Solving composite optimization problems, with applications to phase retrieval

John Duchi (based on joint work with Feng Ruan)

Outline

Composite optimization problems

Methods for composite optimization

Application: robust phase retrieval

Experimental evaluation

Large scale composite optimization?

What I hope to accomplish today

- ▶ Investigate problem structures that are not *quite* convex but still amenable to elegant solution approaches
- ► Show how we can leverage stochastic structure to turn hard non-convex problems into "easy" ones [Keshavan, Montanari, Oh 10; Loh & Wainwright 12]
- Consider large scale versions of these problems

Composite optimization problems

The problem:

$$\underset{x}{\mathsf{minimize}} \ f(x) := h(c(x))$$

where

 $h:\mathbb{R}^m \to \mathbb{R}$ is convex and $c:\mathbb{R}^n \to \mathbb{R}^m$ is smooth

$$\underset{x}{\mathsf{minimize}} \ f(x) \quad \mathsf{subject to} \quad x \in X$$

equivalent (for all large enough λ) to

$$\underset{x}{\mathsf{minimize}} \ f(x) + \lambda \operatorname{dist}(x, X)$$

$$\underset{x}{\mathsf{minimize}} \ f(x) \quad \mathsf{subject to} \quad x \in X$$

equivalent (for all large enough λ) to

$$\underset{x}{\mathsf{minimize}} \ f(x) + \lambda \operatorname{dist}(x, X)$$

$$\underset{x}{\operatorname{minimize}} \ f(x) \quad \text{subject to} \quad x \in X$$

equivalent (for all large enough λ) to

$$\underset{x}{\mathsf{minimize}} \ f(x) + \lambda \operatorname{dist}(x,X)$$

$$\label{eq:continuous} \begin{array}{ll} \min_x \ f(x) & \text{subject to} & c(x) = 0 \\ \\ \text{equivalent to (for all large enough λ)} \\ \\ \min_x \ f(x) + \lambda \, \|c(x)\| \end{array}$$

[Fletcher & Watson 80, 82; Burke 85]

$$\underset{x}{\operatorname{minimize}} \ f(x) \quad \text{subject to} \quad c(x) = 0$$

equivalent to (for all large enough λ)

$$\underset{x}{\text{minimize}} f(x) + \underbrace{\lambda \|c(x)\|}_{=h(c(x))}$$

where

$$h(z) = \lambda \|z\|$$

[Fletcher & Watson 80, 82; Burke 85]

Motivation: nonlinear measurements and modeling

▶ Have true signal $x^* \in \mathbb{R}^n$ and measurement vectors $a_i \in \mathbb{R}^n$

Motivation: nonlinear measurements and modeling

- ▶ Have true signal $x^* \in \mathbb{R}^n$ and measurement vectors $a_i \in \mathbb{R}^n$
- ► Observe nonlinear measurements

$$b_i = \phi(\langle a_i, x^* \rangle) + \xi_i, \quad i = 1, \dots, m$$

for $\phi(\cdot)$ a nonlinear function but smooth function

An objective:

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} \left(\phi(\langle a_i, x \rangle) - b_i \right)^2$$

Motivation: nonlinear measurements and modeling

- ▶ Have true signal $x^* \in \mathbb{R}^n$ and measurement vectors $a_i \in \mathbb{R}^n$
- ► Observe nonlinear measurements

$$b_i = \phi(\langle a_i, x^* \rangle) + \xi_i, \quad i = 1, \dots, m$$

for $\phi(\cdot)$ a nonlinear function but smooth function

An objective:

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} \left(\phi(\langle a_i, x \rangle) - b_i \right)^2$$

Nonlinear least squares [Nocedal & Wright 06; Plan & Vershynin 15; Oymak & Soltanolkotabi 16]

(Robust) Phase retrieval

[Candès, Li, Soltanolkotabi 15]

(Robust) Phase retrieval

[Candès, Li, Soltanolkotabi 15]

Observations (usually)

$$b_i = \langle a_i, x^* \rangle^2$$

yield objective

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} |\langle a_i, x \rangle^2 - b_i|$$

Optimization methods

How do we solve optimization problems?

- 1. Build a "good" but simple local model of f
- 2. Minimize the model (perhaps regularizing)

Optimization methods

How do we solve optimization problems?

- 1. Build a "good" but simple local model of f
- 2. Minimize the model (perhaps regularizing)

Gradient descent: Taylor (first-order) model

$$f(y) \approx f_x(y) := f(x) + \nabla f(x)^T (y - x)$$

Optimization methods

How do we solve optimization problems?

- 1. Build a "good" but simple local model of f
- 2. Minimize the model (perhaps regularizing)

Newton's method: Taylor (second-order) model

$$f(y) \approx f_x(y) := f(x) + \nabla f(x)^T (y - x) + (1/2)(y - x)^T \nabla^2 f(x)(y - x)$$

$$f(x) = h(c(x))$$

$$f(x) = h(\underbrace{c(x)}_{\text{linearize}})$$

$$f(y) \approx h(c(x) + \nabla c(x)^T (y - x))$$

$$f(y) \approx h(\underbrace{c(x) + \nabla c(x)^{T}(y - x)}_{=c(y) + O(\|x - y\|^{2})})$$

$$f_x(\mathbf{y}) := h\left(c(x) + \nabla c(x)^T(\mathbf{y} - x)\right)$$

Now we make a convex model

$$f_x(\mathbf{y}) := h\left(c(x) + \nabla c(x)^T(\mathbf{y} - x)\right)$$

[Burke 85; Drusvyatskiy, Ioffe, Lewis 16]

$$f_x(\mathbf{y}) := h\left(c(x) + \nabla c(x)^T(\mathbf{y} - x)\right)$$

Example:
$$f(x) = |x^2 - 1|$$
, $h(z) = |z|$ and $c(x) = x^2 - 1$

Now we make a convex model

$$f_x(\mathbf{y}) := h\left(c(x) + \nabla c(x)^T(\mathbf{y} - x)\right)$$

Example: $f(x) = |x^2 - 1|$, h(z) = |z| and $c(x) = x^2 - 1$

$$f_x(\mathbf{y}) := h\left(c(x) + \nabla c(x)^T(\mathbf{y} - x)\right)$$

Example:
$$f(x) = |x^2 - 1|$$
, $h(z) = |z|$ and $c(x) = x^2 - 1$

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f_{x_k}(x) + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right\}$$
$$= \underset{x \in X}{\operatorname{argmin}} \left\{ h \left(c(x_k) + \nabla c(x_k)^T (x - x_k) \right) + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right\}$$

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f_{x_k}(x) + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right\}$$
$$= \underset{x \in X}{\operatorname{argmin}} \left\{ h \left(c(x_k) + \nabla c(x_k)^T (x - x_k) \right) + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right\}$$

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f_{x_k}(x) + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right\}$$
$$= \underset{x \in X}{\operatorname{argmin}} \left\{ h \left(c(x_k) + \nabla c(x_k)^T (x - x_k) \right) + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right\}$$

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f_{x_k}(x) + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right\}$$
$$= \underset{x \in X}{\operatorname{argmin}} \left\{ h \left(c(x_k) + \nabla c(x_k)^T (x - x_k) \right) + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right\}$$

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f_{x_k}(x) + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right\}$$
$$= \underset{x \in X}{\operatorname{argmin}} \left\{ h \left(c(x_k) + \nabla c(x_k)^T (x - x_k) \right) + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right\}$$

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f_{x_k}(x) + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right\}$$
$$= \underset{x \in X}{\operatorname{argmin}} \left\{ h \left(c(x_k) + \nabla c(x_k)^T (x - x_k) \right) + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right\}$$

A nice application for these composite methods

Data model: true signal $x^* \in \mathbb{R}^n$, for $p_{\text{fail}} < \frac{1}{2}$ observe

$$b_i = \langle a_i, x^* \rangle^2 + \xi_i$$
 where $\xi_i = \begin{cases} 0 & \text{w.p. } \geq 1 - p_{\text{fail}} \\ \text{arbitrary} & \text{otherwise} \end{cases}$

Data model: true signal $x^* \in \mathbb{R}^n$, for $p_{\text{fail}} < \frac{1}{2}$ observe

$$b_i = \langle a_i, x^{\star} \rangle^2 + \xi_i$$
 where $\xi_i = \begin{cases} 0 & \text{w.p. } \geq 1 - p_{\text{fail}} \\ \text{arbitrary} & \text{otherwise} \end{cases}$

Goal: solve

$$\underset{x}{\operatorname{minimize}} \ f(x) = \frac{1}{m} \sum_{i=1}^{m} |\langle a_i, x \rangle^2 - b_i|$$

Data model: true signal $x^* \in \mathbb{R}^n$, for $p_{\text{fail}} < \frac{1}{2}$ observe

$$b_i = \langle a_i, x^* \rangle^2 + \xi_i$$
 where $\xi_i = \begin{cases} 0 & \text{w.p. } \geq 1 - p_{\text{fail}} \\ \text{arbitrary} & \text{otherwise} \end{cases}$

Goal: solve

$$\underset{x}{\text{minimize}} f(x) = \frac{1}{m} \sum_{i=1}^{m} |\langle a_i, x \rangle^2 - b_i|$$

Composite problem: $f(x)=\frac{1}{m}\left\|\phi(Ax)-b\right\|_1=h(c(x))$ where $\phi(\cdot)$ is elementwise square,

$$h(z) = \frac{1}{m} \|z\|_1, \quad c(x) = \phi(Ax) - b$$

Three key ingredients.

- (1) Stability: $f(x) f(x^*) \ge \lambda \|x x^*\|_2 \|x + x^*\|_2$
- (2) Close models: $|f_x(y) f(y)| \le \frac{1}{m} |||A^T A|||_{\text{op}} ||x y||_2^2$
- (3) A good initialization

Three key ingredients.

- (1) Stability: $f(x) f(x^*) \ge \lambda \|x x^*\|_2 \|x + x^*\|_2$
- (2) Close models: $|f_x(y) f(y)| \le \frac{1}{m} |||A^T A|||_{\text{op}} ||x y||_2^2$
- (3) A good initialization
 - lacktriangle Measurement matrix $A = [a_1 \ \cdots \ a_m]^T \in \mathbb{R}^{m \times n}$ and

$$\frac{1}{m}A^T A = \frac{1}{m} \sum_{i=1}^m a_i a_i^T$$

▶ Convex model f_x of f at x defined by

$$f_x(y) = h(c(x) + \nabla c(x)^T (y - x))$$

Three key ingredients.

- (1) Stability: $f(x) f(x^*) \ge \lambda \|x x^*\|_2 \|x + x^*\|_2$
- (2) Close models: $|f_x(y) f(y)| \le \frac{1}{m} |||A^T A|||_{\text{op}} ||x y||_2^2$
- (3) A good initialization
 - lacktriangle Measurement matrix $A = [a_1 \ \cdots \ a_m]^T \in \mathbb{R}^{m \times n}$ and

$$\frac{1}{m}A^T A = \frac{1}{m} \sum_{i=1}^m a_i a_i^T$$

ightharpoonup Convex model f_x of f at x defined by

$$f_x(y) = \frac{1}{m} \sum_{i=1}^{m} \left| \langle a_i, x \rangle^2 + 2 \langle a_i, x \rangle \langle a_i, y - x \rangle \right|$$

Three key ingredients.

- (1) Stability: $f(x) f(x^*) \ge \lambda \|x x^*\|_2 \|x + x^*\|_2$
- (2) Close models: $|f_x(y) f(y)| \le \frac{1}{m} ||A^T A||_{\text{op}} ||x y||_2^2$
- (3) A good initialization

Theorem (D. & Ruan 17)

Define $\operatorname{dist}(x,x^\star) = \min\{\|x-x^\star\|_2, \|x+x^\star\|_2\}$. Let x_k be generated by the prox-linear method and $L = \frac{1}{m} \left\| A^T A \right\|_{\operatorname{op}}$. Then

$$\operatorname{dist}(x_k, x^*) \le \left(\frac{2L}{\lambda}\operatorname{dist}(x_0, x^*)\right)^{2^k}.$$

Unpacking the convergence theorem

Theorem (D. & Ruan 17)

Define $\operatorname{dist}(x, x^{\star}) = \min\{\|x - x^{\star}\|_{2}, \|x + x^{\star}\|_{2}\}$. Let x_{k} be generated by the prox-linear method and $L = \frac{1}{m} \|A^{T}A\|_{\operatorname{on}}$. Then

$$\operatorname{dist}(x_k, x^*) \le \left(\frac{2L}{\lambda}\operatorname{dist}(x_0, x^*)\right)^{2^k}.$$

- Quadratic convergence: for all intents and purposes, 6 iterations
- Requires solving explicit convex optimization problems (quadratic programs) with no tuning parameters

1. Stability: (cf. Eldar and Mendelson 14)

$$f(x) - f(x^*) \ge \lambda \|x - x^*\|_2 \|x + x^*\|_2$$

1. Stability: (cf. Eldar and Mendelson 14)

$$f(x) - f(x^*) \ge \lambda \|x - x^*\|_2 \|x + x^*\|_2$$

What is necessary?

Proposition (D. & Ruan 17)

Assume uniformity condition: for all $u, v \in \mathbb{R}^n$ and $a \sim P$

$$P(|u^T a a^T v| \ge \epsilon_0 ||u||_2 ||v||_2) \ge c > 0.$$

Then f is $\frac{1}{2}\epsilon_0$ -stable with probability at least $1-e^{-cm}$.

1. Stability: (cf. Eldar and Mendelson 14)

$$f(x) - f(x^*) \ge \lambda \|x - x^*\|_2 \|x + x^*\|_2$$

What is necessary?

Proposition (D. & Ruan 17)

Assume uniformity condition: for all $u, v \in \mathbb{R}^n$ and $a \sim P$

$$P(|u^T a a^T v| \ge \epsilon_0 ||u||_2 ||v||_2) \ge c > 0.$$

Then f is $\frac{1}{2}\epsilon_0$ -stable with probability at least $1-e^{-cm}$. (Gaussians satisfy this)

Growth condition (stability):

$$\langle a_i, x \rangle^2 - \langle a_i, x^* \rangle^2 = \langle a_i, x - x^* \rangle \langle a_i, x + x^* \rangle$$

and under random a_i with uniform enough support,

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} \left| (x - x^*)^T a_i a_i^T (x + x^*) \right| \gtrsim \|x - x^*\|_2 \|x + x^*\|_2$$

Ingredients in convergence

2. Approximation: need $\frac{1}{m} \|A^T A\|_{\text{op}} = O(1)$

What is necessary?

Proposition (Vershynin 11)

If the measurement vectors a_i are sub-Gaussian, then

$$\frac{1}{m} \|A^T A\|_{\text{op}} \le O(1) \cdot \sqrt{\frac{n}{m}} + t \quad \text{w.p.} \ge 1 - e^{-mt^2}.$$

Ingredients in convergence

2. Approximation: need $\frac{1}{m} \|A^T A\|_{\text{op}} = O(1)$

What is necessary?

Proposition (Vershynin 11)

If the measurement vectors a_i are sub-Gaussian, then

$$\frac{1}{m} \|A^T A\|_{\text{op}} \le O(1) \cdot \sqrt{\frac{n}{m} + t} \quad \text{w.p.} \ge 1 - e^{-mt^2}.$$

Heavy-tailed data gets $\frac{1}{m} \left\| \! \left\| A^T A \right\| \! \right\|_{\text{op}} = O(1)$ with reasonable probability for m a bit larger

Insight: [Wang, Giannakis, Eldar 16] Most vectors $a_i \in \mathbb{R}^n$ are orthogonal to x^\star

Insight: [Wang, Giannakis, Eldar 16] Most vectors $a_i \in \mathbb{R}^n$ are orthogonal to x^\star

$$X^{\text{init}} := \sum_{i: b_i \le \mathsf{median}(b)} a_i a_i^T$$

satisfies

$$\boldsymbol{X}^{\text{init}} \approx \mathbb{E}[a_i a_i^T] - c d^{\star} d^{\star^T} \quad \text{where} \quad d^{\star} = \boldsymbol{x}^{\star} / \left\| \boldsymbol{x}^{\star} \right\|_2$$

Insight: [Wang, Giannakis, Eldar 16] Most vectors $a_i \in \mathbb{R}^n$ are orthogonal to x^*

$$X^{\text{init}} := \sum_{i: b_i \le \mathsf{median}(b)} a_i a_i^T$$

satisfies

$$X^{\mathrm{init}} \approx \mathbb{E}[a_i a_i^T] - c d^{\star} d^{\star^T} \quad \text{where} \quad d^{\star} = x^{\star} / \left\| x^{\star} \right\|_2$$

3. Initialization: We need dist $(x_0, x^*) \lesssim \frac{1}{2} \|x^*\|_2$

3. Initialization: We need dist $(x_0, x^*) \lesssim \frac{1}{2} \|x^*\|_2$

Estimate direction $\widehat{d} \approx x^{\star} / \|x^{\star}\|_2$ and radius \widehat{r} by

$$\begin{split} \boldsymbol{X}^{\text{init}} &:= \sum_{i: b_i \leq \text{median}(b)} a_i \boldsymbol{a}_i^T \quad \text{and} \quad \widehat{\boldsymbol{d}} = \operatorname*{argmin}_{\boldsymbol{d} \in \mathbb{S}^{n-1}} \left\{ \boldsymbol{d}^T \boldsymbol{X}^{\text{init}} \boldsymbol{d} \right\} \\ & \widehat{\boldsymbol{r}} := \left(\frac{1}{m} \sum_{i=1}^m b_i^2 \right)^{\frac{1}{2}} \approx \|\boldsymbol{x}^\star\|_2 \end{split}$$

3. Initialization: We need dist $(x_0, x^*) \lesssim \frac{1}{2} \|x^*\|_2$

Estimate direction $\widehat{d} \approx x^{\star} / \|x^{\star}\|_2$ and radius \widehat{r} by

$$\begin{split} \boldsymbol{X}^{\text{init}} &:= \sum_{i:b_i \leq \text{median}(b)} a_i \boldsymbol{a}_i^T \quad \text{and} \quad \widehat{\boldsymbol{d}} = \operatorname*{argmin}_{d \in \mathbb{S}^{n-1}} \left\{ \boldsymbol{d}^T \boldsymbol{X}^{\text{init}} \boldsymbol{d} \right\} \\ & \widehat{\boldsymbol{r}} := \left(\frac{1}{m} \sum_{i=1}^m b_i^2 \right)^{\frac{1}{2}} \approx \|\boldsymbol{x}^\star\|_2 \end{split}$$

Proposition (D. & Ruan 17)

Under appropriate orthogonality conditions, $x_0 = \widehat{r}\widehat{d}$ satisfies

$$\operatorname{dist}(x_0, x^{\star}) \lesssim \sqrt{\frac{n}{m} + t}$$

with probability at least $1 - e^{-mt^2}$

Take-home result

- \triangleright Stability: measurements a_i are uniform enough in direction
- ightharpoonup Closeness: a_i are sub-Gaussian or normalized
- ightharpoonup Sufficient conditions for initialization: for $v\in\mathbb{S}^n$,

$$\mathbb{E}[a_i a_i^T \mid \langle a_i, v \rangle^2 \le ||v||_2^2] = I_n - cvv^T + E$$

where c > 0 and E is a small error

lacktriangle Measurement failure probability $p_{\mathrm{fail}} \leq rac{1}{4}$

Theorem (D. & Ruan 17)

If these conditions hold and $m/n \gtrsim 1$, then the spectral initialization succeeds and iterates x_k of prox-linear algorithm satisfy

$$\operatorname{dist}(x_k, x_0) \le (O(1) \cdot \operatorname{dist}(x_0, x^*))^{2^k}$$

Experiments

- 1. Random (Gaussian) measurements
- 2. Adversarially chosen outliers
- 3. Real images

Experiment 1: random Gaussian measurements

▶ Data generation: dimension n = 3000,

$$a_i \stackrel{\text{iid}}{\sim} \mathsf{N}(0, I_n)$$
 and $b_i = \langle a_i, x^* \rangle^2$

- ► Compare to Wang, Giannakis, Eldar's Truncated Amplitude Flow (best performing non-convex approach)
- ▶ Look at success probability against m/n (note that $m \ge 2n-1$ is necessary for injectivity)

Experiment 1: random Gaussian measurements

Experiment 1: random Gaussian measurements

Experiment 2: corrupted measurements

▶ Data generation: dimension n = 200,

$$a_i \stackrel{\mathrm{iid}}{\sim} \mathsf{N}(0,I_n)$$
 and $b_i = egin{cases} 0 & \text{w.p. } p_{\mathrm{fail}} \\ \left\langle a_i,x^\star
ight
angle^2 & \text{otherwise} \end{cases}$

(most confuses our initialization method)

- Compare to Zhang, Chi, Liang's Median-Truncated Wirtinger Flow (designed specially for standard Gaussian measurements)
- ▶ Look at success probability against m/n (note that $m \ge 2n-1$ is necessary for injectivity)

Experiment 2: corrupted measurements

Experiment 3: digit recovery

▶ Data generation: handwritten 16×16 grayscale digits, sensing matrix

$$A = \begin{bmatrix} H_n S_1 \\ H_n S_2 \\ H_n S_3 \end{bmatrix} \in \mathbb{R}^{3n \times n}$$

where $n=256,\,S_l$ are diagonal random sign matrices, H_n is Hadamard transform matrix

Observe

$$b = (Ax^{\star})^2 + \xi$$
 where $\xi_i = \begin{cases} 0 & \text{w.p. } 1 - p_{\mathrm{fail}} \\ \text{Cauchy} & \text{otherwise} \end{cases}$

 Other non-convex approaches designed for Gaussian data; unclear how to parameterize them

Experiment 3: digit recovery

Left: true image. Middle: spectral initialization. Right: solution.

Experiment 3: digit recovery

Performance of composite optimization scheme versus failure probability

Experiment 4: real images

Signal size $n=2^{22}$, measurements $m=3\cdot 2^{24}$

Experiment 4: real images

Signal size $n=2^{22}$, measurements $m=3\cdot 2^{24}$

Composite optimization at scale

Question: What if we have composite problems with a really big sample?

Composite optimization at scale

Question: What if we have composite problems with a really big sample?

► Typical stochastic optimization setup,

$$f(x) = \mathbb{E}[F(x;S)] \quad \text{where} \quad F(x;S) = h(c(x;S);S)$$

Composite optimization at scale

Question: What if we have composite problems with a really big sample?

Typical stochastic optimization setup,

$$f(x) = \mathbb{E}[F(x;S)] \quad \text{where} \quad F(x;S) = h(c(x;S);S)$$

Example: large scale (robust) nonlinear regression

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} |\phi(\langle a_i, x \rangle) - b_i|$$

A stochastic composite method

▶ Define (random) convex approximation

$$F_x(y;s) = h(c(x;s) + \nabla c(x;s)^T (y-x);s)$$

A stochastic composite method

▶ Define (random) convex approximation

$$F_x(y;s) = h(\underbrace{c(x;s) + \nabla c(x;s)^T (y-x)}_{\approx c(y;s)};s)$$

A stochastic composite method

Define (random) convex approximation

$$F_x(y;s) = h(\underbrace{c(x;s) + \nabla c(x;s)^T (y-x)}_{\approx c(y;s)};s)$$

▶ Then iterate for k = 1, 2, ...

$$S_k \stackrel{\text{iid}}{\sim} P$$

$$x_{k+1} = \operatorname*{argmin}_{x \in X} \left\{ F_{x_k}(x; S_k) + \frac{1}{2\alpha_k} \|x - x_k\|_2^2 \right\}$$

Understanding convergence behavior

Ordinary differential equations (gradient flow):

$$\dot{x} = -\nabla f(x) \quad \text{i.e.} \quad \frac{d}{dt}x(t) = -\nabla f(x(t))$$

Understanding convergence behavior

Ordinary differential inclusions (subgradient flow):

$$\dot{x} \in -\partial f(x) \quad \text{i.e.} \quad \frac{d}{dt} x(t) \in -\partial f(x(t))$$

The differential inclusion

For stochastic function

$$f(x) := \mathbb{E}[F(x;S)] = \mathbb{E}[h(c(x;S);S)] = \int h(c(x;s);s)dP(s)$$

the generalized subgradient (for non-convex, non-smooth) is [D. & Ruan 17]

$$\partial f(x) = \int \nabla c(x; s) \partial h(c(x; s); s) dP(s)$$

Theorem (D. & Ruan 17)

For stochastic composite problem, the subdifferential inclusion $\dot{x}\in -\partial f(x)$ has a unique trajectory for all time and

$$f(x(t)) - f(x(0)) \le -\int_0^t \|\partial f(x(\tau))\|^2 d\tau.$$

It also has limit points and they are stationary.

Recall our iteration

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \left\{ F_{x_k}(x; S_k) + \frac{1}{2\alpha_k} \|x - x_k\|_2^2 \right\}.$$

Optimality conditions: using $F_x(y;s) = h(c(x;s) + \nabla c(x;s)^T (y-x)),$

Recall our iteration

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \left\{ F_{x_k}(x; S_k) + \frac{1}{2\alpha_k} \|x - x_k\|_2^2 \right\}.$$

Optimality conditions: using $F_x(y;s) = h(c(x;s) + \nabla c(x;s)^T(y-x))$,

$$0 \in \nabla c(x_k; s) \partial h(c(x_k; s) + \nabla c(x_k; s)^T (x_{k+1} - x_k)) + \frac{1}{\alpha_k} [x_{k+1} - x_k]$$

Recall our iteration

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \left\{ F_{x_k}(x; S_k) + \frac{1}{2\alpha_k} \|x - x_k\|_2^2 \right\}.$$

Optimality conditions: using $F_x(y;s) = h(c(x;s) + \nabla c(x;s)^T(y-x))$,

$$0 \in \nabla c(x_k; s) \partial h(\underbrace{c(x_k; s) + \nabla c(x_k; s)^T (x_{k+1} - x_k)}_{=c(x_k; s) \pm O(\|x_k - x_{k+1}\|^2)}) + \frac{1}{\alpha_k} [x_{k+1} - x_k]$$

Recall our iteration

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \left\{ F_{x_k}(x; S_k) + \frac{1}{2\alpha_k} \|x - x_k\|_2^2 \right\}.$$

Optimality conditions: using $F_x(y;s) = h(c(x;s) + \nabla c(x;s)^T(y-x))$,

$$0 \in \nabla c(x_k; s) \partial h(\underbrace{c(x_k; s) + \nabla c(x_k; s)^T (x_{k+1} - x_k)}_{=c(x_k; s) \pm O(\|x_k - x_{k+1}\|^2)}) + \frac{1}{\alpha_k} [x_{k+1} - x_k]$$

i.e.

$$\frac{1}{\alpha_k}\left[x_{k+1}-x_k\right] \in -\nabla c(x_k;s)\partial h(c(x_k;s);s) + \text{subgradient mess} + \text{Noise}$$

$$= -\partial f(x_k) + \text{subgradient mess} + \text{Noise}$$

Graphical example

Iterate
$$x_{k+1} = \underset{x}{\operatorname{argmin}} \left\{ F_{x_k}(x; S_k) + \frac{1}{2\alpha_k} \left\| x - x_k \right\|_2^2 \right\}$$

A convergence guarantee

Consider the stochatsic composite optimization problem

$$\label{eq:minimize} \underset{x \in X}{\operatorname{minimize}} \ f(x) := \mathbb{E}[F(x;S)] \ \ \text{where} \ \ F(x;s) = h(c(x;s);s).$$

Use the iteration

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ F_{x_k}(x; S_k) + \frac{1}{2\alpha_k} \|x - x_k\|_2^2 \right\}.$$

Theorem (D. & Ruan 17)

Assume X is compact and $\sum_{k=1}^{\infty} \alpha_k = \infty$, $\sum_{k=1}^{\infty} \alpha_k^2 < \infty$. Then the sequence $\{x_k\}$ satisfies

- (1) $f(x_k)$ converges
- (2) All cluster points of x_k are stationary

Experiment: noiseless phase retrieval

Conclusions

- 1. Broadly interesting structures for *non-convex* problems that are still approximable
- 2. Statistical modeling allows solution of non-trivial, non-smooth, non-convex problems
- 3. Large scale efficient methods still important

Conclusions

- Broadly interesting structures for non-convex problems that are still approximable
- 2. Statistical modeling allows solution of non-trivial, non-smooth, non-convex problems
- 3. Large scale efficient methods still important

References

- ► Solving (most) of a set of quadratic equalities: Composite optimization for robust phase retrieval arXiv:1705.02356
- Stochastic Methods for Composite Optimization Problems arXiv:1703.08570