Properties of the Trace and Matrix Derivatives

John Duchi

Contents

1 Notation 1
2 Matrix multiplication 1
3 Gradient of linear function 1
4 Derivative in a trace 2
5 Derivative of product in trace 2
6 Derivative of function of a matrix 3
7 Derivative of linear transformed input to function 3
8 Funky trace derivative 3
9 Symmetric Matrices and Eigenvectors 4

1 Notation

A few things on notation (which may not be very consistent, actually): The columns of a matrix $A \in \mathbb{R}^{m \times n}$ are a_{1} through a_{n}, while the rows are given (as vectors) by \tilde{a}_{1}^{T} throught \tilde{a}_{m}^{T}.

2 Matrix multiplication

First, consider a matrix $A \in \mathbb{R}^{n \times n}$. We have that

$$
A A^{T}=\sum_{i=1}^{n} a_{i} a_{i}^{T},
$$

that is, that the product of $A A^{T}$ is the sum of the outer products of the columns of A. To see this, consider that

$$
\left(A A^{T}\right)_{i j}=\sum_{p=1}^{n} a_{p i} a_{p j}
$$

because the i, j element is the $i^{\text {th }}$ row of A, which is the vector $\left\langle a_{1 i}, a_{2 i}, \cdots, a_{n i}\right\rangle$, dotted with the $j^{\text {th }}$ column of A^{T}, which is $\left\langle a_{1 j}, \cdots, a_{n j}\right.$.

If we look at the matrix $A A^{T}$, we see that

$$
A A^{T}=\left[\begin{array}{ccc}
\sum_{p=1}^{n} a_{p 1} a_{p 1} & \cdots & \sum_{p=1}^{n} a_{p 1} a_{p n} \\
\vdots & \ddots & \vdots \\
\sum_{p=1}^{n} a_{p n} a_{p 1} & \cdots & \sum_{p=1}^{n} a_{p n} a_{p n}
\end{array}\right]=\sum_{i=1}^{n}\left[\begin{array}{ccc}
a_{i 1} a_{i 1} & \cdots & a_{i 1} a_{i n} \\
\vdots & \ddots & \vdots \\
a_{i n} a_{i 1} & \cdots & a_{i n} a_{i n}
\end{array}\right]=\sum_{i=1}^{n} a_{i} a_{i}^{T}
$$

3 Gradient of linear function

Consider $A x$, where $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^{n}$. We have

$$
\nabla_{x} A x=\left[\begin{array}{c}
\nabla_{x} \tilde{a}_{1}^{T} x \\
\nabla_{x} \tilde{a}_{2}^{T} x \\
\vdots \\
\nabla_{x} \tilde{a}_{m}^{T} x
\end{array}\right]=\left[\begin{array}{llll}
\tilde{a}_{1} & \tilde{a}_{2} & \cdots & \tilde{a}_{m}
\end{array}\right]=A^{T}
$$

Now let us consider $x^{T} A x$ for $A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^{n}$. We have that

$$
x^{T} A x=x^{T}\left[\tilde{a}_{1}^{T} x \tilde{a}_{2}^{T} x \cdots \tilde{a}_{n}^{T} x\right]^{T}=x_{1} \tilde{a}_{1}^{T} x+\cdots+x_{n} \tilde{a}_{n}^{T} x
$$

If we take the derivative with respect to one of the $x_{l} \mathrm{~s}$, we have the l component for each \tilde{a}_{i}, which is to say $a_{i l}$, and the term for $x_{l} \tilde{a}_{l}^{T} x$, which gives us that

$$
\frac{\partial}{\partial x_{l}} x^{T} A x=\sum_{i=1}^{n} x_{i} a_{i l}+\tilde{a}_{l}^{T} x=a_{l}^{T} x+\tilde{a}_{l}^{T} x
$$

In the end, we see that

$$
\nabla_{x} x^{T} A x=A x+A^{T} x .
$$

4 Derivative in a trace

Recall (as in Old and New Matrix Algebra Useful for Statistics) that we can define the differential of a function $f(x)$ to be the part of $f(x+d x)-f(x)$ that is linear in $d x$, i.e. is a constant times $d x$. Then, for example, for a vector valued function \boldsymbol{f}, we can have

$$
\left.\boldsymbol{f}(\boldsymbol{x}+d \boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})+\boldsymbol{f}^{\prime}(\boldsymbol{x}) d \boldsymbol{x}+\text { (higher order terms }\right) .
$$

In the above, \boldsymbol{f}^{\prime} is the derivative (or Jacobian). Note that the gradient is the transpose of the Jacobian.

Consider an arbitrary matrix A. We see that

$$
\frac{\operatorname{tr}(A d X)}{d X}=\frac{\operatorname{tr}\left[\begin{array}{ccc}
\tilde{a}_{1}^{T} d x_{1} & & \\
& \ddots & \\
& & \tilde{a}_{n}^{T} d x_{n}
\end{array}\right]}{d X}=\frac{\sum_{i=1}^{n} \tilde{a}_{i}^{T} d x_{i}}{d X} .
$$

Thus, we have

$$
\left[\frac{\operatorname{tr}(A d X)}{d X}\right]_{i j}=\left[\frac{\sum_{i=1}^{n} \tilde{a}_{i}^{T} d x_{i}}{\partial x_{j i}}\right]=a_{i j}
$$

so that

$$
\frac{\operatorname{tr}(A d X)}{d X}=A
$$

Note that this is the Jacobian formulation.

5 Derivative of product in trace

In this section, we prove that

$$
\begin{aligned}
& \nabla_{A} \operatorname{tr} A B=B^{T} \\
& \operatorname{tr} A B=\operatorname{tr}\left[\begin{array}{c}
\longleftarrow \overrightarrow{a_{1}} \longrightarrow \\
\longleftarrow \overrightarrow{a_{2}} \longrightarrow \\
\vdots \\
\longleftarrow \overrightarrow{a_{n}} \longrightarrow
\end{array}\right]\left[\begin{array}{cccc}
\uparrow & \uparrow & & \uparrow \\
\overrightarrow{b_{1}} & \overrightarrow{b_{2}} & \cdots & \overrightarrow{b_{n}} \\
\downarrow & \downarrow & & \downarrow
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{m} a_{1 i} b_{i 1}+\sum_{i=1}^{m} a_{2 i} b_{i 2}+\ldots+\sum_{i=1}^{m} a_{n i} b_{i n} \\
& \Rightarrow \quad \frac{\partial \operatorname{tr} A B}{\partial a_{i j}}=b_{j i} \\
& \Rightarrow \nabla_{A} \operatorname{tr} A B=B^{T}
\end{aligned}
$$

6 Derivative of function of a matrix

Here we prove that

$$
\begin{gathered}
\nabla_{A^{T}} f(A)=\left(\nabla_{A} f(A)\right)^{T} \\
\nabla_{A^{T}} f(A) \\
=\left[\begin{array}{cccc}
\frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{21}} & \cdots & \frac{\partial f(A)}{\partial A_{n 1}} \\
\frac{\partial f(A)}{\partial A_{12}} & \frac{\partial f(A)}{\partial A_{22}} & \cdots & \frac{\partial f(A)}{\partial A_{n 2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f(A)}{\partial A_{1 n}} & \frac{\partial f(A)}{\partial A_{2 n}} & \cdots & \frac{\partial f(A)}{\partial A_{n n}}
\end{array}\right] \\
=\left(\nabla_{A} f(A)\right)^{T}
\end{gathered}
$$

7 Derivative of linear transformed input to function

Consider a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Suppose we have a matrix $A \in \mathbb{R}^{n \times m}$ and a vector $x \in \mathbb{R}^{m}$. We wish to compute $\nabla_{x} f(A x)$. By the chain rule, we have

$$
\begin{aligned}
\frac{\partial f(A x)}{\partial x_{i}} & =\sum_{k=1}^{n} \frac{\partial f(A x)}{\partial(A x)_{k}} \cdot \frac{\partial(A x)_{k}}{\partial x_{i}}=\sum_{k=1}^{n} \frac{\partial f(A x)}{\partial(A x)_{k}} \cdot \frac{\partial\left(\tilde{a}_{k}^{T} x\right)}{\partial x_{i}} \\
& =\sum_{k=1}^{n} \frac{\partial f(A x)}{\partial(A x)_{k}} \cdot a_{k i}=\sum_{k=1}^{n} \partial_{k} f(A x) a_{k i} \\
& =a_{i}^{T} \nabla f(A x)
\end{aligned}
$$

As such, $\nabla_{x} f(A x)=A^{T} \nabla f(A x)$. Now, if we would like to get the second derivative of this function (third derivatives would be a little nice, but I do not like tensors), we have

$$
\begin{aligned}
\frac{\partial^{2} f(A x)}{\partial x_{i} \partial x_{j}} & =\frac{\partial}{\partial x_{j}} a_{i}^{T} \nabla f(A x)=\frac{\partial}{\partial x_{j}} \sum_{k=1}^{n} a_{k i} \frac{\partial f(A x)}{\partial(A x)_{k}} \\
& =\sum_{l=1}^{n} \sum_{k=1}^{n} a_{k i} \frac{\partial^{2} f(A x)}{\partial(A x)_{k} \partial(A x)_{l}} a_{l i} \\
& =a_{i}^{T} \nabla^{2} f(A x) a_{j}
\end{aligned}
$$

From this, it is easy to see that $\nabla_{x}^{2} f(A x)=A^{T} \nabla^{2} f(A x) A$.

8 Funky trace derivative

In this section, we prove that

$$
\nabla_{A} \operatorname{tr} A B A^{T} C=C A B+C^{T} A B^{T}
$$

In this bit, let us have $A B=f(A)$, where f is matrix-valued.

$$
\begin{aligned}
\nabla_{A} \operatorname{tr} A B A^{T} C & =\nabla_{A} \operatorname{tr} f(A) A^{T} C \\
& =\nabla \bullet \operatorname{tr} f(\bullet) A^{T} C+\nabla \cdot \operatorname{tr} f(A) \bullet \bullet^{T} C \\
& =\left(A^{T} C\right)^{T} f^{\prime}(\bullet)+\left(\nabla \cdot \bullet^{T} \operatorname{tr} f(A) \bullet \bullet^{T} C\right)^{T} \\
& =C^{T} A B^{T}+\left(\nabla \bullet T \operatorname{tr} \bullet^{T} C f(A)\right)^{T} \\
& =C^{T} A B^{T}+\left((C f(A))^{T}\right)^{T} \\
& =C^{T} A B^{T}+C A B
\end{aligned}
$$

9 Symmetric Matrices and Eigenvectors

In this we prove that for a symmetric matrix $A \in \mathbb{R}^{n \times n}$, all the eigenvalues are real, and that the eigenvectors of A form an orthonormal basis of \mathbb{R}^{n}.

First, we prove that the eigenvalues are real. Suppose one is complex: we have

$$
\bar{\lambda} x^{T} x=(A x)^{T} x=x^{T} A^{T} x=x^{T} A x=\lambda x^{T} x
$$

Thus, all the eigenvalues are real.
Now, we suppose we have at least one eigenvector $v \neq 0$ of A. Consider a space W of vectors orthogonal to v. We then have that, for $w \in W$,

$$
(A w)^{T} v=w^{T} A^{T} v=w^{T} A v=\lambda w^{T} v=0
$$

Thus, we have a set of vectors W that, when transformed by A, are still orthogonal to v, so if we have an original eigenvector v of A, then a simple inductive argument shows that there is an orthonormal set of eigenvectors.

To see that there is at least one eigenvector, consider the characteristic polynomial of A :

$$
\mathcal{X}(A)=\operatorname{det}(A-\lambda I)
$$

The field is algebraicly closed, so there is at least one complex root r, so we have that $A-r I$ is singular and there is a vector $v \neq 0$ that is an eigenvector of A. Thus r is a real eigenvalue, so we have the base case for our induction, and the proof is complete.

