Properties of the Trace and Matrix Derivatives

John Duchi
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1 Notation

A few things on notation (which may not be very consistent, actually): The columns of a matrix
A € R™ ™ are a; through a,,, while the rows are given (as vectors) by al throught aZ .

2 Matrix multiplication

First, consider a matrix A € R"*™. We have that
n
T T
AA" = Z a;a;
i=1

that is, that the product of AAT is the sum of the outer products of the columns of A. To see this,
consider that

(AAT); =" apiay,
p=1

because the i, j element is the i*" row of A, which is the vector (a1;, as;, - -, an;), dotted with the
j*" column of AT, which is (ay;,- -+, an;-



If we look at the matrix AAT, we see that

22:1 Ap1Gp1 - - 22:1 Ap1Qpn n a1yl Q1Gin n
AAT: = :Zaia,;r
2221 ApnQpl o Z;:l ApnQpn =1 Qin Qi1 crr o QipQin =1
3 Gradient of linear function
Consider Az, where A € R™*™ and = € R™. We have
Vialx
V.l
VeAw=| . —[a@ a - am ] =AT
Vealx

Now let us consider z7 Az for A € R"*", x € R”. We have that

eTAx =aTjal v ale - aTa)" =xiala+ - +xpale
If we take the derivative with respect to one of the x;s, we have the [ component for each a;, which

is to say a;;, and the term for a;al =, which gives us that

0 . i _
—al Az = E ziay +a} v =al v+ aj x.
Oy i=1

In the end, we see that
Verl Az = Az + AT x.

4 Derivative in a trace

Recall (as in Old and New Matriz Algebra Useful for Statistics) that we can define the differential
of a function f(z) to be the part of f(x + dx) — f(x) that is linear in dz, i.e. is a constant times
dzx. Then, for example, for a vector valued function f, we can have

f(x +dz) = f(x) + f'(x)dz + (higher order terms).

In the above, f’ is the derivative (or Jacobian). Note that the gradient is the transpose of the
Jacobian.
Consider an arbitrary matrix A. We see that

ledxl
tr ..
tr(AdX) aldzr, S aldw,

dX dX dX

Thus, we have

so that

Note that this is the Jacobian formulation.



5 Derivative of product in trace

In this section, we prove that
VatrAB = BT

[ — a —
— iy — T 1 T
tI‘AB = tI‘ b1 bQ bn
. Lol !
| —— Qn —
Cai"by aiTby - ditb,
aThy axThy -+ d3Th,
= tr
L@ "or @by o @,
m m m
= Z a1:b1 + Z agibio + ...+ Z anibin
=1 =1 =1
OtrAB
= by
8@1-]-
= VutrdAB = BT
6 Derivative of function of a matrix
Here we prove that
Var f(A) = (Vaf(A)"
af(A)  Bf(A) af(A)
OA11 0Asq 0A,
of(A)  of(A) . of(A
Varf(a) = | Ot O 0
Of(A)  Of(A) . Bf(A)
O0A1, 0Aa, OAnn

(Vaf(A)T

7 Derivative of linear transformed input to function

Consider a function f: R™ — R. Suppose we have a matrix A € R"*™ and a vector x € R™.

wish to compute V. f(Az). By the chain rule, we have

of(Az) - Of(Ax) CO(Az)p i of(Az) d(alz)
8951; N 1 a(ALZ})k 6@ N =1 8(Ax)k 3%
= Of(Ax) o - '
T 2 Ay, T ,;akf (Az)o
= a! Vf(Az).



As such, V, f(Az) = ATV f(Az). Now, if we would like to get the second derivative of this function
(third derivatives would be a little nice, but I do not like tensors), we have

02 f(Ax) 0 y - Of (Ax)
Ox;0x; B 8333 i VI(Az) = 2 ;akl Ax)y
= i:i:akl 8 fi ag;

=1 k=1 2)r0(Az);
= aiTVQf(Aw)aj

From this, it is easy to see that V2 f(Ax) = ATV?f(Ax)A.

8 Funky trace derivative
In this section, we prove that

VatrABATC = CAB + CTAB™.
In this bit, let us have AB = f(A), where f is matrix-valued.

VatrABATC = Vatrf(A)ATC

Vetrf(8)ATC + Vo trf(A) of C
= (ATO)Tf (o) + (Vortrf(A) oL O)T
= COTABT 4 (V rtref Cf(A)T
= CTABT +((Cf(A)h)"
= CTAB" + CAB

9 Symmetric Matrices and Eigenvectors

In this we prove that for a symmetric matrix A € R™*™ all the eigenvalues are real, and that the
eigenvectors of A form an orthonormal basis of R™.
First, we prove that the eigenvalues are real. Suppose one is complex: we have

Mele = (Ax) e = 2T ATe = 2T Az = XaT .

Thus, all the eigenvalues are real.
Now, we suppose we have at least one eigenvector v # 0 of A. Consider a space W of vectors
orthogonal to v. We then have that, for w € W,

(Aw)Tv = wl ATv = wT Av = AwTv = 0.

Thus, we have a set of vectors W that, when transformed by A, are still orthogonal to v, so if
we have an original eigenvector v of A, then a simple inductive argument shows that there is an
orthonormal set of eigenvectors.

To see that there is at least one eigenvector, consider the characteristic polynomial of A:

X(A) = det(A — \I).

The field is algebraicly closed, so there is at least one complex root r, so we have that A — rI is
singular and there is a vector v # 0 that is an eigenvector of A. Thus r is a real eigenvalue, so we
have the base case for our induction, and the proof is complete.



