

∑

j

−sijδ
t
j |xi,j |

 = exp

∑

j

−sijajd
t
j |xi,j |

≤
∑

j

aj |xi,j | exp(−sijd
t
j) +

1 −
∑

j

aj |xi,j |

 =
∑

j

aj |xi,j |
(
exp(−sijd

t
j) − 1

)
+ 1 ,

32

where δt
j = ajd

t
j . We thus obtain that

∆t(i) ≥ qt(i)

∑

j

aj |xi,j |
(

1 − e−sijdt
j

)

 .

Summing over all our training examples, we get

∆t =

m∑

i=1

∆t(i) ≥
m∑

i=1

qt(i)

∑

j

aj |xi,j |
(

1 − e−sijdt
j

)

 =

n∑

j=1

aj

m∑

i=1

qt(i)|xi,j |
(

1 − e−sijdt
j

)

=

n∑

j=1

aj

∑

i:yixi,j>0

qt(i)|xi,j |
(

1 − e−dt
j

)

+
∑

i:yixi,j<0

qt(i)|xi,j |
(

1 − edt
j

)

=
n∑

j=1

aj

(

µ+
j

(

1 − e−dt
j

)

+ µ−
j

(

1 − edt
j

))

, (41)

where in Eq. (41) we use the definitions of µ+
j and µ−

j ,

µ+
j =

∑

i:yixi,j>0

qt(i)|xi,j | and µ−
j =

∑

i:yixi,j<0

qt(i)|xi,j | .

Finally, replacing dt
j with δt

j/aj , we get

∆t ≥
n∑

j=1

aj

(

µ+
j

(

1 − e−δt
j/aj

)

+ µ−
j

(

1 − eδt
j/aj

))

, (42)

which is our desired progress bound.

Proof of Lemma 5 For clarity, we restate the multiclass loss function for which we derive a
progress bound,

L(W) =
m∑

i=1

log

1 +
∑

r 6=yi

exp(wr · xi − wyi
· xi)

 .

Our proof builds on the derivation provided by Collins et al. (2002). The setting studied by Collins
et. al assumes that have one weight vector w and the hypotheses are different for each class. That
is, we have h(xi, r) for every class r. Thus, instead of the inner-product wr ·xi we use w ·h(xi, r),

L(w) =

m∑

i=1

log

1 +
∑

r 6=yi

exp(w · h(xi, r) − w · h(xi, yi))

 . (43)

We now define a matrix of importance weights with an entry for each example-label pair,

qt(i, r) =
exp(wt · h(xi, r))
∑

l exp(wt · h(xi, l))
. (44)

Under the logistic mode qt(i, r) can be simply viewed as the probability that the weight vector wt

at iteration t assigns to label r for the ith example. Following analogous steps to those in Eq. (40),

33

we obtain that the change in the loss for a single example is equal to

∆t(i)

= − log

(

1 +
∑

r 6=yi
exp(wt+1 · h(xi, r) − wt+1 · h(xi, yi))

1 +
∑

r 6=yi
exp(wt · h(xi, r) − wt · h(xi, yi))

)

= − log

(

1

1 +
∑

r 6=yi
exp(wt · h(xi, r) − wt · h(xi, yi))

+

∑

r 6=yi

exp(wt+1 · h(xi, r) − wt+1 · h(xi, yi))

1 +
∑

l 6=yi
exp(wt · h(xi, l) − wt · h(xi, yi))

= − log

1 −
∑

r 6=yi

qt(i, r) +
∑

r 6=yi

exp(wt · h(xi, r) − wt · h(xi, yi) + δt · h(xi, r) − δt · h(xi, yi))

1 +
∑

l 6=yi
exp(wt · h(xi, l) − wt · h(xi, yi))

= − log

1 −
∑

r 6=yi

qt(i, r) +
∑

r 6=yi

qt(i, r) exp(δt · (h(xi, r) − h(xi, yi)))

 ,

where as before, δt = wt+1 − wt. Now define the vector πi,r = h(xi, yi) − h(xi, r) and si,r,j =
sign(πi,r,j). Using again the inequality − log(1 − z) ≥ z, along with the newly introduced notation,
we have

∆t(i) = − log

1 −
∑

r 6=yi

qt(i, r)
(
1 − exp(−δt · πi,r)

)

≥
∑

r 6=yi

qt(i, r)
(
1 − exp(−δt · πi,r)

)
=
∑

r 6=yi

qt(i, r)

1 − exp

−
∑

j

si,r,jδ
t
j |πi,r,j |

 .

We now incorporate the update templates a while defining δt
j = ajd

t
j and using the assumption that

∑

j aj |πi,r,j | ≤ 1 for all examples i and classes r. The convexity of the exponential function, exp(·),
further gives us the bound

∆t(i) ≥
∑

r 6=yi

qt(i, r)
∑

j

aj |πi,r,j |
(
1 − exp(−si,r,jd

t
j)
)

.

Summing over all the examples, we have

∆t =

m∑

i=1

∆t(i) ≥
∑

j

aj

m∑

i=1

∑

r 6=yi

qt(i, r)|πi,r,j |
(
1 − exp(−si,r,jd

t
j)
)

=
∑

j

aj

∑

i,r:πi,r,j>0

qt(i, r)πi,r,j

(

1 − e−dt
j

)

−
∑

i,r:πi,r,j<0

qt(i, r)πi,r,j

(

1 − edt
j

)

=
∑

j

aj

∑

r

[

µ+
r,j

(

1 − e−dt
j

)

+ µ−
r,j

(

1 − edt
j

)]

, (45)

where to obtain Eq. (45) we define

µ+
r,j =

∑

i:πi,r,j>0

qt(i, r)|πi,r,j | and µ−
r,j =

∑

i:πi,r,j<0

qt(i, r)|πi,r,j | . (46)

34

We are now finally ready to tackle the task of bounding Eq. (4). We do so by diverging from
the standard derivation of AdaBoost. Our proof exploits exploits the multi-vector construction in
which we have weight vectors w1, . . . wk ∈ R

n, one for each of the k classes. Specifically, we define
h by expanding the input instance as follows,

h(xi, r) =

0 · · · 0
︸ ︷︷ ︸

r−1

x⊤
i 0 · · · 0
︸ ︷︷ ︸

k−r+1

 . (47)

This construction yields the following specific form for πi,r,j :

πi,r,j = hj(xi, yi) − hj(xi, r) =

{
−xi,j if yi 6= r

0 if yi = r
.

Let us now examine µ±
r,j in the context of this specific construction. For concreteness, we fix an

example index i, a label index r, and a feature index j. If r 6= yi, then πi,r,j appears once in either the
sum constituting µ+

r,j or µ−
r,j . Since πi,r,j = −xi,j we readily obtain that πi,r,j contributes the term

qt(i, r)(−xi,j) to µ+
r,j when xi,j < 0 and, analogously, the term qt(i, r)xi,j is part of the summation

constituting µ−
r,j when xi,j > 0. When r = yi the situtation is more involved. In this case, we have

hj(xi, yi) − hj(xi, s) = hj(xi, r) − hj(xi, s) = xi,j for s 6= r. Thus, for s 6= r, πi,s,j > 0 (πi,s,j < 0)
when xi,j > 0 (xi,j < 0). For indices such that r 6= yi, we have that πi,s,j = 0. Combining these
observations, we get that the importance-weighted correlations µ+

r,j and µ−
r,j for each class r can be

written in terms of the examples xi and the importance weights qt(·) as follows:

µ+
r,j =

∑

i:yi 6=r,xi,j<0

qt(i, r)|xi,j | +
∑

i:yi=r,xi,j>0

(1 − qt
yi

(i))|xi,j |

µ−
r,j =

∑

i:yi 6=r,xi,j>0

qt(i, r)|xi,j | +
∑

i:yi=r,xi,j<0

(1 − qt
yi

(i))|xi,j | .

Recapping, using the fact that δt
r,j = ajd

t
r,j is the value added to the weight wt

r,j , the change in the
multiclass logistic loss of Eq. (4) can be lower bounded by

L(W t) − L(W t+1) = ∆t ≥
n∑

j=1

aj

k∑

r=1

[

µ+
r,j

(

1 − e−dt
r,j

)

+ µ−
r,j

(

1 − edt
r,j

)]

.

Note that our definition of h from Eq. (47) gives that

∑

j

|πi,r,j | = ‖πi,r‖1 = ‖h(xi, yi) − h(xi, r)‖1 = ‖xi‖1 + ‖−xi‖1 = 2

n∑

j=1

|xi,j |

unless r = yi, in which case the sum is 0. Thus, the allowable template vectors a in the progress
bound are a (not necessarily strict) superset of the a ∈ R

n
+ such that 2

∑

j aj |xi,j | ≤ 1 for all i.

Appendix B. Progress bounds for GradBoost

In this section we derive the progress bound for the gradient-based boosting algorithms. Our first
bound for the binary logistic regression is a variation on a proof technique first given in Dekel
et al. (2005). The second bound, for multiclass logistic regression, is new and requires a detailed
examination of the Hessian of the logistic function in multiclass settings.

35

Proof of Lemma 7 To remind the reader, the update we perform takes the form, wt+1 = wt+δt(a)
where δt

j = ajdj and a is set such that
∑

i,j ajx
2
i,j ≤ 1. Let us denote by g the gradient of the logistic

function evaluated at wt, thus, gj = −
∑m

i=1 qt(i)yixi,j . For clarity of the derivation below we omit
the dependency on a and the iteration index t and denote by δ the update vector. We now use the
mean-value theorem and upper bound L(wt+1) using its second order Taylor expansion as follows,

L(wt+1) = L(wt + δ) = L(wt) + ∇L(wt) · δ +
1

2
δ⊤

(
m∑

i=1

q̃t(i)(1 − q̃t(i))xix
⊤
i

)

δ , (48)

where q̃t(i) = 1/(1 + exp(yixi · (wt + αδ))) for some (unknown) α ∈ [0, 1]. By construction,
0 ≤ q̃t(i) ≤ 1, it is clear that q̃t(i)(1 − q̃t(i)) ≤ 1/4. Thus, from Eq. (48) we get

L(wt + δ) ≤ L(wt) + ∇L(wt) · δ +
1

8
δ⊤

(
m∑

i=1

xix
⊤
i

)

δ

= L(wt) + ∇L(wt) · δ +
1

8

m∑

i=1

(δ · xi)
2

.

Recall that δ = a ⊗ d. We now rewrite the inner-product δ · xi as (
√

a ⊗ d) · (√a ⊗ xi) and use
Cauchy-Schwarz inequality to further bound inner product,

(δ · xi)
2

=
((√

a ⊗ d
)
·
(√

a ⊗ xi

))2 ≤ ‖
√

a ⊗ d‖2‖
√

a ⊗ xi‖2 .

We can thus further bound L(wt+1) as follows,

L(wt+1) ≤ L(wt) +
n∑

j=1

ajdjgj +
1

8

n∑

j=1

ajd
2
j

m∑

i=1

n∑

j=1

ajx
2
i,j

≤ L(wt) +

n∑

j=1

ajdjgj +
1

8

n∑

j=1

ajd
2
j ,

where we used the requirement on a, namely,
∑

i,j ajx
2
i,j ≤ 1 to obtain the final bound.

Proof of Lemma 9 The derivation of the progress bound for the multiclass logistic loss of Eq. (4) is
somewhat more complex than that for the binary logistic loss, and we introduce some new notation.
For simplicity and cleanness, we prove the bound for the case when we update a single row from the
matrix W . The update for the general case is a straightforward albeit tedious generalization which
we discuss at the end of the proof. Formally, we update wj,r for each r ∈ {1, . . . , k}. Therefore,
wt+1

j′,s = wt
j′,s for j′ 6= j and wt+1

j = wt
j + δ.

We start by examining the gradient for the multiclass logistic loss. First, let us rewrite the
logistic loss as the negative log-likelihood for a multinomial logistic,

L(W) = −
m∑

i=1

log

(
exp(wyi

· xi)
∑

r exp(wr · xi)

)

=

m∑

i=1

log

(
∑

r

exp(wr · xi)

)

− wyi
· xi .

We omit the iteration index t and define q(i, r) as in Eq. (44). Denoting by ∇r the partial derivative
of L with respect to wr,j , we get that

∇r =

m∑

i=1

q(i, r)xi,j −
∑

i:yi=r

xi,j .

36

The diagonal elements and off-diagonal elements of the Hessian, denoted ∇r,s and ∇r,r respectively,
are likewise simple to derive,

∇r,s = −
m∑

i=1

q(i, r)q(i, s)x2
i,j and ∇r,r =

m∑

i=1

q(i, r)x2
i,j − q2(i, r)x2

i,j .

We now use again the mean value theorem with a second order Taylor expansion of the loss to obtain
that,

L(W t+1) = L(W t) +

k∑

r=1

δr

m∑

i=1

(q(i, r) − 1 {r = yi})xi,j

+
1

2

(
m∑

i=1

x2
i,j

k∑

r=1

q̃(i, r)δ2
r −

m∑

i=1

x2
i,j

k∑

r=1

k∑

s=1

q̃(i, r)q̃(i, s)δrδs

)

, (49)

where

q̃(i, r) =
exp((wr + αδrej) · xi)

∑

s exp((ws + αδsej) · xi)
,

for some α ∈ [0, 1]. Here ej denotes the all zero vector except for a 1 in the jth component.
Examining the Hessian term from Eq. (49) allows us to make a few further useful simplifications to
these bounds. First, we know that

∑

r q(i, r) = 1 and q(i, r) ≥ 0 for all r. Second, we know that

k∑

r=1

k∑

s=1

q(i, r)q(i, s)δrδs =

k∑

r=1

q(i, r)δr

k∑

s=1

q(i, s)δs(i) =

(
k∑

r=1

q(i, r)δr

)2

≥ 0 .

Denote by g the vector whose rth component is ∇r, that is, gr =
∑m

i=1(q(i, r)− 1 {r = yi})xi,j . We
readily can upper bound L(W t+1) using Eq. (49) as follows,

L(W t+1) ≤ L(W t) +

k∑

r=1

δrgr +
1

2

k∑

r=1

δ2
r

m∑

i=1

x2
i,j .

We can get a tighter bound, however, by examining more closely the last term from Eq. (49).
To do so, we note that it is actually a sum of terms of the form δ⊤ diag(v)δ − δ⊤vv⊤δ, where
v ∈ ∆k, the k-dimensional probability simplex. Thus, if we upper bound the maximum eigenvalue
of diag(v) − vv⊤ for any v ∈ ∆k, we get a tighter bound on L(W t+1). We use the Gers̆gorin circle
theorem (Horn and Johnson, 1985, Theorem 6.1.1), which says that the eigenvalues of a matrix A
are all within disks defined by Aii ±

∑

j 6=i |Aji|. Examining diag(v) − vv⊤, we have off-diagonal
elements of the form vivj and on-diagonal elements vi(1−vi). Thus, all the eigenvalues are bounded
above by

max
i∈[n]

vi(1 − vi) + vi

∑

j 6=i

vj

= max

i∈[n]
{vi(1 − vi) + vi(1 − vi)} ≤ sup

v∈[0,1]

2v(1 − v) =
1

2
.

The inequality above is due to the fact that vi ∈ [0, 1] for all i. Moreover, this bound is tight since
the vector v = [12

1
2 0 · · · 0]⊤ is associated with an eigenvalue of one half. We therefore obtain the

following bound on the loss,

L(W t+1) ≤ L(W t) +

k∑

r=1

δrgr,j +
1

4

k∑

r=1

δ2
r

m∑

i=1

x2
i,j . (50)

37

Finally, in the general case where we associate a different update vector δj with each row of W ,
we can define a template vector a ∈ R

n such that
∑

i,j ajx
2
i,j ≤ 1 and generalize the above derivation

(using convexity and the Cauchy-Schwarz inequality as in the proof of lemma 7) for the case where
multiple rows are being updated simultaneously, which gives

L(W t+1) ≤ L(W t) +
∑

j:aj>0

k∑

r=1

δj,rgr,j +
1

4

∑

j:aj>0

k∑

r=1

δ2
j,r

aj
.

Appendix C. Convergence proofs

Before focusing on the proof of the main convergence theorem, we prove a technical lemma on
the continuity of solutions to the different boosting updates that simplifies our proofs. We then
use Lemma 12 to guarantee that the change in the loss ∆t for any of the boosting updates is a
continuous function of the parameters w. This property allows us to lower bound the change in the
loss over some compact subset of the parameters in which the optimal point for any of the logistic
losses does not lie, guaranteeing progress of the boosting algorithms.

Lemma 12 Let M and X be compact spaces. Let f : M ×X → R be continuous function in µ and
strictly convex in x. Let µj ∈ M for j ∈ {1, 2} and define x⋆

j = argminx∈X f(µj ,x). Given ε > 0,
there exists a δ such that if ‖µ1 − µ2‖ ≤ δ then ‖x⋆

1 − x⋆
2‖ ≤ ε.

Proof of Lemma 12 From the strict convexity of f in x, we know that if ‖x⋆
1 − x⋆

2‖ > ε, then
there is a δ such that

f(µ1,x
⋆
1) < f(µ1,x

⋆
2) − δ and f(µ2,x

⋆
2) < f(µ2,x

⋆
1) − δ.

Now, if f(µ1,x
⋆
1) ≤ f(µ2,x

⋆
2), then

f(µ1,x
⋆
1) − f(µ2,x

⋆
1) < f(µ1,x

⋆
1) − f(µ2,x

⋆
2) − δ ≤ f(µ2,x

⋆
2) − f(µ2,x

⋆
2) − δ = −δ

or δ < f(µ2,x
⋆
1) − f(µ1,x

⋆
1). Likewise, if f(µ2,x

⋆
2) ≤ f(µ1,x

⋆
1),

f(µ2,x
⋆
2) − f(µ1,x

⋆
2) < f(µ2,x

⋆
2) − f(µ1,x

⋆
1) − δ ≤ f(µ1,x

⋆
1) − f(µ1,x

⋆
1) − δ = −δ

so that δ < f(µ2,x
⋆
2)− f(µ1,x

⋆
2). In either case, we have an x such that |f(µ1,x)− f(µ2,x)| > δ.

The contrapositive of what has been shown is that if |f(µ1,x) − f(µ2,x)| ≤ δ for all x ∈ X, then
‖x⋆

1 − x⋆
2| ≤ ε.

Put informally, the function argminx f(µ,x) is continuous in µ. In the lemma, µ stands for the
correlations variable µ±

j , which are continuous functions of the current weights wt, and x represents

δt.

Lemma 13 (a) The iterates wt generated by the algorithms lie in compact spaces. (b) The progress
bounds for AdaBoost or GradBoost presented in this paper satisfy lemma 12.

Proof We prove the lemma for ℓ1-regularized AdaBoost, noting that the proofs for ℓ1/ℓ∞-regularized
multiclass and multitask AdaBoost, ℓ1-regularized GradBoost, ℓ1/ℓ∞-regularized multiclass and mul-
titask GradBoost, and ℓ1/ℓ2-regularized GradBoost are essentially identical. First, we show that

38

each of the algorithms’ iterates lie in compact spaces by showing that the loss for each is monoton-
ically non-increasing. Hence, a norm of the weights for each of the losses is bounded.

For ℓ1-regularized AdaBoost, we examine Eq. (42) and Eq. (6). We have Q(wt) − Q(wt+1) ≥
∑

j ∆t(j) ≥ 0, since

∆t(j) ≥ sup
δj

[

ajµ
+
j

(

1 − e−δj/aj

)

+ ajµ
−
j

(

1 − eδj/aj

)

− λ
∣
∣δj + wt

j

∣
∣+ λ

∣
∣wt

j

∣
∣

]

≥ ajµ
+
j (1 − 1) + ajµ

−
j (1 − 1) − λ

∣
∣wt

j

∣
∣+ λ

∣
∣wt

j

∣
∣ = 0 .

As at every step we choose the δj that achieves the supremum, we also have that Q(0) = m log 2 ≥
Q(wt) ≥ λ ‖wt‖1. In summary, for all t, we bound the ℓ1-norm of wt by m log 2/λ, which guarantees
that wt are in a compact space. The arguments for all the other algorithms are similar.

We now prove assertion (b). Each bound on the change in one of the losses is a function of
the importance weights q(i) (through the gradient or the µ±

j terms). The importance weights are
continuous functions of w and the iterates for each algorithm lie in a compact space. Thus, each
progress bound is a continuous function of w. Note also that the gradient terms and the µ±

j terms
also lie in compact spaces since they are the continuous image of a compact set. Furthermore, each
algorithm’s update of wt satisfies λ‖wt+1‖q ≤ Q(0). Concretely, it means that λ‖wt + δt‖q ≤ Q(0)
and therefore

λ‖δt‖q ≤ λ‖δt + wt‖q + λ‖wt‖q ≤ 2Q(0) .

Lastly, by inspection it is clear that each of the progress bounds is strictly convex.

Lemma 14 (General Convergence) Let Q : R
n → R+ be a continuous convex function and

A : R
n → R be a continuous function. Let w1, . . . ,wt, . . . be a sequence that satisfies the following

conditions:

(a) The sequence lies in a compact space Ω

(b) Q(wt+1) − Q(wt) ≤ A(wt) ≤ 0

(c) If A(w) = 0 then w is a fixed point and hence a minimum for the loss Q.

Then wt → w⋆, where w⋆ = arg minw Q(w).

Proof Let Ω⋆ denote the set of optimal points for Q, and assume for the sake of contradiction that
the sequence w1,w2, . . . never enters the open ball B(Ω⋆, γ) of radius γ > 0 around Ω⋆. The set
Ω \ B(Ω⋆, γ) is compact, so −A must attain a minimum θ > 0 on it. This is a contradiction, since
assumption (b) would imply that Q(wt+1) ≤ Q(wt) − θ for all t.

Proof of Theorem 11 We show that each variant of regularized AdaBoost and GradBoost pre-
sented in this paper satisfies Lemma 14 and has an auxiliary function A. The existence of A is
actually a consequence of lemma 13, which bounds the change in the loss of each algorithm. For
each variant of GradBoost and AdaBoost, we set A(wt) to be the value of the supremum of the
bound on the change in the loss for each algorithm at the point wt (see for instance Eq. (33)). The
arguments in Lemma 13 imply that we have Q(wt)−Q(wt+1) ≥ A(wt) ≥ 0. The A thus constructed
are also continuous functions of w by Lemma 13, since the δt are continuous in wt. In addition,
A(wt) = 0 only when δt = 0, as each A is the supremum of a strictly concave function which attains
a value of zero when δ = 0.

An inspection of subgradient conditions for optimality (Bertsekas, 1999) gives that for each
algorithm, if A(wt) = 0, then wt is an optimal point for the particular loss. For example, consider

39

the ℓ1-regularized logistic loss of Eq. (2). Suppose that for every template a, no progress can be
made and δj = 0 for all j. Then, for all j we get that 0 belongs in the sub-differential set of the
change in the loss at δj = 0, namely,

0 ∈ −µ+
j + µ−

j + λ∂δj
|wj + δj |

∣
∣
δj=0

= −µ+
j + µ−

j + λ∂|wj | .

Expanding the right hand side of the above equation, we get

−µ+
j + µ−

j + λ∂|wj | = −
∑

i:xi,jyi>0

q(i) |xi,j | +
∑

i:xi,jyi<0

q(i) |xi,j | + λ∂|wj |

= −
∑

i:xi,jyi>0

yixi,j

1 + eyi(w·xi)
−

∑

i:xi,jyi<0

yixi,j

1 + eyi(w·xi)
+ λ∂|wj |

= −
m∑

i=1

1

1 + eyi(w·xi)
yixi,j + λ∂|wj | =

∂

∂wj
L(w) + ∂jλ ‖w‖1 ,

where ∂j is the subdifferential of Q(w) for the jth element of w. Thus, when the change in the loss
is 0, we have that 0 is in the subdifferential of Q(w) for each wj and therefore w is an optimum
of loss function. Lemma 13 guarantees that each algorithm’s iterates lie in a compact space, and
therefore Lemma 14 applies.

Appendix D. Experimental Setup

Feature Selection for ℓ2-Regularized Logistic Regression: Here we describe the feature
scoring scheme to select the features used by ℓ2-regularized logistic regression. We first learned
the base regressor (which can be done exactly), then we chose the 800 features that gave the best
decrease in the loss. We show next that the latter stage reduces to selection based on an information
gain criterion. First, for selecting the bias weight b, we minimize

m∑

i=1

log(1 + exp(−yib)) = m+ log(1 + exp(−b)) + m− log(1 + exp(b))

where m+ and m− are the number of positive and negative examples, respectively. Taking the
derivative and setting the result to zero, we get

−m+ 1

1 + eb
+ m− eb

1 + eb
= 0 ⇒ −m+ + m−eb = 0 ⇒ b = log

(
m+

m−

)

. (51)

For the Reuters data, our features took values in {0, 1}. Let us denote by n+
j the number of examples

for which feature j was 1 and yi = 1 and by n−
j the examples for which feature j was 1 while yi was

−1. Using these definitions, we want to minimize, w.r.t α, the following expression,

∑

i:xi,j 6=0

log(1 + exp(−yi(b + αxi,j))) = n+
j log(1 + exp(−b − α)) + n−

j log(1 + exp(b + α)).

Again taking the derivative w.r.t α, we need solve − n+
j

1+eb+α +
n−

j

1+e−b−α = 0. Note that this expression

takes the same form as Eq. (51) for b. Thus, we obtain that b + α = log

(
n+

j

n−

j

)

. To score a feature,

40

we simply compute the score ∆j , which is, ignoring the terms that only have to do with the bias b,

∆j = n+
j log

(

1 +
n−

j

n+
j

)

+ n−
j log

(

1 +
n+

j

n−
j

)

− n+
j log

(

1 +
m−

m+

)

− n−
j log

(

1 +
m+

m−

)

= −n+
j log

(

n+
j

n+
j + n−

j

)

− n−
j log

(

n−
j

n+
j + n−

j

)

+ n+
j log

(
m+

m+ + m−

)

+ n−
j log

(
m−

m+ + m−

)

= −DKL

(

n+
j

n+
j + n−

j

∥
∥
∥
∥
∥

m+

m+ + m−

)

(n+
j + n−

j) .

To recap, we choose the features with maximum KL-divergence from the base distribution of positive
and negative examples, weighted by the number of times the feature is on.

41

