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What | hope to accomplish today

> Investigate problem structures that are not quite convex but still
amenable to elegant solution approaches

» Show how we can leverage stochastic structure to turn hard
non-convex problems into “easy” ones

[Keshavan, Montanari, Oh 10; Loh & Wainwright 12]

» Consider large scale versions of these problems



Composite optimization problems

The problem:
minixmize f(z) :== h(c(z))

where
h:R™ =3 Ris convex and c¢:R" — R™ is smooth
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x
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Motivation: the exact penalty

minimize f(z) subjectto c¢(x) =0
€T
equivalent to (for all large enough \)

minimize f(x) + A ||c(z)]|
z ———
=h(c(z))

where

h(z) = Allz]l

[Fletcher & Watson 80, 82; Burke 85]
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Motivation: nonlinear measurements and modeling

» Have true signal * € R™ and measurement vectors a; € R"

» Observe nonlinear measurements
bi = ¢((as,x*)) + &, i=1,....m

for ¢(-) a nonlinear function but smooth function

An objective:
m

3 (6({ai,z)) — bi)?

i=1

1
m

fz) =

Nonlinear least squares [Nocedal & Wright 06; Plan & Vershynin 15; Oymak &
Soltanolkotabi 16]



(Robust) Phase retrieval
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(Robust) Phase retrieval

diffraction patterls

source ;
"Kample phase plate

Observations (usually)

[Candes, Li, Soltanolkotabi 15]

yield objective
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1. Build a “good” but simple local model of f

2. Minimize the model (perhaps regularizing)
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Optimization methods

How do we solve optimization problems?
1. Build a “good” but simple local model of f
2. Minimize the model (perhaps regularizing)

Newton's method: Taylor (second-order) model

Fy) = foly) = f(2) + V(@) (y — ) + (1/2)(y — )"V (2)(y — x)
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Now we make a convex model

fe(y) = h (c(z) + V()" (y — 2))
[Burke 85; Drusvyatskiy, loffe, Lewis 16]
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Now we make a convex model

faly) = h(c(z) + Ve(z)' (y — 2))
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The prOX—|inear method [Burke, Drusvyatskiy et al.]

Iteratively (1) form regularized convex model and (2) minimize it
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The prOX—|inear method [Burke, Drusvyatskiy et al.]

Iteratively (1) form regularized convex model and (2) minimize it

Tpy1 = argmin
zeX

= argmin
zeX

1 2
||33—$1cH2

{fu0)+ 5,

{h(qxw—%VdﬁwT@*—ww)+

2

1 2
[z — gl



The prOX—|inear method [Burke, Drusvyatskiy et al.]

Iteratively (1) form regularized convex model and (2) minimize it

. 1
s = avguin { e (0) + 51 o = a3}
zeX «

. 1
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The prOX—|inear method [Burke, Drusvyatskiy et al.]

Iteratively (1) form regularized convex model and (2) minimize it

. 1
s = avguin { e (0) + 51 o = a3}
zeX «

. 1
= argmin {h (c(zk) + V() (z — zp)) + % |z — :cng}
zeX «

T — 2| =4-1078




Robust phase retrieval problems

A nice application for these composite methods
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Robust phase retrieval problems

Data model: true signal * € R", for ppj < % observe

0 p. > 1 — P
b = (a;, z%)* + & where & = _ WP Z L Phail
arbitrary otherwise
Goal: solve
1 — )
minize () = 223 o) b
=

Composite problem: f(z) = % |¢(Ax) — b, = h(c(x)) where ¢(-) is
elementwise square,

M) = el ele) = o(Az) b



A convergence theorem

Three key ingredients.

(1) Stability: f(z) — f(z*) > X |lz — 2*|, ||z + ]|,

(2) Close models: | f,(y) — f(y)| < & [|ATA|| [z — I3
(3) A good initialization
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(2) Close models: | f,(y) — f(y)| < & [|ATA|| [z — I3
(3) A good initialization

» Measurement matrix A = [a --- am]T c R™%" and

1 1 &
—ATA= = al
m m ;a a;
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A convergence theorem

Three key ingredients.
(1) Stability: f(x) — f(2*) = Az — 2|, = + 2*]|

(2) Close models: | f,(y) — f(y)| < & [|ATA|| [z — I3
(3) A good initialization
» Measurement matrix A = [a; --- an]’ € R™*" and

m
1 § /‘ T
—_ aial’
m“
=1

» Convex model f, of f at = defined by

Fol) = 1 3 [l + 2 ai2) o =)



A convergence theorem

Three key ingredients.

(1) Stability: f(z) — f(z*) > X |lz — 2*|, ||z + ]|,

(2) Close models: | f,(y) — f(y)| < & [|ATA|| [z — I3
(3) A good initialization

Theorem (D. & Ruan 17)

Define dist(x, z*) = min{||z — z*|,, ||z + =*||,}. Let x}, be generated by
the prox-linear method and L = % H|ATAH|Op. Then

2L

ok
dist(zg, 2*) < <>\ dist(:zo,x*)> .



Unpacking the convergence theorem

Theorem (D. & Ruan 17)

Define dist(z, z*) = min{||z — 2*||,, ||z + 2*||,}. Let x, be generated by
the prox-linear method and L = % H|ATAH|OP. Then

2L 2
dist(zg, 2*) < ()\ dist(xo,x*)> .

» Quadratic convergence: for all intents and purposes, 6 iterations

» Requires solving explicit convex optimization problems (quadratic
programs) with no tuning parameters



Ingredients in convergence: stability

1. Stability: (cf. Eldar and Mendelson 14)

[ = 2"l [l + 2™,

f(@) = f(*) > A

S //
S EL TR

Q NN
SRR
SRR

g
IOY Ny
SRR
SNSSN AN

LRI
S E LU
I
trff%.,/




Ingredients in convergence: stability

1. Stability: (cf. Eldar and Mendelson 14)

f@) = f(@") 2 Mz — 2"l ||z + 27|
What is necessary?

Proposition (D. & Ruan 17)

Assume uniformity condition: for all u,v € R™ and a ~ P
P(ju”aa’v] > eo [lully [[v]ly) > ¢ > 0.

Then f is %eo—stable with probability at least 1 — e=“™.



Ingredients in convergence: stability

1. Stability: (cf. Eldar and Mendelson 14)

f@) = f(@") 2 Mz — 2"l ||z + 27|
What is necessary?

Proposition (D. & Ruan 17)

Assume uniformity condition: for all u,v € R™ and a ~ P
P(ju”aa’v] > eo [lully [[v]ly) > ¢ > 0.

Then f is %eo—stable with probability at least 1 — e=“™.
(Gaussians satisfy this)
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and under random a;

(@ +2%)] 2 o — 2l 1z + *]l,

TaiaiT

)




Ingredients in convergence

2. Approximation: need L |HATA|HOp =0(1)
What is necessary?

Proposition (Vershynin 11)

If the measurement vectors a; are sub-Gaussian, then

Ljara), <om) /24t wp. > 1-em



Ingredients in convergence

2. Approximation: need L |HATA|HOp =0(1)
What is necessary?

Proposition (Vershynin 11)

If the measurement vectors a; are sub-Gaussian, then

e ATA||l <o0@)- A wp. >1—e ™
m op m

Heavy-tailed data gets % |HATA|HOP = O(1) with reasonable probability
for m a bit larger
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Ingredients in convergence: spectral initialization

Insight: [Wang, Giannakis, Eldar 16] Most vectors a; € R™ are orthogonal to x*
Xinit . — Z aial
i:b; <median(b)

satisfies »
xinit E[aiaiT] _ Cd*d*T where d* = l‘*/ ||$*||2
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Insight: [Wang, Giannakis, Eldar 16] Most vectors a; € R™ are orthogonal to x*
Xinit . — Z aial
i:b; <median(b)

satisfies »
xinit E[aiaiT] _ Cd*d*T where d* = l‘*/ ||$*||2




Ingredients in convergence: spectral initialization

3. Initialization: We need dist(zo,2*) < 3 ||lz* |,



Ingredients in convergence: spectral initialization
T . . 1

3. Initialization: We need dist(zo, 2*) < 5 [|2* ||,

Estimate direction d ~ 2*/ ||z*||, and radius 7" by

Xinit . — Z aial and d = argmin {dTXmitd}
1:b; <median(b) desnt

1
_ 1 o= ,5)\2
P (230) ~ e,
i=1



Ingredients in convergence: spectral initialization

3. Initialization: We need dist(zg,2*) < & [|l2*,

Estimate direction d ~ 2*/ ||z*||, and radius 7" by

Xinit . — Z aial and d = argmin {dTXmitd}
1:b; <median(b) desnt

1
_ 1 o= ,5)\2
P (230) ~ e,
i=1

Proposition (D. & Ruan 17)

Under appropriate orthogonality conditions, rg = 7d satisfies

dist(zg, 2*) < UE +t
m

with probability at least 1 — e~™t"



Take-home result

v

Stability: measurements a; are uniform enough in direction

v

Closeness: a; are sub-Gaussian or normalized

v

Sufficient conditions for initialization: for v € S™,
Ela;al | (ai,v)* < |v||3] = I, — cov? + E

where ¢ > 0 and FE is a small error

. oy 1
> Measurement failure probability pgj < 7

Theorem (D. & Ruan 17)

If these conditions hold and m/n 2 1, then the spectral initialization
succeeds and iterates xj of prox-linear algorithm satisfy

k

dist(zy, 20) < (O(1) - dist(wo, 2*))?



Experiments

1. Random (Gaussian) measurements
2. Adversarially chosen outliers

3. Real images



Experiment 1: random Gaussian measurements

» Data generation: dimension n = 3000,

a; S N(0,1,,) and b; = (a;, z*)?

» Compare to Wang, Giannakis, Eldar's Truncated Amplitude Flow
(best performing non-convex approach)

» Look at success probability against m/n (note that m > 2n — 1 is
necessary for injectivity)



Experiment 1: random Gaussian measurements
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Experiment 1: random Gaussian measurements
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Experiment 2: corrupted measurements

» Data generation: dimension n = 200,

. 0 P. Prai
0 N0, 1) and b = , PPl
(aj,x*)” otherwise

(most confuses our initialization method)

» Compare to Zhang, Chi, Liang's Median-Truncated Wirtinger Flow
(designed specially for standard Gaussian measurements)

» Look at success probability against m/n (note that m > 2n — 1 is
necessary for injectivity)



Experiment 2: corrupted measurements

! ! !
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Prail



Experiment 3: digit recovery

» Data generation: handwritten 16x16 grayscale digits, sensing matrix

H,5;
A= HnSQ c R?mxn
H,S3

where n = 256, S; are diagonal random sign matrices, H, is
Hadamard transform matrix

» Observe

0 P 1 — Deas
b= (Az*)® + ¢ where & = WP _ Prail
Cauchy otherwise

» Other non-convex approaches designed for Gaussian data; unclear
how to parameterize them



Experiment 3: digit recovery

Left: true image. Middle: spectral initialization. Right: solution.



Experiment 3: digit recovery
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Performance of composite optimization scheme versus failure probability



Experiment 4: real images

Signal size n = 2?2, measurements m = 3 - 2%
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Composite optimization at scale

Question: What if we have composite problems with a really big sample?

» Typical stochastic optimization setup,
f(z) = E[F(x;S)] where F(xz;S) = h(c(x;S);S)

» Example: large scale (robust) nonlinear regression

m

> lo({ai @) — bil

i=1

fz) =

1
m



A stochastic composite method

» Define (random) convex approximation

Fy(y;s) = h(c(z;8) + Ve(z;8)T (y — x); 9)
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» Define (random) convex approximation
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~c(y;s)




A stochastic composite method

» Define (random) convex approximation

F.(y;s) = h(c(x; s) + Ve(x; s)T(y —x);8)

» Then iterate for k =1,2,... ~c(y;s)

S, 8 p

. 1
Tpi1 = argmin {ka (x; Sk) + San |z — kag}
zeX Qg



Understanding convergence behavior

Ordinary differential equations (gradient flow):

i=-Vf(z) ie. %x(t) = —Vf(z(t))

=

-

Z
7
7




Understanding convergence behavior

Ordinary differential inclusions (subgradient flow):

ie—0f(x) ie %x(t) € —0f(x(t)




The differential inclusion

For stochastic function
f(2) i= ELF (23 )] = Blb(c(z:9): 8)] = [ hlelas):5)aP(s)
the generalized subgradient (for non-convex, non-smooth) is [D. & Ruan 17]
Of (@) = / Ve(a; $)0h(c(x; s); s)dP(s)

Theorem (D. & Ruan 17)

For stochastic composite problem, the subdifferential inclusion & € —0f(x) has a
unique trajectory for all time and

fa(t)) - / 10f(x(r)) |2 dr.

It also has limit points and they are stationary.



The limiting differential inclusion

Recall our iteration
) 1 2
Tpy1 = argmin$ Fy (z;Sg) + Son |z — akll5 ¢ -
x af

Optimality conditions: using F(y;s) = h(c(z;s) + Ve(z; s)T (y — ),
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The limiting differential inclusion

Recall our iteration
) 1 2
Tpy1 = argmin$ Fy (z;Sg) + Son |z — akll5 ¢ -
x af

(

Optimality conditions: using F,.(y;s) = h(c(z;s) + Ve(z; s)' (y — x)),

1
0 € Ve(xy; 8)0h(c(zy; s) + Velog; s) ' (xpp1 — o)) + ar [Tg+1 — zk]

=c(k;8)£O(|er—zr 1))

i.e.

1
— [xp+1 — xk) € —Ve(xg; s)Oh(c(xy; s); s) + subgradient mess + Noise
g

= —0f(xy) + subgradient mess + Noise



Graphical example

|




A convergence guarantee

Consider the stochatsic composite optimization problem

migier;}ize f(z) := E[F(x;S)] where F(z;s)= h(c(x;s);s).

Use the iteration

. 1

Tjy1 = argmin {ka (x; Sk) + Sar ||z — kag} .
zeX Ak

Theorem (D. & Ruan 17)

Assume X is compact and Y 5o | i = 00, > pe; ai < oo. Then the
sequence {xy} satisfies

(1) f(xx) converges
(2) All cluster points of xj, are stationary



Experiment: noiseless phase retrieval
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1. Broadly interesting structures for non-convex problems that are still
approximable

2. Statistical modeling allows solution of non-trivial, non-smooth,
non-convex problems

3. Large scale efficient methods still important
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