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1 Notation

A few things on notation (which may not be very consistent, actually): The columns of a matrix
A ∈ Rm×n are a1 through an, while the rows are given (as vectors) by ãT

1 throught ãT
m.

2 Matrix multiplication

First, consider a matrix A ∈ Rn×n. We have that

AAT =
n∑

i=1

aia
T
i ,

that is, that the product of AAT is the sum of the outer products of the columns of A. To see this,
consider that

(AAT )ij =
n∑

p=1

apiapj

because the i, j element is the ith row of A, which is the vector 〈a1i, a2i, · · · , ani〉, dotted with the
jth column of AT , which is 〈a1j , · · · , anj .
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If we look at the matrix AAT , we see that

AAT =




∑n
p=1 ap1ap1 · · · ∑n

p=1 ap1apn

...
. . .

...∑n
p=1 apnap1 · · · ∑n

p=1 apnapn


 =

n∑

i=1




ai1ai1 · · · ai1ain

...
. . .

...
ainai1 · · · ainain


 =

n∑

i=1

aia
T
i

3 Gradient of linear function

Consider Ax, where A ∈ Rm×n and x ∈ Rn. We have

∇xAx =




∇xãT
1 x

∇xãT
2 x

...
∇xãT

mx


 =

[
ã1 ã2 · · · ãm

]
= AT

Now let us consider xT Ax for A ∈ Rn×n, x ∈ Rn. We have that

xT Ax = xT [ãT
1 x ãT

2 x · · · ãT
nx]T = x1ã

T
1 x + · · ·+ xnãT

nx

If we take the derivative with respect to one of the xls, we have the l component for each ãi, which
is to say ail, and the term for xlã

T
l x, which gives us that

∂

∂xl
xT Ax =

n∑

i=1

xiail + ãT
l x = aT

l x + ãT
l x.

In the end, we see that
∇xxT Ax = Ax + AT x.

4 Derivative in a trace

Recall (as in Old and New Matrix Algebra Useful for Statistics) that we can define the differential
of a function f(x) to be the part of f(x + dx)− f(x) that is linear in dx, i.e. is a constant times
dx. Then, for example, for a vector valued function f , we can have

f(x + dx) = f(x) + f ′(x)dx + (higher order terms).

In the above, f ′ is the derivative (or Jacobian). Note that the gradient is the transpose of the
Jacobian.

Consider an arbitrary matrix A. We see that

tr(AdX)
dX

=

tr




ãT
1 dx1

. . .
ãT

ndxn




dX
=

∑n
i=1 ãT

i dxi

dX
.

Thus, we have [
tr(AdX)

dX

]

ij

=
[∑n

i=1 ãT
i dxi

∂xji

]
= aij

so that
tr(AdX)

dX
= A.

Note that this is the Jacobian formulation.
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5 Derivative of product in trace

In this section, we prove that
∇AtrAB = BT

trAB = tr




←− ~a1 −→
←− ~a2 −→

...
←− ~an −→






↑ ↑ ↑
~b1

~b2 · · · ~bn

↓ ↓ ↓




= tr




~a1
T ~b1 ~a1

T ~b2 · · · ~a1
T ~bn

~a2
T ~b1 ~a2

T ~b2 · · · ~a2
T ~bn

...
. . .

...
~an

T ~b1 ~an
T ~b2 · · · ~an

T ~bn




=
m∑

i=1

a1ibi1 +
m∑

i=1

a2ibi2 + . . . +
m∑

i=1

anibin

⇒ ∂trAB

∂aij
= bji

⇒ ∇AtrAB = BT

6 Derivative of function of a matrix

Here we prove that
∇AT f(A) = (∇Af(A))T .

∇AT f(A) =




∂f(A)
∂A11

∂f(A)
∂A21

· · · ∂f(A)
∂An1

∂f(A)
∂A12

∂f(A)
∂A22

· · · ∂f(A)
∂An2

...
...

. . .
...

∂f(A)
∂A1n

∂f(A)
∂A2n

· · · ∂f(A)
∂Ann




= (∇Af(A))T

7 Derivative of linear transformed input to function

Consider a function f : Rn → R. Suppose we have a matrix A ∈ Rn×m and a vector x ∈ Rm. We
wish to compute ∇xf(Ax). By the chain rule, we have

∂f(Ax)
∂xi

=
n∑

k=1

∂f(Ax)
∂(Ax)k

· ∂(Ax)k

∂xi
=

n∑

k=1

∂f(Ax)
∂(Ax)k

· ∂(ãT
k x)

∂xi

=
n∑

k=1

∂f(Ax)
∂(Ax)k

· aki =
n∑

k=1

∂kf(Ax)aki

= aT
i ∇f(Ax).
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As such, ∇xf(Ax) = AT∇f(Ax). Now, if we would like to get the second derivative of this function
(third derivatives would be a little nice, but I do not like tensors), we have

∂2f(Ax)
∂xi∂xj

=
∂

∂xj
aT

i ∇f(Ax) =
∂

∂xj

n∑

k=1

aki
∂f(Ax)
∂(Ax)k

=
n∑

l=1

n∑

k=1

aki
∂2f(Ax)

∂(Ax)k∂(Ax)l
ali

= aT
i ∇2f(Ax)aj

From this, it is easy to see that ∇2
xf(Ax) = AT∇2f(Ax)A.

8 Funky trace derivative

In this section, we prove that

∇AtrABAT C = CAB + CT ABT .

In this bit, let us have AB = f(A), where f is matrix-valued.

∇AtrABAT C = ∇Atrf(A)AT C

= ∇•trf(•)AT C +∇•trf(A) •T C

= (AT C)T f ′(•) + (∇•T trf(A) •T C)T

= CT ABT + (∇•T tr •T Cf(A))T

= CT ABT + ((Cf(A))T )T

= CT ABT + CAB

9 Symmetric Matrices and Eigenvectors

In this we prove that for a symmetric matrix A ∈ Rn×n, all the eigenvalues are real, and that the
eigenvectors of A form an orthonormal basis of Rn.

First, we prove that the eigenvalues are real. Suppose one is complex: we have

λ̄xT x = (Ax)T x = xT AT x = xT Ax = λxT x.

Thus, all the eigenvalues are real.
Now, we suppose we have at least one eigenvector v 6= 0 of A. Consider a space W of vectors

orthogonal to v. We then have that, for w ∈W ,

(Aw)T v = wT AT v = wT Av = λwT v = 0.

Thus, we have a set of vectors W that, when transformed by A, are still orthogonal to v, so if
we have an original eigenvector v of A, then a simple inductive argument shows that there is an
orthonormal set of eigenvectors.

To see that there is at least one eigenvector, consider the characteristic polynomial of A:

X (A) = det(A− λI).

The field is algebraicly closed, so there is at least one complex root r, so we have that A − rI is
singular and there is a vector v 6= 0 that is an eigenvector of A. Thus r is a real eigenvalue, so we
have the base case for our induction, and the proof is complete.
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