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Abstract

Randomized features provide a computationally efficient way to approximate kernel
machines in machine learning tasks. However, such methods require a user-defined
kernel as input. We extend the randomized-feature approach to the task of learning
a kernel (via its associated random features). Specifically, we present an efficient
optimization problem that learns a kernel in a supervised manner. We prove the
consistency of the estimated kernel as well as generalization bounds for the class
of estimators induced by the optimized kernel, and we experimentally evaluate our
technique on several datasets. Our approach is efficient and highly scalable, and we
attain competitive results with a fraction of the training cost of other techniques.

1 Introduction

An essential element of supervised learning systems is the representation of input data. Kernel
methods [27] provide one approach to this problem: they implicitly transform the data to a new
feature space, allowing non-linear data representations. This representation comes with a cost, as
kernelized learning algorithms require time that grows at least quadratically in the data set size,
and predictions with a kernelized procedure require the entire training set. This motivated Rahimi
and Recht [24, 25] to develop randomized methods that efficiently approximate kernel evaluations
with explicit feature transformations; this approach gives substantial computational benefits for large
training sets and allows the use of simple linear models in the randomly constructed feature space.

Whether we use standard kernel methods or randomized approaches, using the “right” kernel for a
problem can make the difference between learning a useful or useless model. Standard kernel methods
as well as the aforementioned randomized-feature techniques assume the input of a user-defined
kernel—a weakness if we do not a priori know a good data representation. To address this weakness,
one often wishes to learn a good kernel, which requires substantial computation. We combine kernel
learning with randomization, exploiting the computational advantages offered by randomized features
to learn the kernel in a supervised manner. Specifically, we use a simple pre-processing stage for
selecting our random features rather than jointly optimizing over the kernel and model parameters.
Our workflow is straightforward: we create randomized features, solve a simple optimization problem
to select a subset, then train a model with the optimized features. The procedure results in lower-
dimensional models than the original random-feature approach for the same performance. We give
empirical evidence supporting these claims and provide theoretical guarantees that our procedure is
consistent with respect to the limits of infinite training data and infinite-dimensional random features.

1.1 Related work

To discuss related work, we first describe the supervised learning problem underlying our approach.
We have a cost c : R× Y → R, where c(·, y) is convex for y ∈ Y , and a reproducing kernel Hilbert
space (RKHS) of functions F with kernel K. Given a sample {(xi, yi)}ni=1, the usual `2-regularized
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learning problem is to solve the following (shown in primal and dual forms respectively):

minimize
f∈F

n∑
i=1

c(f(xi), yi) +
λ

2
‖f‖22 , or maximize

α∈Rn
−

n∑
i=1

c∗(αi, y
i)− 1

2λ
αTGα, (1)

where ‖·‖2 denotes the Hilbert space norm, c∗(α, y) = supz{αz − c(z, y)} is the convex conjugate
of c (for fixed y) and G = [K(xi, xj)]ni,j=1 denotes the Gram matrix.

Several researchers have studied kernel learning. As noted by Gönen and Alpaydın [14], most
formulations fall into one of a few categories. In the supervised setting, one assumes a base class
or classes of kernels and either uses heuristic rules to combine kernels [2, 23], optimizes structured
(e.g. linear, nonnegative, convex) compositions of the kernels with respect to an alignment metric
[9, 16, 20, 28], or jointly optimizes kernel compositions with empirical risk [17, 20, 29]. The latter
approaches require an eigendecomposition of the Gram matrix or costly optimization problems
(e.g. quadratic or semidefinite programs) [10, 14], but these models have a variety of generalization
guarantees [1, 8, 10, 18, 19]. Bayesian variants of compositional kernel search also exist [12, 13]. In
un- and semi-supervised settings, the goal is to learn an embedding of the input distribution followed
by a simple classifier in the embedded space (e.g. [15]); the hope is that the input distribution carries
the structure relevant to the task. Despite the current popularity of these techniques, especially deep
neural architectures, they are costly, and it is difficult to provide guarantees on their performance.

Our approach optimizes kernel compositions with respect to an alignment metric, but rather than work
with Gram matrices in the original data representation, we work with randomized feature maps that
approximate RKHS embeddings. We learn a kernel that is structurally different from a user-supplied
base kernel, and our method is an efficiently (near linear-time) solvable convex program.

2 Proposed approach

At a high level, we take a feature mapping, find a distribution that aligns this mapping with the labels
y, and draw random features from the learned distribution; we then use these features in a standard
supervised learning approach.

For simplicity, we focus on binary classification: we have n datapoints (xi, yi) ∈ Rd × {−1, 1}.
Letting φ : Rd ×W → [−1, 1] and Q be a probability measure on a spaceW , define the kernel

KQ(x, x′) :=

∫
φ(x,w)φ(x′, w)dQ(w). (2)

We want to find the “best” kernel KQ over all distributions Q in some (large, nonparametric) set P of
possible distributions on random features; we consider a kernel alignment problem of the form

maximize
Q∈P

∑
i,j

KQ(xi, xj)yiyj . (3)

We focus on sets P defined by divergence measures on the space of probability distributions.
For a convex function f with f(1) = 0, the f -divergence between distributions P and Q is
Df (P ||Q) =

∫
f( dPdQ )dQ. Then, for a base (user-defined) distribution P0, we consider collec-

tions P := {Q : Df (Q||P0) ≤ ρ} where ρ > 0 is a specified constant. In this paper, we focus
on divergences f(t) = tk − 1 for k ≥ 2. Intuitively, the distribution Q maximizing the align-
ment (3) gives a feature space in which pairwise distances are similar to those in the output space Y .
Unfortunately, the problem (3) is generally intractable as it is infinite dimensional.

Using the randomized feature approach, we approximate the integral (2) as a discrete sum over
samples W i iid∼ P0, i ∈ [Nw]. Defining the discrete approximation PNw := {q : Df (q||1/Nw) ≤ ρ}
to P , we have the following empirical version of problem (3):

maximize
q∈PNw

∑
i,j

yiyj
Nw∑
m=1

qmφ(xi, wm)φ(xj , wm). (4)

Using randomized features, matching the input and output distances in problem (4) translates to
finding a (weighted) set of points among w1, w2, ..., wNw that best “describe” the underlying dataset,
or, more directly, finding weights q so that the kernel matrix matches the correlation matrix yyT .
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Given a solution q̂ to problem (4), we can solve the primal form of problem (1) in two ways. First, we
can apply the Rahimi and Recht [24] approach by drawing D samples W 1, . . . ,WD iid∼ q̂, defining
features φi = [φ(xi, w1) · · · φ(xi, wD)]T , and solving the risk minimization problem

θ̂ = argmin
θ

{ n∑
i=1

c
(

1√
D
θTφi, yi

)
+ r(θ)

}
(5)

for some regularization r. Alternatively, we may set φi = [φ(xi, w1) · · · φ(xi, wNw)]T , where
w1, . . . , wNw are the original random samples from P0 used to solve (4), and directly solve

θ̂ = argmin
θ

{ n∑
i=1

c(θT diag(q̂)
1
2φi, yi) + r(θ)

}
. (6)

Notably, if q̂ is sparse, the problem (6) need only store the random features corresponding to non-zero
entries of q̂. Contrast our two-phase procedure to that of Rahimi and Recht [25], which samples
W 1, . . . ,WD iid∼ P0 and solves the minimization problem

minimize
α∈RNw

n∑
i=1

c

( D∑
m=1

αmφ(xi, wm), yi
)

subject to ‖α‖∞ ≤ C/Nw, (7)

where C is a numerical constant. At first glance, it appears that we may suffer both in terms of
computational efficiency and in classification or learning performance compared to the one-step
procedure (7). However, as we show in the sequel, the alignment problem (4) can be solved very
efficiently and often yields sparse vectors q̂, thus substantially decreasing the dimensionality of
problem (6). Additionally, we give experimental evidence in Section 4 that the two-phase procedure
yields generalization performance similar to standard kernel and randomized feature methods.

2.1 Efficiently solving problem (4)

The optimization problem (4) has structure that enables efficient (near linear-time) solutions. Define
the matrix Φ = [φ1 · · · φn] ∈ RNw×n, where φi = [φ(xi, w1) · · · φ(xi, wNw)]T ∈ RNw is the
randomized feature representation for xi and wm iid∼ P0. We can rewrite the optimization objective as∑

i,j

yiyj
Nw∑
m=1

qmφ(xi, wm)φ(xj , wm) =

Nw∑
m=1

qm

( n∑
i=1

yiφ(xi, wm)

)2

= qT ((Φy)� (Φy)) ,

where � denotes the Hadamard product. Constructing the linear objective requires the evaluation of
Φy. Assuming that the computation of φ isO(d), construction of Φ isO(nNwd) on a single processor.
However, this construction is trivially parallelizable. Furthermore, computation can be sped up even
further for certain distributions P0. For example, the Fastfood technique can approximate Φ in
O(nNw log(d)) time for the Gaussian kernel [21].

The problem (4) is also efficiently solvable via bisection over a scalar dual variable. Using λ ≥ 0 for
the constraint Df (Q||P0) ≤ ρ, a partial Lagrangian is

L(q, λ) = qT ((Φy)� (Φy))− λ (Df (q||1/Nw)− ρ) .

The corresponding dual function is g(λ) = supq∈∆ L(q, λ), where ∆ := {q ∈ RNw+ : qT1 = 1}
is the probability simplex. Minimizing g(λ) yields the solution to problem (4); this is a convex
optimization problem in one dimension so we can use bisection. The computationally expensive step
in each iteration is maximizing L(q, λ) with respect to q for a given λ. For f(t) = tk − 1, we define
v := (Φy)� (Φy) and solve

maximize
q∈∆

qT v − λ 1

Nw

Nw∑
m=1

(Nwqm)k. (8)

This has a solution of the form qm =
[
vm/λN

k−1
w + τ

] 1
k−1

+
, where τ is chosen so that

∑
m qm = 1.

We can find such a τ by a variant of median-based search in O(Nw) time [11]. Thus, for any k ≥ 2,
an ε-suboptimal solution to problem (4) can be found in O(Nw log(1/ε)) time (see Algorithm 1).
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Algorithm 1 Kernel optimization with f(t) = tk − 1 as divergence
INPUT: distribution P0 onW , sample {(xi, yi)}ni=1, Nw ∈ N, feature function φ, ε > 0
OUTPUT: q ∈ RNw that is an ε-suboptimal solution to (4).
SETUP: Draw Nw samples wm iid∼ P0, build feature matrix Φ, compute v := (Φy)� (Φy).
Set λu ←∞, λl ← 0, λs ← 1
while λu =∞
q ← argmaxq∈∆ L(q, λs) // (solution to problem (8))
if Df (q||1/Nw) < ρ then λu ← λs else λs ← 2λs

while λu − λl > ελs

λ← (λu + λl)/2
q ← argmaxq∈∆ L(q, λ) // (solution to problem (8))
if Df (q||1/Nw) < ρ then λu ← λ else λl ← λ

3 Consistency and generalization performance guarantees

Although the procedure (4) is a discrete approximation to a heuristic kernel alignment problem,
we can provide guarantees on its performance as well as the generalization performance of our
subsequent model trained with the optimized kernel.

Consistency First, we provide guarantees that the solution to problem (4) approaches a population
optimum as the data and random sampling increase (n → ∞ and Nw → ∞, respectively). We
consider the following (slightly more general) setting: let S : X × X → [−1, 1] be a bounded
function, where we intuitively think of S(x, x′) as a similarity metric between labels for x and x′,
and denote Sij := S(xi, xj) (in the binary case with y ∈ {−1, 1}, we have Sij = yiyj). We then
define the alignment functions

T (P ) := E[S(X,X ′)KP (X,X ′)], T̂ (P ) :=
1

n(n− 1)

∑
i 6=j

SijKP (xi, xj),

where the expectation is taken over S and the independent variables X,X ′. Lemmas 1 and 2 provide
consistency guarantees with respect to the data sample (xi and Sij) and the random feature sample
(wm); together they give us the overall consistency result of Theorem 1. We provide proofs in the
supplement (Sections A.1, A.2, and A.3 respectively).
Lemma 1 (Consistency with respect to data). Let f(t) = tk−1 for k ≥ 2. Let P0 be any distribution
on the spaceW , and let P = {Q : Df (Q||P0) ≤ ρ}. Then

P
(

sup
Q∈P

∣∣∣∣T̂ (Q)− T (Q)

∣∣∣∣ ≥ t) ≤ √2 exp

(
− nt2

16(1 + ρ)

)
.

Lemma 1 shows that the empirical quantity T̂ is close to the true T . Now we show that, independent
of the size of the training data, we can consistently estimate the optimal Q ∈ P via sampling (i.e.
Q ∈ PNw ).
Lemma 2 (Consistency with respect to sampling features). Let the conditions of Lemma 1 hold.
Then, with Cρ = 2(ρ+1)√

1+ρ−1
and Dρ =

√
8(1 + ρ), we have∣∣∣∣ sup

Q∈PNw
T̂ (Q)− sup

Q∈P
T̂ (Q)

∣∣∣∣ ≤ 4Cρ

√
log(2Nw)

Nw
+Dρ

√
log 2

δ

Nw

with probability at least 1− δ over the draw of the samples Wm iid∼ P0.

Finally, we combine the consistency guarantees for data and sampling to reach our main result, which
shows that the alignment provided by the estimated distribution Q̂ is nearly optimal.

Theorem 1. Let Q̂w maximize T̂ (Q) over Q ∈ PNw . Then, with probability at least 1− 3δ over the
sampling of both (x, y) and W , we have∣∣∣∣T (Q̂w)− sup

Q∈P
T (Q)

∣∣∣∣ ≤ 4Cρ

√
log(2Nw)

Nw
+Dρ

√
log 2

δ

Nw
+ 2Dρ

√
2 log 2

δ

n
.
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Generalization performance The consistency results above show that our optimization procedure
nearly maximizes alignment T (P ), but they say little about generalization performance for our model
trained using the optimized kernel. We now show that the class of estimators employed by our method
has strong performance guarantees. By construction, our estimator (6) uses the function class

FNw :=
{
h(x) =

Nw∑
m=1

αm
√
qmφ(x,wm) | q ∈ PNw , ‖α‖2 ≤ B

}
,

and we provide bounds on its generalization via empirical Rademacher complexity. To that end,
define Rn(FNw) := 1

nE[supf∈FNw
∑n
i=1 σif(xi)], where the expectation is taken over the i.i.d.

Rademacher variables σi ∈ {−1, 1}. We have the following lemma, whose proof is in Section A.4.

Lemma 3. Under the conditions of the preceding paragraph,Rn(FNw) ≤ B
√

2(1+ρ)
n .

Applying standard concentration results, we obtain the following generalization guarantee.
Theorem 2 ([8, 18]). Let the true misclassification risk and ν-empirical misclassification risk for an
estimator h be defined as follows:

R(h) := P(Y h(X) < 0), R̂ν(h) :=
1

n

n∑
i=1

min
{

1,
[
1− yh(xi)/ν

]
+

}
.

Then suph∈FNw {R(h)− R̂ν(h)} ≤ 2
νRn(FNw) + 3

√
log 2

δ

2n with probability at least 1− δ.

The bound is independent of the number of terms Nw, though in practice we let B grow with Nw.

4 Empirical evaluations

We now turn to empirical evaluations, comparing our approach’s predictive performance with that of
Rahimi and Recht’s randomized features [24] as well as a joint optimization over kernel compositions
and empirical risk. In each of our experiments, we investigate the effect of increasing dimensionality
of the randomized feature space D. For our approach, we use the χ2-divergence (k = 2 or f(t) =
t2 − 1). Letting q̂ denote the solution to problem (4), we use two variants of our approach: when
D < nnz(q̂) we use estimator (5), and we use estimator (6) otherwise. For the original randomized
feature approach, we relax the constraint in problem (7) with an `2 penalty. Finally, for the joint
optimization in which we learn the kernel and classifier together, we consider the kernel-learning
objective, i.e. finding the best Gram matrix G in problem (1) for the soft-margin SVM [14]:

minimizeq∈PNw supα αT1− 1
2

∑
i,j αiαjy

iyj
∑Nw
m=1 qmφ(xi, wm)φ(xj , wm)

subject to 0 � α � C1, αT y = 0.
(9)

We use a standard primal-dual algorithm [4] to solve the min-max problem (9). While this is an
expensive optimization, it is a convex problem and is solvable in polynomial time.

In Section 4.1, we visualize a particular problem that illustrates the effectiveness of our approach
when the user-defined kernel is poor. Section 4.2 shows how learning the kernel can be used to quickly
find a sparse set of features in high dimensional data, and Section 4.3 compares our performance with
unoptimized random features and the joint procedure (9) on benchmark datasets. The supplement
contains more experimental results in Section C.

4.1 Learning a new kernel with a poor choice of P0

For our first experiment, we generate synthetic data xi iid∼ N(0, I) with labels yi = sign(‖x‖2−
√
d),

where x ∈ Rd. The Gaussian kernel is ill-suited for this task, as the Euclidean distance used
in this kernel does not capture the underlying structure of the classes. Nevertheless, we use the
Gaussian kernel, which corresponds [24] to φ(x, (w, v)) = cos((x, 1)T (w, v)) where (W,V ) ∼
N(0, I) × Uni(0, 2π), to showcase the effects of our method. We consider a training set of size
n = 104 and a test set of size 103, and we employ logistic regression with D = nnz(q̂) for both our
technique as well as the original random feature approach.1

1For 2 ≤ d ≤ 15, nnz(q̂) < 250 when the kernel is trained with Nw = 2 · 104, and ρ = 200.
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(a) Training data & optimized features for d = 2
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Figure 1. Experiments with synthetic data. (a) Positive and negative training examples are blue and red,
and optimized randomized features (wm) are yellow. All offset parameters vm were optimized to be
near 0 or π (not shown). (b) Misclassification error of logistic regression model vs. dimensionality of
data. GK denotes random features with a Gaussian kernel, and our optimized kernel is denoted OK.
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Figure 2. Feature selection in sparse data. (a) Misclassification error of ridge regression model vs.
dimensionality of data. LK denotes random features with a linear kernel, and OK denotes our method.
Our error is fixed above D = nnz(q̂) after which we employ estimator (6). (b) Weight of feature i in
optimized kernel (qi) vs. i. Vertical bars delineate separations between k-grams, where 1 ≤ k ≤ 5 is
nondecreasing in i. Circled features are prefixes of GGTTG and GTTGG at indices 60–64.

Figure 1 shows the results of the experiments for d ∈ {2, . . . , 15}. Figure 1(a) illustrates the output
of the optimization when d = 2. The selected kernel features wm lie near (1, 1) and (−1,−1); the
offsets vm are near 0 and π, giving the feature φ(·, w, v) a parity flip. Thus, the kernel computes
similarity between datapoints via neighborhoods of (1, 1) and (−1,−1) close to the classification
boundary. In higher dimensions, this generalizes to neighborhoods of pairs of opposing points along
the surface of the d-sphere; these features provide a coarse approximation to vector magnitude.
Performance degradation with d occurs because the neighborhoods grow exponentially larger and
less dense (due to fixed Nw and n). Nevertheless, as shown in Figure 1(b), this degradation occurs
much more slowly than that of the Gaussian kernel, which suffers a similar curse of dimensionality
due to its dependence on Euclidean distance. Although somewhat contrived, this example shows that
even in situations with poor base kernels our approach learns a more suitable representation.

4.2 Feature selection and biological sequences

In addition to the computational advantages rendered by the sparsity of q after performing the
optimization (4), we can use this sparsity to gain insights about important features in high-dimensional
datasets; this can act as an efficient filtering mechanism before further investigation. We present
one example of this task, studying an aptamer selection problem [6]. In this task, we are given
n = 2900 nucleotide sequences (aptamers) xi ∈ A81, where A = {A,C,G,T} and labels yi indicate
(thresholded) binding affinity of the aptamer to a molecular target. We create one-hot encoded forms
of k-grams of the sequence, where 1 ≤ k ≤ 5, resulting in d =

∑5
k=1 |A|k(82 − k) = 105,476
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Figure 3. Performance analysis on benchmark datasets. The top row shows training and test misclassifi-
cation rates. Our method is denoted as OK and is shown in red. The blue methods are random features
with Gaussian, linear, or arc-cosine kernels (GK, LK, or ACK respectively). Our error and running
time become fixed above D = nnz(q̂) after which we employ estimator (6). The bottom row shows the
speedup factor of using our method over regular random features (speedup = x indicates our method
takes 1/x of the time required to use regular random features). Our method is faster at moderate to large
D and shows better performance than the random feature approach at small to moderate D.

Table 1: Best test results over benchmark datasets

Dataset n, ntest d Model Our error (%), time(s) Random error (%), time(s)
adult 32561, 16281 123 Logistic 15.54, 3.6 15.44, 43.1

reuters 23149, 781265 47236 Ridge 9.27, 0.8 9.36, 295.9
buzz 105530, 35177 77 Ridge 4.92, 2.0 4.58, 11.9

features. We consider the linear kernel, i.e. φ(x,w) = xw, where w ∼ Uni({1, . . . , d}). Figure 2(a)
compares the misclassification error of our method with that of random k-gram features, while Figure
2(b) indicates the weights qi given to features by our method. In under 0.2 seconds, we whittle down
the original feature space to 379 important features. By restricting random selection to just these
features, we outperform the approach of selecting features uniformly at random when D � d. More
importantly, however, we can derive insights from this selection. For example, the circled features in
Figure 2(b) correspond to k-gram prefixes for the 5-grams GGTTG and GTTGG at indices 60 through
64; G-complexes are known to be relevant for binding affinities in aptamers [6], so this is reasonable.

4.3 Performance on benchmark datasets

We now show the benefits of our approach on large-scale datasets, since we exploit the efficiency
of random features with the performance of kernel-learning techniques. We perform experiments
on three distinct types of datasets, tracking training/test error rates as well as total (training + test)
time. For the adult2 dataset we employ the Gaussian kernel with a logistic regression model, and
for the reuters3 dataset we employ a linear kernel with a ridge regression model. For the buzz4

dataset we employ ridge regression with an arc-cosine kernel of order 2, i.e. P0 = N (0, I) and
φ(x,w) = H(wTx)(wTx)2, where H(·) is the Heavyside step function [7].

2https://archive.ics.uci.edu/ml/datasets/Adult
3http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm. We con-

sider predicting whether a document has a CCAT label.
4http://ama.liglab.fr/data/buzz/classification/. We use the Twitter dataset.
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Table 2: Comparisons with joint optimization on subsampled data
Dataset Our training / test error (%), time(s) Joint training / test error (%), time(s)
adult 16.22 / 16.36, 1.8 14.88 / 16.31, 198.1

reuters 7.64 / 9.66, 0.6 6.30 / 8.96, 173.3
buzz 8.44 / 8.32, 0.4 7.38 / 7.08, 137.5

Comparison with unoptimized random features Results comparing our method with unopti-
mized random features are shown in Figure 3 for many values of D, and Table 1 tabulates the best
test error and corresponding time for the methods. Our method outperforms the original random
feature approach in terms of generalization error for small and moderate values of D; at very large D
the random feature approach either matches our surpasses our performance. The trends in speedup
are opposite: our method requires extra optimizations that dominate training time at extremely small
D; at very large D we use estimator (6), so our method requires less overall time. The nonmonotonic
behavior for reuters (Figure 3(e)) occurs due to the following: at D . nnz(q̂), sampling indices
from the optimized distribution takes a non-neglible fraction of total time, and solving the linear
system requires more time when rows of Φ are not unique (due to sampling).

Performance improvements also depend on the kernel choice for a dataset. Namely, our method
provides the most improvement, in terms of training time for a given amount of generalization error,
over random features generated for the linear kernel on the reuters dataset; we are able to surpass
the best results of the random feature approach 2 orders of magnitude faster. This makes sense when
considering the ability of our method to sample from a small subset of important features. On the
other hand, random features for the arc-cosine kernel are able to achieve excellent results on the
buzz dataset even without optimization, so our approach only offers modest improvement at small to
moderate D. For the Gaussian kernel employed on the adult dataset, our method is able to achieve
the same generalization performance as random features in roughly 1/12 the training time.

Thus, we see that our optimization approach generally achieves competitive results with random
features at lower computational costs, and it offers the most improvements when either the base
kernel is not well-suited to the data or requires a large number of random features (large D) for good
performance. In other words, our method reduces the sensitivity of model performance to the user’s
selection of base kernels.

Comparison with joint optimization Despite the fact that we do not choose empirical risk as our
objective in optimizing kernel compositions, our optimized kernel enjoys competitive generalization
performance compared to the joint optimization procedure (9). Because the joint optimization is
very costly, we consider subsampled training datasets of 5000 training examples. Results are shown
in Table 2, where it is evident that the efficiency of our method outweighs the marginal gain in
classification performance for joint optimization.

5 Conclusion

We have developed a method to learn a kernel in a supervised manner using random features. Although
we consider a kernel alignment problem similar to other approaches in the literature, we exploit
computational advantages offered by random features to develop a much more efficient and scalable
optimization procedure. Our concentration bounds guarantee the results of our optimization procedure
closely match the limits of infinite data (n→∞) and sampling (Nw →∞), and our method produces
models that enjoy good generalization performance guarantees. Empirical evaluations indicate that
our optimized kernels indeed “learn” structure from data, and we attain competitive results on
benchmark datasets at a fraction of the training time for other methods. Generalizing the theoretical
results for concentration and risk to other f−divergences is the subject of further research. More
broadly, our approach opens exciting questions regarding the usefulness of simple optimizations on
random features in speeding up other traditionally expensive learning problems.
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A Proofs of major results

Before proving our results, we provide a few technical lemmas to which we refer in the sequel, and
we also give a few definitions. The first is the standard definition of sub-Gaussian random variables.

Definition 1. A random variable X is σ2-sub-Gaussian if

E [exp(λ(X − E[X]))] ≤ exp

(
λ2σ2

2

)
for all λ ∈ R.

We enumerate a few standard consequences of sub-Gaussianity [5]. If Xi are independent and
σ2-sub-Gaussian, then

∑n
i=1Xi is nσ2-sub-Gaussian. Moreover, we have the standard concentration

guarantee

max{P(X ≥ E[X] + t),P(X ≤ E[X]− t)} ≤ 2 exp

(
− t2

2σ2

)
for all t ≥ 0 if X is σ2-sub-Gaussian, and if there are bounds a ≤ X ≤ b, then X is (b−a)2

4 -sub-
Gaussian. Moreover, if X is mean-zero and σ2-sub-Gaussian, then

E
[
exp(λX2)

]
≤ 1

[1− 2λσ2]
1
2
+

= exp

(
−1

2
log
[
1− 2λσ2

]
+

)
. (10)

Throughout our proofs, for a given k ∈ [1,∞], we use k∗ = k
k−1 , so that 1/k + 1/k∗ = 1, to denote

the conjugate to k.

The technical lemmas that we shall need follow. The first is an essentially standard duality result.

Lemma 4 (Ben-Tal et al. [3]). Let f be any closed convex function with domain dom f ⊂ [0,∞),
and let f∗(s) = supt≥0{ts− f(t)} be its conjugate. Then for any distribution P and any function
g :W → R we have

sup
Q:Df (Q||P )≤ρ

∫
g(w)dQ(w) = inf

λ≥0,η

{
λ

∫
f∗
(
g(w)− η

λ

)
dP (w) + ρλ+ η

}
.

See Section B.1 for a proof of this lemma. Note that as an immediate consequence of this result, we
have an expectation upper bound on empirical versions of supQ:Df (Q||P )≤ρ

∫
g(w)dQ(w). Indeed,

let Z1, . . . , ZNw be drawn i.i.d. from a base distribution P0. To simplify algebra, we work with a
scaled version of the f -divergence: f(t) = 1

k (tk − 1), so the population and empirical constraint sets
we consider are defined by

P =
{
Q : Df (Q||P0) ≤ ρ

k

}
and PNw :=

{
q : Df (q||1/Nw) ≤ ρ

k

}
.

Then by Lemma 4, we obtain

E

[
sup

Q∈PNw
EQ[Z]

]
= EP0

[
inf
λ≥0,η

1

N

N∑
i=1

λf∗
(
Zi − η
λ

)
+ η +

ρ

k
λ

]

≤ inf
λ≥0,η

EP0

[
1

N

N∑
i=1

λf∗
(
Zi − η
λ

)
+ η +

ρ

k
λ

]

= inf
λ≥0,η

{
EP0

[
λf∗

(
Z − η
λ

)]
+
ρ

k
λ+ η

}
= sup
Q∈P

EQ[Z]. (11)

The second lemma provides a lower bound on the expectation of certain robust quantities, and we
provide a proof of the lemma in Section B.2.
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Lemma 5. Let Z = (Z1, . . . , ZNw) be a random vector of independent random variables Zi
iid∼ P0,

where |Zi| ≤M with probability 1. Let k ∈ [2,∞] and define Cρ,k = 2(1+ρ)

(1+ρ)
1
k∗ −1

≤ Cρ = 2(ρ+1)√
1+ρ−1

.

Let f(t) = 1
k (tk − 1). Then

E

[
sup

Q∈PNw
EQ[Z]

]
≥ sup
Q∈P

EQ[Z]− 4CρM

√
log(2Nw)

Nw

and

E

[
sup

Q∈PNw
EQ[Z]

]
≤ sup
Q∈P

EQ[Z].

A.1 Proof of Lemma 1

The result follows from a dual formulation of the expression on the left hand side as well as standard
concentration results for sub-Gaussian random variables. Define

ên(w) :=
1

n(n− 1)

∑
i 6=j

Sijφ(xi, w)φ(xj , w)− E[S(X,X ′)φ(X,w)φ(X ′, w)] (12)

to be the error in the kernel estimate at the kernel parameter w. We give our argument by duality,
noting that the lemma is equivalent to proving

P
(

sup
Q∈P

∣∣∣∣∫ ên(w)dQ(w)

∣∣∣∣ ≥ t) ≤ √2 exp

(
− nt2

16(ρ+ 1)

)
.

Before continuing, we note the following useful result, whose proof we provide in Section B.3.
Lemma 6. For each fixed w, the random variable ên(w) is mean-zero and 4

n -sub-Gaussian.

To simplify the algebra, we work with a scaled version of the f -divergence: f(t) = 1
k (tk − 1), so the

equivalent constraint sets are P :=
{
Q : Df (Q||P0) ≤ ρ

k

}
and PNw := {q : Df (q||1/Nw) ≤ ρ

k}.
In this rescaled form, the convex conjugate of f(t) is f∗(s) = 1

k∗
[s]
k∗
+ + 1

k , where we recall the
definition that 1

k + 1
k∗

= 1.

Using Lemma 4, we obtain

sup
Q∈P

∣∣∣∣∫ ên(w)dQ(w)

∣∣∣∣ ≤ sup
Q∈P

∫
|ên(w)| dQ(w)

≤ inf
λ≥0

{
1

k∗
EP0 [|ên(W )|k∗ ]λ1−k∗ +

ρ+ 1

k
λ

}
= (ρ+ 1)

1
kEP0

[|ên(W )|k∗ ]1/k∗

≤
√
ρ+ 1EP0

[ên(W )2]
1
2 ,

where the second inequality follows by using η = 0 in Lemma 4 and the last inequality follows from
the fact that k ≥ 2 and k∗ ≤ 2. The expectation EP0 is with respect to the variable W for a fixed ên.
We now see that to prove the theorem, it suffices to show that

P
(∫

ên(w)2dP0(w) ≥ t2

ρ+ 1

)
≤
√

2 exp

(
− nt2

16(ρ+ 1)

)
.

By Lemma 6, ên is 4/n-sub-Gaussian, whence E
[
exp

(
λên(w)2

)]
≤ exp

(
− 1

2 log
(
1− 8λ

n

))
for

λ ≤ n
8 (recall inequality (10) above). Integrating over w, we find that for any distribution P0 we have

by the Chernoff bound technique that for λ ≤ n
8 ,

P
(∫

ên(w)2dP0(w) ≥ t2

ρ+ 1

)
≤ E

[
exp

(
λ

∫
ên(w)2dP (w)

)]
exp

(
−λ t2

ρ+ 1

)
≤
∫

E
[
exp

(
λên(w)2

)]
dP (w) exp

(
−λ t2

ρ+ 1

)
≤ exp

(
−1

2
log

(
1− 8λ

n

))
exp

(
−λ t2

ρ+ 1

)
.

Note that − log(1− t) ≤ t log 4 for t ≤ 1
2 , and take λ = n/16 to get the result.
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A.2 Proof of Lemma 2

Let F :W → [−‖F‖∞ , ‖F‖∞] be a function of the random W . In our setting, this map is equal to

F (w) =
1

n(n− 1)

∑
i 6=j

Sijφ(xi, w)φ(xj , w),

where we treat the Sij and xi as fixed and work conditionally; that is, only W is random. We consider
the convergence of

sup
Q∈PNw

EQ[F (W )] to sup
Q∈P

EQ[F (W )].

In the sequel, we suppress dependence on W for notational convenience, and for a sample
W1, . . . ,WNw of random vectors Wk, we let

Fk =
1

n(n− 1)

∑
i 6=j

Sijφ(xi,Wk)φ(xj ,Wk)

for shorthand, so that the Fk are bounded indepenent random variables.

Treating F = (F1, . . . , FNw) as a vector, the mapping F 7→ supQ∈PNw EQ[F ] is a Lipschitz convex
function of independent bounded random variables. Indeed, letting q ∈ RNw+ be the empirical
probability mass function associated with Q ∈ PNw and recalling that ‖x‖2 ≤ n

k−2
2k ‖x‖k for

x ∈ Rn and k ≥ 2, we have 1
Nw

∑Nw
i=1(Nwqi)

k ≤ ρ+ 1, which is equivalent to

‖q‖2 ≤ Nw
k−2
2k ‖q‖k ≤ Nw

k−2
2k (ρ+ 1)

1
kNw

1/k−1 = (ρ+ 1)
1
kNw

− 1
2 . (13)

That is, the function (F1, . . . , FNw) 7→ supQ∈PNw EQ[F ] is an LNw =
√
ρ+ 1/

√
Nw-Lipschitz

and convex function of bounded random variables. Using Samson’s sub-Gaussian concentration
inequality [26] for Lipschitz convex functions of bounded random variables, we have with probability
at least 1− δ that

sup
Q∈PNw

EQ[F ] ∈ E

[
sup

Q∈PNw
EQ[F ]

]
± 2
√

2 ‖F‖∞

√
(1 + ρ) log 2

δ

Nw
. (14)

By the containment (14), we need consider only the convergence of the expectation

E

[
sup

Q∈PNw
EQ[F ]

]
to sup

Q∈P
EQ[F ].

But of course, this convergence is described precisely by Lemma 5. Thus, combining Lemma 5 with
containment (14) gives∣∣∣∣ sup

Q∈PNw
EQ[F ]− sup

Q∈P
EQ[F ]

∣∣∣∣ ≤ 4Cρ ‖F‖∞

√
log(2Nw)

Nw
+ 2
√

2 ‖F‖∞

√
(1 + ρ) log 2

δ

Nw

Now, since ‖F‖∞ = 1 we can simplify this to get the result.

A.3 Proof of Theorem 1

We can write∣∣∣∣T (Q̂w)− sup
Q∈P

T (Q)

∣∣∣∣ ≤ ∣∣∣∣ sup
Q∈P

T (Q)− sup
Q∈P

T̂ (Q)

∣∣∣∣+

∣∣∣∣ sup
Q∈P

T̂ (Q)− T̂ (Q̂w)

∣∣∣∣+

∣∣∣∣T̂ (Q̂w)− T (Q̂w)

∣∣∣∣
≤ sup
Q∈P

∣∣∣∣T (Q)− T̂ (Q)

∣∣∣∣+

∣∣∣∣ sup
Q∈P

T̂ (Q)− T̂ (Q̂w)

∣∣∣∣+ sup
Q∈PNw

∣∣∣∣T̂ (Q)− T (Q)

∣∣∣∣
Now apply Lemma 1 to the first and third terms, apply Lemma 2 to the second term, and use a union
bound to get the result.
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A.4 Proof of Lemma 3

We define define the “dual” representation of the feature matrix: let Ψ = ΦT = [ψ1 · · · ψNw ], with
columns given by ψm := [φ(x1, wm) · · · φ(xn, wm)]T ∈ Rn. Mimicking the proof of Proposition
1 of [8], we have

Rn(FNw) =
B

n
E

 sup
q∈PNw

√√√√σT

(
Nw∑
k=1

qkψk(ψk)T

)
σ

 , (15)

where σi ∈ {−1, 1} are iid. Rademacher variables. By the bound (13), the containment q ∈ PNw
implies the bound ‖q‖2 ≤

√
(1 + ρ)/Nw, so

Rn(FNw) ≤ B

n
E


√√√√√√1 + ρ

Nw

Nw∑
k=1

(σTψk)4√∑Nw
a=1(σTψa)4


=
B

n
E

(1 + ρ

Nw

Nw∑
k=1

(σTψk)4

) 1
4


≤ B

n

(
E

[
1 + ρ

Nw

Nw∑
k=1

(σTψk)4

]) 1
4

,

where the first inequality follows from the Cauchy-Schwarz inequality and the second inequality is
Jensen’s inequality. As ψi ∈ [−1, 1], we have

E
[
(σTψ)4

]
≤ E

( n∑
i=1

σi

)4


= 3n2 − 2n ≤ 3n2.

Then

Rn(FNw) ≤ B

n

(
3(1 + ρ)n2

) 1
4 ≤ B

√
2(1 + ρ)

n
as desired.

B Technical lemmas

B.1 Proof of Lemma 4

Let L ≥ 0 satisfy L(w) = dQ(w)/dP (w), so that L is the likelihood ratio between Q and P . Then
we have

sup
Q:Df (Q||P )≤ρ

∫
g(w)dQ(w) = sup∫

f(L)dP≤ρ,EP [L]=1

∫
g(w)L(w)dP (w)

= sup
L≥0

inf
λ≥0,η

{∫
g(w)L(w)dP (w)− λ

(∫
f(L(w))dP (w)− ρ

)
− η

(∫
L(w)dP (w)− 1

)}
= inf
λ≥0,η

sup
L≥0

{∫
g(w)L(w)dP (w)− λ

(∫
f(L(w))dP (w)− ρ

)
− η

(∫
L(w)dP (w)− 1

)}
,

where we have used that strong duality obtains because the problem is strictly feasible in its non-linear
constraints (take L ≡ 1), so that the extended Slater condition holds [22, Theorem 8.6.1 and Problem
8.7]. Noting that L is simply a positive (but otherwise arbitrary) function, we obtain

sup
Q:Df (Q||P )≤ρ

∫
g(w)dQ(w) = inf

λ≥0,η

∫
sup
`≥0
{(g(w)− η)`− λf(`)} dP (w) + λρ+ η

= inf
λ≥0,η

∫
λf∗

(
g(w)− η

λ

)
dP (w) + η + ρλ.
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Here we have used that f∗(s) = supt≥0{st− f(t)} is the conjugate of f and that λ ≥ 0, so that we
may take divide and multiply by λ in the supremum calculation.

B.2 Proof of Lemma 5

We remark that the upper bound in the lemma is immediate from the argument for inequality (11).
Thus we focus only on the lower bound claimed in the lemma.

Before beginning the proof proper, we state a useful lemma lower bounding expectations of various
moments of random variables. (See Section B.4 for a proof.)
Lemma 7. Let Z ≥ 0, Z 6≡ 0 be a random variable with finite 2p-th moment for 1 ≤ p ≤ ∞. Then
we have the following inequalities:

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]

≥ ‖Z‖p −


p−1
p

√
2
n

√
Var(Zp/E[Zp])‖Z‖2, if p ≤ 2

2 min

(
p−1
p

√
1
n

√
Var(Zp/E[Zp])‖Z‖p, 1

n

(
p−1
p

)2
Var(Zp)

‖Z‖2p−1
p

)
if p ≥ 2.

(16a)

and if ‖Z‖∞ ≤ C, then

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p −

 C p−1
p

√
2
n , if p ≤ 2

2C
(

1
n

) 1
p if p > 2

(16b)

For convenience in the proof to follow, we define the shorthand

SNw(η) := (1 + ρ)
1/k

(
1

Nw

Nw∑
i=1

[Zi − η]
k∗
+

) 1
k∗

+ η.

We also rescale ρ to ρ/k for algebraic convenience. For the function f(t) = 1
k (tk − 1), we have

f∗(s) = 1
k∗

[s]
k∗
+ + 1

k , so that the duality result in Lemma 4 shows that (after taking an infimum over
λ ≥ 0)

sup
Q∈PNw

EQ[Z] = inf
η

{
(1 + ρ)

1/k

(
1

Nw

Nw∑
i=1

[Zi − η]
k∗
+

) 1
k∗

+ η

}
.

Because |Zi| ≤M for all i, we claim that any η minimizing the preceding expression must satisfy

η ∈

[
−1 + (1 + ρ)

1
k∗

(1 + ρ)
1
k∗ − 1

, 1

]
·M. (17)

Indeed, it is clear that η ≤M , because otherwise we would have SNw(η) > M ≥ infη SNw(η). The
lower bound on η is somewhat less trivial. Let η = −cM for some c > 1. Taking derivatives of the
objective SNw(η) with respect to η, we have

S′Nw(η) = 1− (1 + ρ)1/k
1
Nw

∑Nw
i=1 [Zi − η]

k∗−1
+(

1
Nw

∑Nw
i=1 [Zi − η]

k∗
+

)1− 1
k∗
≤ 1− (1 + ρ)1/k

(
(c− 1)M

(c+ 1)M

)k∗−1

= 1− (1 + ρ)1/k

(
c− 1

c+ 1

)k∗−1

.

Defining the constant cρ,k := (1+ρ)
1
k∗ +1

(1+ρ)
1
k∗ −1

, we see that for any c > cρ,k, the preceding display is

negative, so we must have η ≥ −cρ,kM (since the derivative is 0 at optimality). For the remainder of
the proof, we thus define the interval

U := [−Mcρ,k,M ] , cρ,k =
(1 + ρ)

1
k∗ + 1

(1 + ρ)
1
k∗ − 1

,

14



and we assume w.l.o.g. that η ∈ U .

Again applying the duality result of Lemma 4, we have that

E

[
sup

Q∈PNw
EQ[Z]

]
= E

[
inf
η∈U

SNw(η)

]
= E

[
inf
η∈U
{SNw(η)− E[SNw(η)] + E[SNw(η)]}

]
≥ inf
η∈U

E[SNw(η)]− E
[

sup
η∈U
|SNw(η)− E[SNw(η)]|

]
. (18)

To bound the first term in expression (18), note that [Z − η]+ ∈ [0, 1 + cρ,k]M and (1 + ρ)1/k(1 +
cρ,k) = Cρ,k. Thus, by Lemma 7 we obtain that

E[SNw(η)] ≥ (1 + ρ)1/kE
[
[Z − η]

k∗
+

]1/k∗
+ η − Cρ,kM

k∗ − 1

k∗

√
2

Nw
.

Using that k∗−1
k∗

= 1
k , taking the infimum over η on the right hand side and using duality yields

inf
η
E[SNw(η)] ≥ sup

Q∈P
EQ[Z]− Cρ,k

M

k

√
2

Nw
.

To bound the second term in expression (18), we use concentration results for Lipschitz functions.
First, the function η 7→ SNw(η) is

√
1 + ρ-Lipschitz in η. To see this, note that for 1 ≤ k? ≤ 2 and

X ≥ 0, by Jensen’s inequality,

E[Xk?−1]

(E[Xk? ])1−1/k?
≤ E[X]k

?−1

(E[Xk? ])1−1/k?
≤ E[X]k

?−1

E[X]k?−1
= 1,

so S′Nw(η) ∈ [1 − (1 + ρ)
1
k , 1] and therefore SNw is (1 + ρ)1/k-Lipschitz in η. Furthermore, the

mapping T : z 7→ (1 + ρ)
1
k ( 1

Nw

∑Nw
i=1 [zi − η]

k∗
+ )

1
k∗ for z ∈ RNw is convex and (1 + ρ)

1
k /
√
Nw-

Lipschitz. This is verified by the following:

|T (z)− T (z′)| ≤ (1 + ρ)
1/k

∣∣∣∣∣
(

1

Nw

Nw∑
i=1

∣∣[zi − η]+ − [z′i − η]+
∣∣k∗ ) 1

k∗

∣∣∣∣∣
≤ (1 + ρ)

1/k

Nw
1/k∗

∣∣∣∣∣
( Nw∑
i=1

|zi − z′i|
k∗

) 1
k∗

∣∣∣∣∣
≤ (1 + ρ)

1/k

√
Nw

‖z − z′‖2,

where the first inequality is Minkowski’s inequality and the third inequality follows from the fact
that for any vector x ∈ Rn, we have ‖x‖p ≤ n

2−p
2p ‖x‖2 for p ∈ [1, 2], where these denote the

usual vector norms. Thus, the mapping Z 7→ SNw(η) is (1 + ρ)1/k/
√
Nw-Lipschitz continuous with

respect to the `2-norm on Z. Again applying Samson’s sub-Gaussian concentration result for convex
Lipschitz functions, we have

P (|SNw(η)− E[SNw(η)]| ≥ δ) ≤ 2 exp

(
− Nwδ

2

2C2
ρ,kM

2

)
for any fixed η ∈ R and any δ ≥ 0. Now, letN (U, ε) = {η1, . . . , ηN(U,ε)} be an ε cover of the set U ,
which we may take to have size at most N(U, ε) ≤M(1 + cρ,k) 1

ε . Then we have

sup
η∈U
|SNw(η)− E[SNw(η)] ≤ max

i∈N (U,ε)
|SNw(ηi)− E[SNw(ηi)]|+ ε(1 + ρ)1/k.

Using the fact that E[maxi≤n |Xi|] ≤
√

2σ2 log(2n) for Xi all σ2-sub-Gaussian, we have

E
[

max
i∈N (U,ε)

|SNw(ηi)− E[SNw(ηi)]|
]
≤ Cρ,k

√
2
M2

Nw
log 2N(U, ε).
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Taking ε = M(1 + cρ,k)/Nw gives that

E
[

sup
η∈U
|SNw(η)− E[SNw(η)]

]
≤
√

2MCρ,k

√
1

Nw
log(2Nw) +

Cρ,kM

Nw
.

Then, in total we have (using Cρ ≥ Cρ,k, k ≥ 2, and Nw ≥ 1),

E

[
sup

Q∈PNw
EQ[Z]

]
≥ sup
Q∈P

EQ[Z]− CρM
√

2√
Nw

(
1

k
+
√

log(2Nw) +
1√

2Nw

)

≥ sup
Q∈P

EQ[Z]− 4CρM

√
log(2Nw)

Nw
.

This gives the desired result of the lemma.

B.3 Proof of Lemma 6

The result follows from bounded differences. First, we let

ê′n(w) =
1

n(n− 1)

∑
i6=j

S′ijφ(x′i;w)φ(x′j ;w)− E[S(X,X ′)φ(X,w)φ(X ′, w)],

where we assume dham(x1:n, x
′
1:n) ≤ 1 and Sij = S′ij except for those pairs (i, j) such that x′i 6= xi

or xj 6= x′j . Assuming (without loss of generality by symmetry) that x2:n = x′2:n, we have

|ên(w)− ê′n(w)| ≤ 1

n(n− 1)

∑
j>1

∣∣S1jφ(x1;w)φ(xj ;w)− S′1jφ(x′1;w)φ(xj ;w)
∣∣

+
1

n(n− 1)

∑
i>1

|Si1φ(xi;w)φ(x1;w)− S′i1φ(x′i;w)φ(x′1;w)|

≤ 2(n− 1)

n(n− 1)
+

2(n− 1)

n(n− 1)
=

4

n
,

where in the last line we have used that max{‖φ‖∞ , ‖S‖∞} ≤ 1. In particular, ên(w) has bounded
differences and is mean zero, so that the usual construction with Doob martingales yields

E [exp(λên(w))] ≤ exp

(
16λ2

8n2

)n
= exp

(
2λ2

n

)
.

This is the desired result.

B.4 Proof of Lemma 7

For a > 0, we have

inf
λ≥0

{
ap

pλp−1
+ λ

p− 1

p

}
= a,

(with λ = a attaining the infimum), and taking derivatives yields

ap

pλp−1
+ λ

p− 1

p
≥ ap

pλp−1
1

+ λ1
p− 1

p
+
p− 1

p

(
1− ap

λp1

)
(λ− λ1).

Using this in the moment expectation, by setting λn = p

√
1
n

∑n
i=1 Z

p
i , we have for any λ ≥ 0 that

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
= E

[∑n
i=1 Z

p
i

pnλp−1
n

+ λn
p− 1

p

]
≥ E

[∑n
i=1 Z

p
i

pnλp−1
+ λ

p− 1

p

]
+
p− 1

p
E
[(

1−
∑n
i=1 Z

p
i

nλp

)
(λn − λ)

]
.
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Now we take λ = ‖Z‖p, and we apply the Cauchy-Schwarz inequality to obtain

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p −

p− 1

p
E

[(
1−

1
n

∑n
i=1 Z

p
i

‖Z‖pp

)2
] 1

2

E

(( 1

n

n∑
i=1

Zpi

) 1
p

− ‖Z‖p

)2
 1

2

= ‖Z‖p −
p− 1

p
√
n

√
Var(Zp/E[Zp])E

(( 1

n

n∑
i=1

Zpi

) 1
p

− E[Zp]
1
p

)2
 1

2

(19)

≥ ‖Z‖p −
p− 1

p
√
n

√
Var(Zp/E[Zp])E

[(
1

n

n∑
i=1

Zpi

) 2
p

+ E[Zp]
2
p

] 1
2

.

Now, for p ≤ 2, we have

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p −

p− 1

p

√
2

n

√
Var(Zp/E[Zp])‖Z‖2,

by Jensen, or equivalently, the fact that the norm is non-decreasing in p. For p ≥ 2, we have by
the triangle inequality applied to expression (19), followed by an application of Jensen’s inequality
(using that E[Y 2/p] ≤ E[Y ]2/p for p ≥ 2),

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p − 2

p− 1

p

√
1

n

√
Var(Zp/E[Zp])‖Z‖p,

Now, we can make this tighter (for p ≥ 2):

E

(( 1

n

n∑
i=1

Zpi

) 1
p

− E[Zp]
1
p

)2
 = E

[(
1

n

n∑
i=1

Zpi

) 2
p

]
+ ‖Z‖2p − 2‖Z‖pE

[(
1

n

n∑
i=1

Zpi

) 1
p

]

≤ 2‖Z‖2p − 2‖Z‖pE

[(
1

n

n∑
i=1

Zpi

) 1
p

]

≤ 2
p− 1

p

2√
n

√
Var(Zp/E[Zp])‖Z‖2p.

Further, we can recurse this argument. Let

Y := E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
A := ‖Z‖p

B :=
p− 1

p

√
1

n

√
Var(Zp/E[Zp]),

C := E

(( 1

n

n∑
i=1

Zpi

) 1
p

− E[Zp]
1
p

)2
 .

Then, we have three primary relationships r : Y ≥ A − BC
1
2 , s0 : C ≤ 2A2 − 2AY , and

t0 : Y ≥ A − 2AB. Recursion works as follows: for i ≥ 0, we plug ti into s0 to yield a tighter
inequality si+1 for C, which in turn plugs in to r to yield a tighter inequality ti+1 for Y . In this way,
we have the relations si : C ≤ 4A2Bai−1 for i ≥ 1, and ti : Y ≥ A − 2ABai for i ≥ 0, where

17



ai = 2− 2−i. Taking i→∞, we have Y ≥ A− 2AB2, or

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p − 2‖Z‖p

(
p− 1

p

)2
Var(Zp/E[Zp])

n

= ‖Z‖p −
2

n

(
p− 1

p

)2
Var(Zp)

‖Z‖2p−1
p

Thus, we have

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p−


p−1
p

√
2
n

√
Var(Zp/E[Zp])‖Z‖2, if p ≤ 2

2 min

(
p−1
p

√
1
n

√
Var(Zp/E[Zp])‖Z‖p, 1

n

(
p−1
p

)2
Var(Zp)

‖Z‖2p−1
p

)
if p ≥ 2

In the case that we have the unifom bound ‖Z‖∞ ≤ C, we can get tighter guarantees. To that end,
we state a simple lemma.
Lemma 8. For any random variable X ≥ 0 and a ∈ [1, 2], we have

E[Xak] ≤ E[Xk]2−aE[X2k]a−1

Proof For c ∈ [0, 1], 1/p+ 1/q = 1 and A ≥ 0, we have by Holder’s inequality,

E[A] = E[AcA1−c] ≤ E[Apc]1/pE[Aq(1−c)]1/q

Now take A := Xak, 1/p = 2− a, 1/q = a− 1, and c = 2
a − 1.

First, note that E[Z2p] ≤ CpE[Zp]. For 1 ≤ p ≤ 2, we can take a = 2/p in Lemma 8, so that we
have

E[Z2] ≤ E[Zp]2−
2
pE[Z2p]

2
p−1 ≤ ‖Z‖ppC2−p.

Now, we can plug these into the expression above (using VarZp ≤ E[Z2p] ≤ Cp‖Z‖pp):

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p−


C p−1

p

√
2
n , if p ≤ 2

2 min

(
p−1
p

√
1
n

√
Var(Zp/E[Zp])‖Z‖p, 1

n

(
p−1
p

)2
Var(Zp)

‖Z‖2p−1
p

)
if p ≥ 2

In fact, we can give a somewhat sharper result by noting that E[( 1
n

∑n
i=1 Z

p
i )1/p] ≥ 0, and

similarly, ‖Z‖p ≥ 0. For shorthand, let D = (p−1
p )2Cp. Then using that Var(Zp/E[Zp]) =

Var(Zp)/ ‖Z‖2pp ≤ E[Z2p]/ ‖Z‖2pp ≤ Cp/ ‖Z‖pp, the preceding inequality, in the case that p ≥ 2,
implies

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p − 2 min

{√
D/n ‖Z‖1−p/2p , (D/n) ‖Z‖1−pp , ‖Z‖p /2

}
≥ ‖Z‖p − 2 min

{√
D/n ‖Z‖1−p/2p , (D/n) ‖Z‖1−pp , ‖Z‖p

}
.

But now, we note that

min
t≥0

{√
D

n
t1−p/2,

D

n
t1−p, t

}
=

{
t, if t ≤ (D/n)1/p

D
n t

1−p, if t > (D/n)1/p

≤ (D/n)1/p.

In particular, we have for p ≥ 2 that

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p − 2

(
1

n

(
p− 1

p

)2

Cp

)1/p

≥ ‖Z‖p − 2C

(
1

n

) 1
p

.

Finally, we note that the bound for p ≤ 2 is tighter than the above expression for p = 2.
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C More experiments

We present further details of the experiments shown in Section 4 as well as experiments on more
datasets and kernel-learning methods. Specifically, we also show experiments with the ads5, farm6,
mnist7, and weight8 datasets. When training/test splits do not already exist, we split the dataset
into 75% training and 25% test sets.

Table 3 shows parameters used in our method for each dataset. The last column indicates the size of
the subset of the training data used to solve problem (4). We use subsets to increase the efficiency of
our approach. Furthermore, we show ρ/Nw simply because it is easier to work with this quantity
rather than ρ: the value is chosen to balance fit with efficiency via cross validation. Very large ρ
yields extremely sparse q̂ and poor fit, whereas very small ρ yields dense q̂ and long training times.
We note that all values of ρ are less than 1000. Finally, for ridge regression models, we choose the l2
penalty term such that we may absorb the

√
q̂i factors into θ.

Table 4 compares the accuracy of our approach (OK) with other methods: random features with 2
values for D, and two standard multiple-kernel-learning algorithms from [14]. Table 5 shows the
(training + test) times of the same methods. Algorithm ABMKSVM(ratio) is a heuristic alignment-
based kernel derived in problem (2) in [14] followed by an SVM. Algorithm MKSVM jointly
optimizes kernel composition with empirical risk via problem (9) in [14]. For both of these methods,
we consider optimizing the combination of a linear, second-order polynomial, and Gaussian kernel.

The two multiple-kernel-learning approaches require an extremely large amount of memory to build
Gram matrices, so we train on subsets of data when necessary to avoid latencies introduced by
swapping data from memory. For ABMKSVM(ratio) we train on n = 17500 for adult and weight,
and n = 10000 for reuters. Similarly, we break up the test data for reuters into ntest = 1000
chunks, which accounts for the large amount of time taken for this dataset (training time was roughly
400s). For MKSVM, we use a subset of size n = 7500 for all applicable datasets, and we use the
same testing scheme as ABMKSVM(ratio) for reuters (training time for MKSVM was roughly
1000s).

The performance of our method on all datasets is consistent: we improve the performance for random
features at a given computational cost, and we are generally competitive with much costlier standard
multiple-kernel-learning techniques. The mnist and weight datasets are slightly peculiar: both
ABSVM(ratio) and MKSVM require many support vectors, indicating that the chosen kernels are
poor for the task; this hypothesis is corroborated by the slightly worse performance of both our
method and random features (the arc-cosine kernel is similar to polynomial and Guassian kernels).
A large number of support vectors roughly translates to large nnz(q̂), which can be achieved by
increasing Nw or decreasing ρ. We can also achieve better performance by increasing the subset
of training data used in problem (4). Doing the latter two options yields comparable results for our
method (Table 6). For the mnist models, we switch to ridge regression to enhance efficiency of the
larger problem. The upshot of this analysis is that our method is most effective in regimes where
standard multiple-kernel-learning techniques are intractable, that is, datasets with both large n and d.

5http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements. We use all but the first 3 features which are
sometimes missing in the data.

6https://archive.ics.uci.edu/ml/datasets/Farm+Ads
7http://yann.lecun.com/exdb/mnist/. We do pairwise classifications of digits 1 vs. 7, 4 vs. 9, and 5 vs. 6.
8http://archive.ics.uci.edu/ml/datasets/Weight+Lifting+Exercises+monitored+with+Inertial+Measurement+Units.

We neglect the first 4 features, and furthermore we only use remaining features that are not missing in any
datapoint. We consider classifying the datapoint as class A or not.

19



Table 3: Dataset parameters

Dataset n, ntest d Model Base kernel ρ/Nw Nw %n in problem (4)
adult 32561, 16281 123 Logistic Gaussian 0.0120 20000 50

reuters 23149, 781265 47236 Ridge Linear 0.0123 47236 100
buzz 105530, 35177 77 Ridge Arc-cosine 0.0145 2000 6.67
ads 2459, 820 1554 Ridge Linear 0.1000 1554 100
farm 3107, 1036 54877 Ridge Linear 0.0050 54877 100

mnist17 13007, 2163 784 Logistic Arc-cosine 0.0300 20000 25
mnist49 11791, 1991 784 Logistic Arc-cosine 0.0300 20000 25
mnist56 11339, 1850 784 Logistic Arc-cosine 0.0300 20000 25
weight 29431, 9811 53 Ridge Gaussian 0.0020 20000 50

Table 4: Test misclassification error (%)
Dataset OK Random Random ABMKSVM(ratio) MKSVM

D = nnz(q̂) D = nnz(q̂) D = 10 nnz(q̂)
adult 15.54 17.51 16.08 15.44 16.79

reuters 9.27 46.49 23.69 9.09 10.13
buzz 4.92 8.68 4.16 3.48 3.54
ads 5.37 8.05 3.54 3.05 3.17
farm 11.58 23.36 14.58 10.81 10.23

mnist17 3.24 4.44 1.76 0.51 0.97
mnist49 6.53 21.55 4.02 1.10 1.26
mnist56 6.81 5.89 3.03 0.87 0.59
weight 13.08 15.68 2.89 0.78 1.49

Table 5: Time (s)
Dataset OK Random Random ABMKSVM(ratio) MKSVM

D = nnz(q̂) D = nnz(q̂) D = 10 nnz(q̂)
adult 3.6 4.6 86.9 87.3 740.9

reuters 0.8 0.2 1.0 31207.4 17490.7
buzz 2.0 1.9 60.2 92.7 1035.1
ads 0.017 0.013 0.014 56.7 92.3
farm 0.27 0.05 8.3 86.3 180.0

mnist17 3.4 4.0 53.1 38.0 702.6
mnist49 3.7 4.4 78.1 27.0 602.5
mnist56 2.9 3.6 56.4 24.3 623.9
weight 1.9 1.0 65.0 83.1 695.3

Table 6: Auxiliary experiments on mnist and weight with OK
Dataset Model Base kernel ρ/Nw %n in problem (4) Test error (%) Time (s)
mnist17 Ridge Arc-cosine 0.00100 50 1.06 9.1
mnist49 Ridge Arc-cosine 0.00100 50 1.91 9.4
mnist56 Ridge Arc-cosine 0.00100 50 1.68 8.3
weight Ridge Gaussian 0.00015 100 2.04 64.7
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