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ABSTRACT

The high density of pixels in modern color sensors provides an opportunity to experiment with new color filter
array (CFA) designs. A significant bottleneck in evaluating new designs is the need to create demosaicking,
denoising and color transform algorithms tuned for the CFA. To address this issue, we developed a method(local,
linear, learned or L3) for automatically creating an image processing pipeline. In this paper we describe the L3

algorithm and illustrate how we created a pipeline for a CFA organized as a 2×2 RGB/W block containing a clear
(W) pixel. Under low light conditions, the L3 pipeline developed for the RGB/W CFA produces images that are
superior to those from a matched Bayer RGB sensor. We also use L3 to learn pipelines for other RGB/W CFAs
with different spatial layouts. The L3 algorithm shortens the development time for producing a high quality
image pipeline for novel CFA designs.

Keywords: Image processing pipeline, low light imaging, color filter array, image processing, local linear
learned(L3)

1. INTRODUCTION

The drive to increase the number of megapixels in digital cameras has produced sensors with higher spatial
resolution than is required for most imaging applications. This excess of pixels presents an opportunity to
increase other aspects of sensor functionality. For example, there are opportunities to improve the dynamic
range and spectral accuracy of the sensor by increasing the number of filters in a color filter array (CFA).

Most consumer digital cameras use the Bayer CFA1 and color image processing pipelines have been optimized
for this design. Cameras with other CFA designs require new image processing algorithms and the time and
effort needed to develop these algorithms discourages experimentation with novel designs. In this paper, we
describe a technology for automating the design of image processing pipelines for sensors with unconventional
CFAs. The algorithm, first introduced by Lansel and Wandell,2–4 is called L3, based on the algorithm’s three
main principles: Local, Linear and Learned.

The L3 algorithm uses simulated training data to learn a set of linear operators. Each operator is selected
to optimize the output image for a specific type of pixel, light level, or contextual pattern. Output images are
created by applying the appropriate learned and stored linear operators to the input data. Hence, the application
of these precomputed local, linear operators is the image processing pipeline; the pipeline performs demosaicking,
denoising, sensor conversion, and illuminant correction.

We illustrate the L3 algorithm development for a 2×2 RGB/W CFA design (Figure 1 left).5 The RGB/W
design replaces one G filter with a clear (W) filter. The W filter transmits much more light than the G filter,
enabling the sensor to record data at low light levels. The W pixels, like the human rod photoreceptors, are
useful at very low levels of illumination, but they saturate at higher light levels.5 The RGB pixels, like the
human cone photoreceptors, respond well at higher light levels, but they are noisy and unreliable at low light
levels.
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Figure 1. RGB/W CFA layout and spectral sensitivities (left) and sensor parameter values used for simulations (right).

Figure 2. Overview of the L3 method.

The RGB/W design poses several image processing challenges. In addition to the new spatial pattern, the
RGB/W design contains a large sensitivity mismatch between the W and the RGB color pixels. The image
processing pipeline must adapt to this sensitivity mismatch. While several groups developed algorithms for
RGB/W arrays,6–12 only one7 specifically addressed the sensitivity mismatch. At high intensity levels the system
should use the RGB data and avoid the saturated W pixels. As the image intensity transitions to lower levels,
the system should smoothly replace the unreliable RGB data with information from the W pixel values. We
show that the L

3 method meets the challenge of learning a pipeline that smoothly transitions between different
illumination levels. The following sections describe the L3 method in detail and present experimental results.

2. METHOD

Figure 2 provides an overview of the L3 method, consisting of training data generation, response image-patch
classification and linear operator learning. We explain each component in the following sections.

2.1 Training Data Generation

The training data are composed of scene selection, scene statistics, and sensor data. In general, the scenes and
scene statistics should be representative of the intended application. In this paper, we illustrate L3 for the goal of
rendering natural images for a display. Thus the scenes are natural images and scene statistics are the CIEXYZ
values. The sensor data are determined by a combination of camera properties(optics, sensor properties) and
selected training scenes, which should be similar to the set-up in practice.

Camera simulation: We used the Image Systems Engineering Toolbox (ISET)13, 14 to simulate digital
cameras with novel CFAs to generate both the training and experimental scenes. Camera simulation technology
allows us to compute both the sensor data and the scene statistics (CIEXYZ values). ISET models camera



systems by simulating scene radiance, optics, sensor electronics and image processing pipelines. Here, the
camera lens is modeled as an f/4 lens with diffraction limited optics and focal length of 3mm. Figure 1 illustrates
the arrangement and the spectral sensitivity of the color filters in the RGB/W CFA (left) and the sensor
specifications(right).

Training scenes: We used multispectral scenes from a public database15, 16 for training. A specific set of
training scenes can be used to optimize the linear operators for specific applications, such as rendering of black
and white text. Here we focused on common natural scenes for consumer photography. All of our training
scenes contain human faces. One example is shown in Figure 2. The illuminant for these scenes is D65 with
spatially-varying intensity. The L3 training can use different illuminants, in which case the learned filters include
illuminant correction.

A pixel’s image neighborhood is extracted from the sensor image and the pixel’s CIEXYZ values are calculated
by ISET. A patch size of 9×9 usually works well. Many thousands of sensor-patch and pixel-XYZ examples make
up the training data.

2.2 Patch Classification

The overall relationship between sensor responses and scene statistics (XYZ values) is nonlinear, but it is locally
linear. Therefore it is critical to classify training patches into small categories based on various criteria such that
within each category there is a simple linear relationship. Defining these classes is part of the L3 procedure,
and one might decide to organize the classes and parameters somewhat differently depending on the sensor and
intended application. Using automatic classification is also possible. Figure 3 demonstrates the image patch
classification we used for the RGB/W CFA based on the following four criteria.

Pixel type: The RGB/W CFA has four possible central colors, corresponding to the four filter types. The
Bayer RGB also has four possible central colors, because we separate the two green filters. In general there are
as many pixel classes as there are pixels in the repeating block of the CFA pattern.

Pixel saturation: The high sensitivity of the W pixel extends the sensor’s dynamic range. The cost of this
feature is that the W pixel is saturated when the RGB pixels are well exposed. Saturated pixels provide little
useful information and violate linearity. Therefore, the learning algorithm is designed to ignore saturated pixels
by setting their filter values to zero. In this implementation, if any of the pixels of a particular color, say W, are
saturated we set the filter values corresponding to all of the W pixels in the patch to zero. We divide the image
patches into three types of pixel saturation classes: no saturation, W-saturation, and W&G-saturation.

Response level: The signal-to-noise ratio (SNR) of the sensor data varies greatly with the sensor response
level. It is important to separate classes by sensor response level so that the linear operator can account for the
large variation in SNR as a function of response level. The level is calculated by finding the average response
within the unsaturated channels, and then averaging the channel responses. We create separate classes for
different response levels, and the lower response levels are more densely sampled because the SNR changes
rapidly in that range.

Spatial contrast: Finally, image patches are divided into flat and textured classes. Flat patches are relatively
uniform image areas that contain only low spatial frequencies. Texture patches contain higher frequencies,
typically near an edge. The classification is based on the sum of mean absolute deviations from the mean for
all non-saturated channels. This method works well in high light levels, but suffers from unavoidable errors for
dark images where measurement noise is similar to texture.

There can be a rather large number of classes. In the example illustrated in Figure 3, the classes account
for the four central pixel types (RGB/W), pixel saturation (no saturation, W saturation and W&G saturation),
mean response level (20 levels), and spatial contrast (uniform and textured). Hence, there are 4×3×20×2=480
classes. Approximately half are not used because of impossible combinations such as a patch with W saturation
and low response level. About 700 operators are learned; this is equal to the number of patch classes (about
240) times the three output values (CIE XYZ).



Figure 3. Image patch classification.

2.3 Linear Operator Derivation

Our goal is to estimate a linear mapping between the sensor measurements in the neighborhood of an image
pixel (the patch) and each scene statistic at that pixel. Suppose the training data for a particular class have k
noise-free patches, each containing

√
m×

√
m pixels. These are placed in the columns of a matrix M ∈ Rm×k and

then corrupted by photon noise and sensor noise N ∈ Rm×k. Each column of N is independent and identically
distributed with mean 0 and autocorrelation An. We assume the noise is independent of M and D, which is
not precisely true but simplifies the estimation. For each patch class, we find the linear transformation that
best maps the noisy sensor measurements into the desired scene measurements D ∈ R

n×k. We might define
the optimal transformation as the one that minimizes the expected sum of squared errors between the desired
output and the estimates, which is given by the Wiener filter3 W ∈ Rn×m:

W = DM
T (MM

T + kAn)
−1 (1)

We find that under low-light conditions minimizing only the squared error produces output images with
highly visible spatial noise17 (Figure 6, top left). Thus, it is more pleasing to select a mapping that has a slight
color bias but lower spatial variance and higher squared error. We can control the spatial noise by selecting an
alternative filter using the formula in Equation 2:

W = DM
T (MM

T + αkAn)
−1 (2)

When α is greater than one, the spatial noise is reduced and the color-bias, measured by the sum of squared
errors, is increased. This general form of linear estimation is referred to variously as ridge regression, Tikhonov
regression, and Bayesian linear regression.18

When the linear transformation is implemented in XYZ space, reducing the variance has two different per-
ceptual effects. The luminance signal becomes blurred and the chrominance signals become desaturated. When
we minimize error and variance with respect to CIE XYZ values, the parameters do not separate these two
effects. To separately control the luminance and chrominance effects, we solve for the linear transformation
using different α values in a color space where the luminance channel and chrominance signals are explicitly
represented.

We use an opponent color space WCbCr, optimized for rendering under the D65 illuminant, which is standard
for sRGB. The luminance channel W is chosen as the projection of the D65 spectra to the three dimensional
space spanned by the XYZ color matching function, which produces the metamer of D65 with minimal energy.
The two chrominance channels are contained in the plane orthogonal to W in the XYZ subspace. In order to
equally desaturate all hues, we choose αCb

= αCr
. Therefore any Cb and Cr vectors that span this orthogonal

subspace give the same results. For specificity, we choose Cb and Cr by projecting CIE X and Z function to the
orthogonal plane respectively. When using this color space for low light, desaturation goes to the white point
given by D65. The derived basis functions for WCbCr are shown in Figure 4.



Figure 4. Basis functions for the opponent color space WCbCr optimized for rendering under the D65 illuminant.

Figure 5. Learned linear operators to estimate X value at three different light levels for Red-centered patch.

3. EXPERIMENTAL RESULTS

3.1 Learned Filters

Figure 5 illustrates three linear operators optimized for a pixel patch centered on a red pixel. These operators
are designed to estimate the CIE X value at the center red pixel for uniform classes at three different sensor
response levels. At the lowest levels, no channel is saturated. The operator mainly relies on the W pixels because
the RGB values have close to zero signal. The W pixel responses are combined across the entire patch to reduce
noise. As the mean response level increases, RGB pixel responses become more reliable. The operator weights
concentrate on the center red pixel, because its spectral information is most informative about the X value. To
reduce noise and take advantage of between channel correlations, some weight is also allocated to the W and G
pixels. At the highest response levels, the W pixels are saturated and thus have zero weight. The X value is
calculated as a weighted sum of the R, G, and B pixels that are in the center of the patch.

3.2 Color Bias and Spatial Variance Tradeoff for Low Light

Figure 6 demonstrates the bias and variance tradeoff for low-light conditions. As luminance weight αW increases
vertically, the image becomes blurred while the luminance noise is reduced. As chrominance weights αCb

and
αCr

increase horizontally, the image loses color saturation but chrominance noise is reduced. Note that once
the luminance weight αW becomes too high, the blur in textured regions is unacceptable (notice the eyes in the
bottom right image in Figure 6). Since patches are clustered into flat and texture classes, it’s possible to operate
the tradeoff separately. Flat regions convey little high frequency information and can be extensively blurred,



Figure 6. Color-bias and spatial-variance tradeoff for a low luminance scene. Scene luminance: 1cd/m2, exposure: 10 ms,
aperture: f/4.

without reducing the image sharpness, while texture regions can be moderately blurred. In the resultant image
(Figure 7, bottom left), the noise is reduced while the image details are preserved.

3.3 Bayer and RGB/W comparison with L3

We compare the pipeline results based on training for a Bayer CFA (Figure 7, top) and for an RGB/W CFA (7,
bottom). In this example, the RGB/W pipeline has less noise under low light level conditions. The advantage
accrues because the W pixel improves the low light SNR, and the L3 pipeline learns linear operators that take
advantage of the W pixel. In the high light conditions the images are similar. A detailed examination across a
wide array of challenging test targets may uncover some minor resolution differences.

3.4 Automatic Design for Various RGB/W Layouts

Most demosaicking algorithms have been designed to optimize the Bayer pattern, and the development of image
processing algorithms for novel CFAs requires considerable effort. The L3 algorithm automates the work of
creating an image processing pipeline for new CFA designs. Figure 8 shows rendered images for three different
RGB/W CFA layouts using the image processing pipeline automatically developed with the L3 method. We
hope that simplifying the design of the image processing algorithm will enable more experimentation.

4. CONCLUSIONS

We developed a local, linear, learned (L3) algorithm that automates the process of creating an imaging system’s
processing pipeline. The L3 algorithm can be applied to a large range of sensor designs and imaging applications.
This algorithm reduces the time and effort involved in creating an image processing pipeline for novel sensor
designs that will produce high quality images.



Figure 7. Rendered images for Bayer and RGB/W CFAs with the L3 pipeline at low and high luminance. Separate bias
and variance tradeoff on flat and texture regions is employed for RGB/W. Flat regions: αW = 16, αCb

= αCr
= 4; texture

regions: αW = 1, αCb
= αCr

= 4.

Figure 8. Rendered images for different RGB/W CFA layouts using L3. From left to right: Kodak’s,8 Aptina’s19 and
Wang et al.’s6 CFA.
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