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REPRESENTATION OF THE ORIENTATIONS OF SHAPES *

Roger N. SHEPARD and Joyce E. FARRELL
Stanford University, USA

A geometrical model is put forward as underlying superficially quite different data from dis-
crimination and mental transformation tasks and, also, as a possible framework for an eventual
account of the perception of shape. The model was evaluated in an experiment in which
participants indicated whether two picture-plane views of a polygon with an experimentally
determined degree of symmetry under 180° rotation were the same or different in orientation.
Multidimensional scaling based on the obtained discriminative reaction times yielded a four-di-
mensional solution that, in agreement with the proposed model, describes possible transformations
of the planar polygons. We suggest that the constraints governing possible transformations of
objects have become so internalized that we unconsciously represent these possible motions upon
the visual presentation of any object.

The knowledge that is likely to have become most deeply and thor-
oughly internalized in our perceptual systems during biological evolu-
tion are those facts about the world (a) that have been most invariant in
the world, and (b) that are most simply characterizable and hence easily
internalized. A fundamental invariant that can be simply characterized
is the way in which objects can rigidly transform in relation to ourselves
in space (Shepard 1981b, 1984).

The knowledge that describes the possible transformations of rigid
objects is far more stable than the knowledge that describes the
particular shapes of objects in our environment. The predators, compe-
titors, foods, weapons, shelters, and so forth that have been most
significant to our ancestors and ourselves have changed markedly
during our immense evolutionary history; and each of these objects

* This work was supported by National Science Foundation Grants BNS 75-02806 and BNS
80-05517 to Stanford University.

Send requests for reprints to R.N. Shepard, Dept. of Psychology, Building 420, Stanford
University, Stanford, CA 94305, USA.

0001-6918 /85,/83.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)



104 R.N. Shepard, J.E. Farrell / Orientations of shapes

would require a vast number of parameters to describe its range of
characteristic shapes, postures and nonrigid movements. Yet even non-
rigid objects can often be described as jointed assemblages of ap-
proximately rigid segments, e.g. trunk, upper arm. lower arm, finger.
etc. (see Marr 1982). Moreover, nonrigid visual objects will exhibit
transformations that are approximately rigid, relative to an observer
who is actively exploring it through eye movements, head movements,
and circumlocation (Shepard and Cooper 1982). Such rigid transforma-
tions have always been characterizable terms of just six parameters
three of relative translation and three of relative rotation. We suggest,
therefore, that our seeing of objects and their motions is automatically
constrained and guided by perceptual mechanisms embodying, at a
deep level, our evolutionarily acquired wisdom about rigid transforma-
tions in Euclidean three-dimensional space.

The assignment of a fundamental role to such spatial transforma-
tions in visual perception is a natural extension of the earlier emphasis
by Cassirer (1944), Gibson (1950, 1966), and others of the importance
of invariance under transformations and., particularly, under those
transformations induced in the optic array by the free movements of
the perceiver (Gibson 1966, 1977). It is also consonant with Garner’s
(1974) characterization of figural goodness in terms of the size of the
class of figures that are equivalent under translations, rotations, and
reflections.

From a theoretical standpoint, the goal of characterizing our knowl-
edge of the ways in which objects transform in space is much more
general than the goal of characterizing how we perceive individual static
objects, because it applies to the perception of all possible objects, in all
possible positions. At the same time this goal is, from a methodological
standpoint, much more restricted because it requires the specification of
only six rather than a virtually unlimited number of parameters.

There is, furthermore, the possibility that the theory that we develop
for the representation of such transformations will in turn afford us a
more general way of addressing the traditionally prior problem of the
perception of static objects. For the constraints governing the possible
transformations in three-dimensional space may have become so deeply
internalized that we unconsciously represent these possible motions
upon the visual presentation of any object.These dynamic representa-
tions may not only underlie our immediate intuition as to how any
objects move, but they may also underlie our appreciation of the shape
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of the object itself. For, that shape is specifiable in terms of a kind of
autocorrelation of the object with itself under these possible transfor-
mations (cf., Shepard 1981a, b; Uttal 1975; and, again, Garner 1974).

The existence of this internalized knowledge about spatial transfor-
mations is most strikingly demonstrated in the phenomenon of ap-
parent motion.When alternately presented with two different views of
the same object, we experience a single object rigidly moving back and
forth over a definite trajectory in space (see Bundesen et al. 1981, 1983;
Farrell 1983; Foster 1975; Shepard 1984; Shepard and Judd 1976). In
the absence of any physically presented motion, the particular path that
we perceive reflects our internalized knowledge of the constraints
governing rigid displacements of an object.

In this paper we hypothesize that although there are an infinite
number of paths over which the object could have moved from the one
position to the other, the one path that is actually experienced on any
one occasion is selected from a very small number of alternatives each
of which is in some sense especially simple or, as we shall assume, short.
In order to make this notion of shortest paths precise, we have to
specify an appropriate metric of psychological distance for the abstract
space of possible positions of an object in physical space. The physical
space is, of course, three-dimensional and Euclidean, but, because there
are six degrees of freedom of position in physical space, the abstract
space of possible positions is six-dimensional. Moreover, because the
three rotational degrees of freedom of position are circular, this six-di-
mensional space is non-Euclidean. This space can, however, be re-
garded as a curved six-dimensional surface embedded in a seven-dimen-
sional Euclidean space. Within this curved surface or manifold, as it is
called, each point corresponds to a particular position of the object in
physical space, and any path connecting two points within the surface
corresponds to a possible rigid motion of the object from the one
position to the other.

We hypothesize that when this abstract six-dimensional manifold has
been combined with the appropriate metric, the simplest motions of
objects — the ones that tend to be experienced in apparent motion —
will be those paths that cannot be made shorter by any small variations
of the path (Shepard 1977, 1981b). In differential geometry such
external paths are called geodesic paths. (They are like strings that,
while confined to the curved surface, are pulled tight between the two
end points.) Such paths are analogous to great circles on the curved
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surface of the earth. Because the manifold is non-Euclidean, pairs of
points that are not close together (corresponding to positions of the
object that are quite different in orientation) can often be connected by
distinct geodesic paths. This is a reflection of such facts as that an
object can be rotated, from one orientation into another quite different
orientation, in either of two opposite directions. Just as two points on
the earth’s surface can be connected by either of two (opposite) great
circles, one path may be shorter than the other. But each will be an
external or geodesic path in the sense that any small variations in the
path will only make it longer. The manifold of possible positions thus
provides us with a precise way of distinguishing between three percep-
tually different types of transformations: (a) rigid motions, which
correspond to any continuous path falling within the curved manifold.
(b) simplest rigid motions, which correspond to paths within the
manifold that are also geodesic., and (c¢) nonrigid transformations,
which correspond to paths passing outside the curved manifold — for
example, short-circuit paths cutting directly through the higher-dimen-
sional Euclidean embedding space (much as a straight line might
connect two remote points on the two-dimensional surface of the earth
by cutting directly through its three-dimensional interior).

To the extent that this abstract manifold of possible positions, when
endowed with the psychologically appropriate metric, accounts for
perceptual phenomena such as those arising from real and apparent
motion, we can regard the geometrical structure of this manifold as a
representation of our implicit knowledge about the ways in which
objects move in three-dimensional space. And, to the extent that the
psychologically appropriate metric corresponds to the natural metric
for rigid physical motions, we can regard this implicit knowledge as an
internalization of the kinemetric geometry that has always constrained
the relative physical motions of objects in our world (Shepard 1984).
Accordingly, we can presume that whatever the neurophysiological
details of our perceptual mechanism may eventually be found to be,
they will necessarily embody, at the appropriate level of description, the
metric structure of this abstract manifold.

In line with our earlier remarks about the fundamental role of
transformations in perception, we propose that this same structure will
not only describe the psychological data on apparent motion, but will
also constrain other phenomena governed by the relations between
objects that differ by rigid transformations. Thus the paths of mental



R.N. Shepard, J.E. Farrell / Orientations of shapes 107

transformations such as mental rotations (Shepard and Metzler 1971;
Shepard and Cooper 1982) should correspond to the same geodesic or
shortest trajectories in this abstract space. Moreover, just as the time to
discriminate stimuli depends quite generally on the psychological simi-
larity between them (see the overviews in Podgorny and Shepard 1983;
Shepard 1981a; Welford 1960), we conjecture that the time to dis-
tinguish whether two identical objects are in the same orientation will
depend on some measure of distance between the points corresponding,
in this same manifold, to the two presented positions. However, in this
latter case, the appropriate distances may not be the geodesic distances
within the curved manifold but the short-circuit distance through the
embedding space. Moreover, the measured critical time, rather than
exhibiting a linear increase with distance, as in the case of imagined
transformations and apparent motion, should manifest a nonlinear
decrease with distance (Shepard 1978).

In this paper we are particularly concerned with the intimate rela-
tionship between the representation of possible motions and the shape
of an object that arises whenever the object possesses any symmetries or
approximation to symmetry. This relationship is important because
most objects of interest to us do possess some approximate bilateral or
circular symmetry. Indeed, according to the autocorrelation theory of
shape representation already mentioned, any shape can be char-
acterized by the way its self-similarity varies with extent or angle of
transformation or, in other words, by its degrees of approximation to
the various possible symmetries.

The most natural way to capture such approximations to symmetry
in the geometry of the manifold of possible position is by means of a
suitable deformation of that manifold — a deformation that brings
points corresponding to very different orientations (in which the object
nevertheless appears quite similar) close together in, for example, the
higher-dimensional embedding space. For example, because a rectangle
becomes identical to itself under 180 degree rotations, points that were
diametrically opposite in the original manifold of positions must be
brought into coincidence by deforming the manifold to accommodate
for the symmetry. Because a rectangle becomes somewhat more similar
(though not identical) to itself under 90 degree rotations, points corre-
sponding to positions differing by 90 degrees must additionally be
brought more or less close together in the embedding space. By shorten-
ing the short-circuit path through the embedding space, such a defor-
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mation can account for the increased time needed to discriminate
between orientations in which an object appears similar — for example
between nearly square rectangles differing by exactly 90 degrees.

In order to proceed. we must now become more specific about the
geometrical structure of the manifold of positions and, in order to
attempt an initial experimental exploration of the complication of
approximate symmetries, we shall narrow attention to the simpler case
of two-dimensional shapes and then rotational transformations within
the two-dimensional picture plane. Qur focus on rotational transforma-
tions is motivated (a) by the especially close entanglement between
those transformations and the representation of shape, (b) by the fact
that in the natural metric of the six-dimensional manifold of possible
positions, translations (which can also be regarded as infinitesimal
rotations) are essentially negligible, and (c) by the perhaps correspond-
ing empirical observation (long ago foreseen by Mach 1886). that the
times required for imagined translations evidently are generally short
compared with the time required for imagined rotations.

Psychological representation of the orientations of a partially symmetric
object

The orientation of an object has three degrees of freedom, two specify
the direction of an axis (corresponding to the latitude and longitude of
an axis passing through the center of a globe), and one specifies the
angle through which the object is rotated around that axis, from some
fixed reference orientation. We can then represent that angle of rotation
by a distance from the center of the globe along that specified axis, with
clockwise rotations up to 180 degrees represented in one direction along
that axis and counterclockwise rotations up to 180 degrees represented
in the opposite direction along that same axis. Thus we can see that the
manifold of all possible orientations correspond, topologically, to the
surface and interior of a sphere (of radius 180 degrees), with diametri-
cally opposite points on the surface identified (regarded as the same
point).

Fig. 1 illustrates, by means of the orientations of a cube, one
two-dimensional slice through this three-dimensional closed manifold.
Notice that diametrically opposite points, as claimed, correspond to
identical orientations of the cube. Of course, this one slice does not
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include all orientations; there are infinitely many other slices. More-
over, this flat representation of the slice is only topologically valid.
Metrically, each such slice is more accurately conceived of as hemi-
spherical but with, again, opposite points regarded as the same point.
There is in fact a natural metric of this space, which is equivalent to the
natural metric of the orthogonal group SO(3) (see Foster 1975). In this
metric, geodesic paths are like great circles on the surface of a sphere,
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much simpler case of two-dimensional polygons and their possible
orientations in the plane. Because we are focusing only on differences
in orientation, the kind of symmetry that will be most relevant is
symmetry under rotation. We shall consider only the simplest of these:
namely, symmetry under 180 degrees rotation — and various degrees of
approximation to such symmetry.

We have only to consider a single geodesic or great circle path in the
three-dimensional manifold — namely. that corresponding to different
orientations of the polygon about an axis perpendicular to the plane
and passing through the center of the polygon. If the object were
completely asymmetrical, this path could be metrically represented by a
simple circle, representing the perceptual fact that such an object
becomes less and less similar to itself as it is rotated up to 180 degrees
and then more and more similar again until it becomes identical to
itself at 360 degrees. If, however, the object i1s completely symmetric
under 180 degrees rotation, points that were diametrically opposite on
the original circle become identical. We obtain, thereby, a double-wound
circle in which, as the object rotates through 360 degrees. the point
representing the appearance of the object in cach orientation passes
around the circle twice, passing through the same point at 180 degrees
as well as at 360 degrees.

The interesting case is that in which the object possesses only some
approximation to 180 degrees rotational symmetry. The original circle
must then be deformed into a curve in which points representing
orientation differing by 180 degrees are neither opposite, as in the case
of complete asymmetry, nor coincident, as in the case of complete
symmetry. Such pairs of points must then all be at the same inter-
mediate separation in the embedding space - a separation that can
become arbitrarily small as the object is made more and more nearly
symmetric. Such a curve can only be isometrically embedded in a
four-dimensional Euclidean space, where the straight or short-circuit
path between points corresponding to orientations differing by 180
degrees sweeps out the famous one-sided surface of Mébius.

Fig. 2 provides a concrete illustration of the geometrical manifold
based on the polygons generated for our earlier study of rotational
apparent motion (Farrell and Shepard 1981). We shall use this repre-
sentation in the experiment we report here on the time to discriminate
differences in orientation. The leftmost curve in the middle of the figure
is the original simple circle of orientations for an asymmetric object, the
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rightmost curve is the double-wound circle for a completely symmetric

object, and the middle curve is a crude two-dimensional portrayal of
the curve in four-dimensional space for a partially symmetric object.

C. SYMMETRIC
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Fig. 2. Examples of polygons that are asymmetric (A), symmetric under 180° rotation (C), or
intermediate between these (B) and, below each, a closed curve representing the set of perceived
orientations of polygons with that degree of symmetry. The plots at the bottom show how distance
of transformation depends on angular difference, for transformations that are rigid (solid lines) or
nonrigid (dashed curves). (From ‘Psychophysical Complementarity’ by R.N. Shepard. In: M.
Kubovy and J, Pomerantz (eds.), Perceptual Organization. Hillsdale, NJ: Lawrence Erlbaum, 1981.
Copyright 1982 by Lawrence Erlbaum. Reprinted by permission.)
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Pairs of prints connected by dashed lines in this middle curve corre-
spond to orientations differing by 180 degrees.

Our two proposals are: (a) that critical times in mental rotation or
apparent motion increase linearly with shortest distance along the curve
(shown as solid lines in the graphs at the bottom), and (b) that times to
discriminate differences in orientation decrease nonlinearly with direct
distances through the embedding space (shown as dashed curved in the
bottom graphs). Our first proposal is supported by our earlier experi-
ment on apparent motion (Farrell and Shepard 1981). We now turn to
an empirical evaluation of the second proposal and, also, to an attempt
to recover the proposed four-dimensional structure from these dis-
crimination times by means of multidimensional scaling.

Method
Stmuli

We presented each observer with 15 of the versions of the three basic polygons used by
Farrell and Shepard (1981). In that experiment, we had first constructed three asym-
metric polygons by placing one point a random distance out in each of 18 equally-spaced
directions around an arbitrary center and then drawing straight line segments between
these points in (20°) adjacent directions. We placed two of these points at 8 units above
and below the center on the vertical axis of the shape. We then determined the distance
out to the point in each of the 16 other directions from the center by randomly
selecting a number between 1 and 17 (excluding 8) without replacement.

In effect, to create polygons having 180° rotational symmetry, we cut each of the
asymmetric polygons in half along its vertical axis, and then attached each half to a
duplicate version of itself that had been rotated 180° degrees. Thus we obtained three
rotationally symmetric polygons from the left halves of the asymmetric polygons (called
the left-side versions), and three rotationally symmetric polygons from the right halves
of the asymmetric polygons (called the right-side versions).

We then constructed polygons of intermediate degrees of symmetry as follows:
Placing each symmetric polygon over the asymmetric shapes from which it was derived,
so that corresponding halves coincided, we simply linearly interpolated, for each
direction from the center, between corresponding points on the symmetric and asym-
metric polygon. For a particular polygon, these interpolated points were all chosen to
fall either one-fourth, one-half, or three-fourths the distance from a point on the
asymmetric polygons to the corresponding point on the symmetric polygon, yielding a
resulting polygon of 25%, 50%, or 75% symmetry, respectively.

These procedures yielded a set of 27 distinct polygons: the three randomly gener-
ated original polygons, with 0% experimentally imposed rotational symmetry; and three
left-side and three right-side versions at each of the following four levels of experimen-
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tally imposed 180° symmetry: 25%, 50%, 75%, and 100%. However, the qualification
‘experimentally imposed’ is significant. Even a randomly generated polygon, unlike a
perfect circle, must possess some appreciable, though haphazard, increments in self-
similarity at certain angular disparities. In fact it is the functional dependence of these
self-similarities on angle that characterizes the unique shape of such a polygon
(Shepard 1981b, 1984). However, these haphazard increments in self-similarity, unlike
the experimentally imposed increments, would not be expected to be common across an
ensemble of independently generated polygons at a given level of experimentally
imposed 180° symmetry. Illustrated, from left to right, across the top of fig. 2 are: (A)
one of the three original polygons, (C) the left-side completely symmetric version of
that polygon, and (B) its intermediate (50%) approximation to 180° rotational symme-
try. (For the other polygons and other approximations to this type of symmetry, see
Farrell and Shepard 1981: 479.)

The 15 versions used in the present experiment included three ‘left-side’ or three
‘right-side’ versions at each of the five experimentally imposed levels of 180° rotational
symmetry, 0%, 25%, 50%, 75%, and 100%. This time, however, we displayed the two
orientations of such a polygon simultaneously on the left and right sides of the
computer-controlled CRT screen, rather than in sequential alternation in its center (as
in the earlier study of apparent motion). The polygon on the left always appeared in its
arbitrarily defined *upright’ orientation, while the same polygon appeared on the right
either in the same orientation (on a random half of the trials) or rotated 30°, 60°, 90°,
120°, 150°, or 180° in a clockwise or counterclockwise direction (on the other half).
The polygons subtended a visual angle of approximately 3.6° and their centers were
separated by about 4.8° of visual angle.

Participants

The same eight observers who had already participated in the earlier experiment on
apparent rotational motion (Farrell and Shepard 1981) returned for a half-hour
experimental session in the present experiment.

Procedure

We instructed the participants to operate the right or left key on the response panel to
indicate whether the two polygons presented on a given trial were in the same or in
different orientations, respectively. We asked them to respond as soon as they could do
so without making an error, following the appearance of each pair of polygons. We did
not furnish them with feedback as to the correctness of each response, nor did we
repeat trials on which they made errors. Their overall error rate was quite low, however,
averaging under 2%. The computer recorded the reaction time for each pair and,
following a two-second intertrial interval, presented the next pair. In this way, each
participant proceeded through 360 pairs (3 polygons X 5 levels of rotational symmetry
X 6 clockwise plus 6 counterclockwise plus 12 null angular disparities). All participants
saw the same (‘right-side’ or ‘left-side’) versions of the polygons that they saw in the
earlier experiment on apparent motion. The 360 pairs of polygons appeared to each
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participant in random sequence, organized into threc 120-trial blocks separated by
optional periods of rest.

Results

Mean dependence of latency of ‘different’ response on angular disparity and degree of
symmetry

The curves in fig. 3 show how the mean time to indicate that two polygons were in
different orientations depended on the size of their orientational difference. Each of the
five plotied curves is for a different level of 180° rotational symmetry of the polygons.
In accordance with the already noted general finding that the time required to detect
any difference between stimuli decreases with the size of that difference, the time to
detect a difference in orientation here decreased monotonically from nearly 800 msec at

Q 75%-
!
!
12008 PARAME TER: /
APPROXIMATION TO |
180° ROTATIONAL !
L SYMMETRY /
E "
w3
E
¢ 1000+
=
w
wy
4 N
4
@ 8
[V
= L
ﬁ 800
s 8
600’— |
1 1 1 1 1 1 1 1
0 30 60 90 120 150 180

ANGULAR DISPARITY (degrees)

Fig. 3. Mean time required to indicate whether two polygons were in the same or different
orientations plotted as a function of angular disparity for each of the five levels of rotational
symmetry. (‘Same orientation’ times are plotted at 0°, on the left.)
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30° to about 650 msec at 90° for all five levels of 180° symmetry of the polygons.
Moreover, as would be expected for a function that behaves reciprocally and hence
asymptotically for larger differences, the curves for the essentially asymmetric polygons
(of 0% and 25% symmetry), despite some fluctuations, remained at about the 650
msec-level beyond 90°.

The curves for increasing degrees of rotational symmetry, 50%, 75%, and 100%,
however, exhibit increasingly marked upswings beyond 90°, yielding generally U-shaped
functions. (No point is plotted for the 100% curve at 180°. Because the polygons are
completely symmetric in this case, participants gave the ‘same orientation’ response.
Their mean reaction time was the same as that shown for 100% symmetry at 0°
disparity.) The curve for the 75% symmetric polygons shows a dramatic rise to an
average reaction time for 180° that is over 1200 msec - nearly twice that for the
asymmetric polygons at large angular disparities. The difficulty of detecting a 180°
orientational difference is expected to become arbitrarily great as the degree of
rotational symmetry of the polygon approaches 100%.

Mean dependence of latency of ‘same’ response on degree of symmetry

In this experiment, the two polygons presented on some trials were identical in
orientation as well as in shape. The mean times that participants took to make the
response indicating ‘same orientation’ are plotted vertically above 0° on the left in fig.
3. Notice that with the exception of the polygons of 0% symmetry, the decision times
decreased from most to least symmetrical, with the 100% and 75% conditions well
above the other three. Again, we expect that the more nearly a shape approximates
180° rotational symmetry, the more difficult will be the determination of whether it is
right-side-up.

Reliability of the pattern of discrimination times in individual participants

With the exception of the more erratic data from one observer, the plots for individual
participants are reasonably well represented by the group means plotted in fig. 3. Seven
of the eight participants showed a mean decrease to 90°, while the remaining par-
ticipant showed essentially no change. All eight participants vielded curves that
increased as they approached 180° for both the 100% and the 75% symmetric condi-
tions. The reliable upswing of the curves for the more symmetric polygons represents a
consistent fanning out of the curves beyond 90°: From 120° to 180°, the average of the
curves for the two most asymmetric condition (0% and 25%) did not go up for more
than half of the eight participants, while the last point of the 75% curve was above all
three of the remaining other curves for seven out of the eight observers. Correspond-
ingly, the average ‘same’ time for the most symmetrical, 100% and 75% polygons was
greater than the average ‘same’ time for the remaining, less symmetrical polygons for
seven out of the eight participants.

Comparison of these discrimination times with the earlier transformation times

The discrimination times reported here furnish psychological measures of the percep-
tual similarities of each polygon to itself at the various orientational disparities that are
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independent of and in some respects more direct than the transformation times
obtained in our earlier experiment on apparent motion (Farrell and Shepard 1981). The
consistency and relative magnitude of the upswing in discrimination time as the
polygons approached 180° disparity and 180° rotational symmetry thus serves to
confirm that our experimental manipulation of shape in that earlier study sufficiently
dominated any uncontrolled residual approximations to symmetry inherited from the
original. randomly generated polygons.

Moreover, the patterns of the chronometric data obtained from the two experiments
can in some ways be regarded as inversions of each other — at least if we consider only
the extreme cases of 0% and 100% symmetry of the polygons, and if we make
allowances for the fact that transformation time varies directly with disparity while
discrimination time varies inverselv (and hence asymptotically) with disparity. Thus,
for completely symmetric polygons. the earlier obtained transformation times went up
to 90° and then down in a symmetric. inverted U pattern: while the diserimination
times obtained here went down to 90° and then up in a similarly svmmetric. upright U
pattern. Moreover, for the asymmetric polygons. transformation time climbed linearly
to 180°. while discrmination time dropped monotonically to 180°, effectively reaching
asymptote around 90°.

If we examine the data for all levels of symmetry, however, we notice some clear
violations of this simple relation of inversion between the two sets of data. In the
present experiment. the curves for the intermediate cases generally fell in correspond-
ingly intermediate positions between the curves for the extreme 0% and 100% cases. as
those curves fanned out beyond 90° disparities. But in the earlier experiment, the curve
for the nearly symmetric. 75% case consistently climbed well above the range delimited
by the curves for the fully symmetric and asymmetric cases. Moreover. for that earlier
experiment, but not for the present one. the curves for the more symmetric polygons
tended to depart from the curves for the asymmetric polygons even before 90°. We
explain these departures from a relation of inversion in terms of the notion that in the
present experiment the participants had only to detect an angular difference: they did
not, as in the earlier. transformation experiment, actually have to traverse it. Hence. the
relevant distances in the model are different in the two cases: the geodesic curve in the
case of apparent motion: the straight short-circuit path in the present case (see fig. 2).

Recovery of the manifold of perceived orientations from the obtained discrimination 1imes

A basic assumption of the spatial model described in the introduction is that the
conformation of the manifold of internal representations of possible orientations of an
object is determined by the perceived similarities of that object to itsell under all
rotations. Since we suppose the discrimination times obtained here to be rather direct
measures of these self-similarities, analysis of these data by multidimensional scaling
(e.g. see Shepard 1980) should provide a basis for reconstructing the structure of this
manifold for each level of experimentally imposed rotational symmetry. We do not
have data for every pair of the presented orientations since one member of the pair was
always in the arbitrarily defined *upright’ orientation. However. if we assume as first
approximation that decision time depended only on the relative orientation of the two
polygons in each pair, regardless of the absolute orientation of each polygon. we have a
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basis for filling in estimates of all off-diagonal entries in the 12 X 12 symmetric matrix
specifying the perceived similarity of each of the 12 presented orientations to each of
the others for any given level of experimentally imposed symmetry of the polygons.

For any given entry in the matrix for a specified level of rotational symmetry, we
simply use the mean time required to indicate that the two orientations (corresponding
to that row and column of the matrix) were different. Each such mean is taken over all
pairs of polygons at that level of symmetry and angle of disparity (whether clockwise or
counterclockwise), and over all participants in the experiment. (The diagonal cells,
which would correspond to *same orientation’ responses were ignored for the purposes
of this analysis.) We constructed such a matrix for each of the four levels of symmetry
of the polygons from 0% to 75%. A matrix for the 100% condition could not be
completed in the same way because “different’ times were necessarily unavailable for
the completely symmetric polygons at their indiscriminable 180° disparities.

According to the proposed spatial model (Shepard 1981b). application of Carroll's
INDSCAL scheme for *three-way’ multidimensional scaling (Carroll and Chang 1970)
to such a set of four matrices should reveal the underlying four-dimensional structure
in the following form: For two of the four dimensions, (a) the structure, as projected
onto the plane of those dimensions, should appear as a circle with the orientations of
the polygons represented in order around that circle, and (b) the estimated weights of
those dimensions should be greatest for the more asymmetric conditions (0% and 25%).
For the remaining two dimensions, (a) the structure, as projected onto the correspond-
ing plane, should appear as the circle of orientations ‘double-wound’ so that orienta-
tions differing by supplementary angles are superimposed. and (b) the weights of those
dimensions should be greatest for the most symmetric condition included in the
analysis (75%).

The results of this INDSCAL analysis are displaved in fig. 4. The times to make the
‘different orientation’ responses correlated 0.83 with the corresponding distances
between points in the obtained four-dimensional solution as calculated on the basis of
the dimension weights for each level of rotational symmetry. The obtained structure
has. moreover, exactly the form predicted: The simple circle of orientations (top right)
emerges as the projection of the obtained structure into the plane of Dimensions 3 and
4, which together account for 24% of the total variance. And the more complex,
‘double-wound’ circle in which supplementary orientations coincide (top left) emerges
as the projection into the plane of Dimensions 1 and 2, which together account for 44%
of the total variance. (The fact that the presented projections of the INDSCAL solution
are so equally spaced and circular is a consequence of our use of the same data for all
pairs of orientations differing by the same angle. If we had complete data, we would
expect to obtain basically the same four-dimensional structure, but with some local
random perturbations.)

In addition. the plots of the associated weights, presented in the lower portion of fig,
4, reveal that the most symmetric (75%) condition received weights that were greater on
both Dimensions 1 and 2 and smaller on both Dimensions 3 and 4 than the weights for
any of the other three conditions. Indeed, except for the most asymmetric (0%)
condition (which, as in the earlier ordering with respect 1o *same’ times is also a bit out
of place here), the ordering of the conditions with respect to their weights is as
predicted.
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What these estimated weights mean is (a) that the orientations of the asymmetric
polygons are internally represented as on one large circle that can be embedded in a
two-dimensional plane. (b) that symmetric polygons (by virtue of their self-identity
under 180° rotation) are represented as on a double-wound circle that can also be
embedded in a plane. and (c) that the polygons of intermediate degrees of symmetry
are represented on an intermediate, double-loop curve that requires a four-dimensional
embedding space and that opens out toward the single circle or collapses down toward
the double one as the symmetry of the polygon approaches 0% or 100%. respectively.
For the intermediate configurations of this curve. the distances between orientations.
along the curve or through the four-dimensional embedding space. depend on the
angular disparity of those orientations in the manner expected on the basis of the
spatial model. as illustrated in fig. 2. (The equations for the curves exhibited in that
figure have been given by Shepard (1981b: 316-318.))
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Fig. 4. Two projections of the four-dimensional solution obtained by applying INDSCAL to the
discrimination times and. below, the corresponding plots showing the weights of these dimensions
for the four analyzed levels of rotational symmetry,
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Theoretical discussion

We regard the results reported here as furnishing support for the
following ideas (earlier set forth by Shepard 1977, 1981): (a) The set of
possible perceived orientations of a visual object are spatially represen-
table on a closed manifold of specifiable form. (b) Symmetries and
approximations to symmetries of the object can be accommodated by
specifiable deformations of the manifold that bring previously remote
points into closer proximity in a higher-dimensional embedding space.
(c) Distances between points on such a deformed manifold (including
both distances lying along geodesic paths within the curved manifold
itself and direct or ‘short-circuit’ distances cutting straight through the
embedding space) can account for two quite differently behaved chro-
nometric data; namely, transformation times, which increase with dis-
tance, and discrimination times, which decrease with distance.

For the discrimination task reported here, we propose that it is the
direct distances through the embedding space that determine perceived
similarities and, hence discrmination times. Indeed, it is precisely the
need to account for augmented self-similarities at certain angular
departures that the manifold of possible orientations was deformed to
bring previously remote points closer together. This could only be done
by such a deformation because the geodesic paths within the manifold
that correspond to rigid transformations must be left invariant in length
to preserve the fact that a given rotation is still of the same magnitude
regardless of the degree of perceived similarity that the resulting trans-
formed shape has to the initial untransformed shape. Moreover, the
successful application of the INDSCAL model, which fits Euclidean
distances to the data, was predicted on this assumption that the
discrimination times were determined by direct distances.

For the apparent motion task that we investigated earlier (Farrell
and Shepard 1981), on the other hand, we propose that the geodesic
distance within the constraint manifold, which corresponds to the
extent of the rigid transformation, becomes the primary determiner of
processing time (see, also, Shepard 1978: 53-55). Thus, although we are
advancing the same spatial model to account for discrimination times
and for transformation times, the two kinds of accounts differ in two
ways: First, as noted in the introduction, whereas transformation times
increase (often linearly) with distance, discrimination times decrease
nonlinearly and asymptotically (toward a constant) with distance. Sec-
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ond. as just noted, the relevant distances are different in the two cases,
being geodesic distances within the curved manifold of orientations in
the first case and direct distances through the embedding space in the
second.

Our results do not. of course. compel the formulation of a theory in
specifically geometrical terms. Moreover, we are still a long way from a
satisfactory neurophysiological theory of the perception of shapes and
the impletion of their rigid transformations in space. Still, whether or
not the eventual theory retains the suggested geometrical terminology.
it will have to provide an account for the sort of data that we have been
obtaining from these discrimination and transformation tasks. To the
extent that the theory is successful in doing this. it will presumably have
to be in some part isomorphic to the geometrical model. On the
assumption (reasonable for randomly generated shapes) that relative
not absolute — orientation is important. the results of our INDSCAL
analysis (fig. 3) show that model to be in a real sense implied by our
obtained discrimination times.

Finally, although we have focused here on what is a rather restricted
case, namely. that of chronometric data for certain planar polygons
differing in their orientations in the picture plane, we suggest that the
type of spatial model put forward for this case is of potentially much
greater generality. The spatial model, derived from data concerning
how people compare static representations of objects, embodies a
description of the possible trajectories of apparent motions of objects
(Farrell and Shepard 1981). This generality suggests that the constraints
governing the possible transformations in three-dimensional space have
become so deeply internalized that we unconsciously represent these
possible motions upon the visual presentation of any object. We believe
that the model illustrates the intimate relationship between ‘seeing’ and
‘knowing’. Our seeing of objects and their motions is automatically
constrained and guided by perceptual mechanisms embodying evolu-
tionarily acquired knowledge about rigid transformations in Euclidean
three-dimensional space.
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