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Abstract. We describe a linear scanner model that provides a useful
characterization of the response of a scanner to diffusely reflecting
surfaces. We show how the linear model can be used to estimate
that portion of the scanner sensor responsivities that fall within the
linear space spanned by the input signals. We also describe how
the model can be extended to characterize a scanner’s response to
surfaces that fluoresce under the scanner illuminant.

1 Introduction

Computer-assisted color image editing systems include meth-
ods for scanning, displaying, and printing images. Image
scanning is the first stage in the image editing process where
image information can be lost or distorted. At each sample
point in an image, the scanner converts a multidimensional
spectral signal into a 3-D spectral signal—namely, the output
of three spectral channels referred to as an RGB signal. This
data compression is necessarily accompanied by information
loss.

The RGB values returned by most scanners are device
dependent; the values are uncalibrated, informing us only
about the state of this one device. Were all scanner outputs
reported in the same standardized units, calibration software
could be greatly simplified.

There has been considerable interest in finding methods
for converting scanner responses into a calibrated signal gen-
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erally referred to as device-independent units. Because the
human eye is the ultimate consumer of most image data,
calibrated representations are generally based on units de-
rived from the sensitivity of the human eye. The eye also
compresses a multidimensional spectral signal into a 3-D
signal XYZ. A scanner is calibrated and also achieves visually
lossless data compression when we can convert the RGB
values to the human response XYZ.

Calibration is made much simpler when scanners are de-
signed with two simple properties. First, the scanner re-
sponses should be linear with respect to the input (scanner
linearity), and second, the scanner RGB values to a sample
should be within a linear transformation of the XYZ values
(colorimetric).

If the scanner sensors are linear, then we can define mean-
ingful spectral responsivities for each of the sensors. If the
scanner sensors are within a linear transformation of the color
image editing (CIE) functions, then coefficients l;; exist such
that

X=1,,R+1,,G+1,:B , (1)

and similarly for ¥ and Z. The coefficients /; form a 3 X 3
matrix that maps the scanner responses RGB to the sample
XYZ values.

A linear colorimetric system is easy to calibrate. Nonlinear
or noncolorimetric systems can require complex calibration
methods. For example, Hung' shows that global linear trans-
formations fail badly if RGB data derived from the Sharp
JX450 scanner are used. He describes a polynomial method
for achieving calibrated data.
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An intermediate class of systems includes those that are
linear but not colorimetric. Recently, there have been a num-
ber of studies of the properties of such systems and some
analyses of how well these systems can perform at achieving
calibrated output.”* The theoretical results on this topic are
encouraging and suggest that a linear noncolorimetric scanner
could produce satisfactory calibrated output by use of a single
linear transformation.

Empirically, however, little attention has been paid to the
basic question of scanner linearity. The studies we describe
here were designed to evaluate scanner linearity. Our results
include several examples in which scanner linearity provides
a good model of the scanner response to diffusely reflecting
surfaces. We outline how the model can be extended to char-
acterize a scanner’s response to surfaces that fluoresce under
the scanner illuminant. We also illustrate how stray light can
lead to failures of scanner linearity.

2 Preliminaries and Notation

We use matrix algebra notation. We represent functions of
wavelength as vectors with N,,=31 entries representing the
function values over the range from 400 to 700 nm in 10-nm
steps. The formulas we introduce here only apply to materials
without fluorescence.

The entries of the surface reflectance vector s are the
values at the N,, sample wavelengths. We represent the il-
luminant by an N, X N,, diagonal matrix E whose entries
contain the scanner light’s spectral power distribution at the
sample wavelengths. The scanner sensor responsivities at the
sample wavelengths X;(\) are defined by the three columns
of the N, X 3 matrix X. We use a simple linear model to
predict the scanner’s response to a sample reflectance:
r=X'Es, where r is a 3-D vector containing the RGB values.

It is convenient to group the illuminant and sensors to-
gether so that we have a single matrix, Tg =X‘E and

r=Tegs . (2)

We call the matrix Tg the scanner transfer matrix.

To solve for the scanner transfer matrix, we use scanner
responses to, say, M known inputs. We create the matrix
equation

R = TES ¥ (3)

where the N,, X M matrix S contains the surface reflectance
functions in its columns and the 3 X M matrix R contains the
RGB values for each of the input samples.

3 Methods

We measured surface reflectance functions for a variety of
samples, including 216 samples of offset lithographic prints,
216 samples of electrophotographic prints, 224 samples of
Cibachrome prints, 24 samples in the Macbeth ColorChecker,
360 samples taken from the set of Munsell glossy surfaces,
and 350 samples taken from the set of Munsell matte surfaces.
The reflectance functions in these samples are not linearly
independent, so that the spectral reflectance functions foreach
collection of surfaces S can be described as weighted com-
binations of a subset of the samples. For example, six spectral
basis functions can account for more than 99% of the variance
in the spectral reflectance functions for the 24 different sur-
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Table 1 Linearity errors expressed as the rms error based on
IR —T gS|.

Surfaces Scanner R G B

Macbeth Sharp JX450 | 2.41 | 1.70 | 2.90
HP Scanjet2C | 2.72 | 1.98 | 2.06

Offset Sharp JX450 | 2.48 | 1.84 | 6.62

HP Scanjet2C | 1.74 | 1.57 | 1.52

Cibachrome || Sharp JX450 | 6.45 | 5.93 | 6.04

HP Scanjet2C | 6.40 | 6.64 | 5.96

faces in the Macbeth ColorChecker, the 216 different spectral
reflectance functions measured from Cibachrome prints, and
the 216 different functions measured from offset lithographic
prints.

We measured the mean scanner response by scanning the
samples and averaging over 400 scanner values in the center
of each test patch. In all of our measurement conditions the
variance of the measurements was signal dependent. The
standard deviation increased with the mean sensor value,
ranging between 1 and 4 as the scanner responses ranged
from O to 255.

To estimate the scanner transfer matrix, we minimized the
rms error based on Eq. (3), [R—TgS|. We use the matrix
Tg, which minimizes this quantity, as our estimate of the
scanner transfer function. We can only estimate the part of
Tg that falls in the column space spanned by the surface
reflectance functions S because only this part of the transfer
matrix contributes to the error. (For a general analysis see
Golub and van Loan®; for an analysis specifically related to
color see, e.g., Marimont and Wandell.*) We estimated this
part of Tg by means of conventional methods. We factored
the matrix S with the singular value decomposition UDV’,
where UU*=U'U= VV'= V'V =identity and D is a diagonal
matrix. We set the small entries of the diagonal matrix (i.e.,
the values beyond the eighth entry) to zero and formed a new
matrix D. Finally, we use V (D~ "YU as the pseudo-inverse
of S. The diagonal entries of D ™' are set to the inverse of
the nonzero elements of D and to zero elsewhere.

4 Resulis

Table 1 lists the rms error we obtain by minimizing the error
in Eq. (3). For the offset and Macbeth samples, the linear
regression predictions provide a useful summary of the ob-
servations. For example, for the offset samples measured with
the Scanjet2C, differences between the observed and pre-
dicted values were less than 1.9 units in 80% of the mea-
surements. Linear predictions at this precision have some
practical value, but any rigorous statistical test will reject the
linearity hypothesis. The linear predictions for the Ciba-
chrome samples, however, are too large even to be of practical
value. Only 40% of the linear predictions fall within +2.4
units of the observed value. Twenty percent of the obser-
vations deviated from the observation by more than 6.0 units.

There are at least two reasons why the linear model may
fail to predict scanner responses. First, stray light within the
scanner can cause systematic deviations from linearity. Sec-
ond, the fluorescence present in many paper and ink samples
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invalidates the model assumptions. All our samples were
fluorescent to some extent, but the Cibachrome samples were
both glossy and fluorescent.

In the next section, we describe some further analyses of
the linear data sets. Then we discuss some measurements of
stray light and comment on the challenges posed by surface
fluorescence.

4.1 Scanner Transfer Matrix Estimation

Minimizing the error in Eq. (3) yields an estimate of the
scanner transfer matrix Tg. To the extent that the linear model
offers a useful summary of the data, the estimated scanner
transfer matrix should be close to the scanner sensor res-
ponsivities. Both of these scanners perform an electronic
matrixing of the raw sensor responses prior to output,®’ so
the scanner transfer function is related to the responsivities
by a linear transformation. In this section, we describe our
estimates of the system transfer function and compare our
estimate with the scanner sensor responsivities.*

The samples define one important limit on how well we
can estimate the scanner transfer matrix. If the input samples
each reflect a different narrowband of light, we could derive
the spectral responsivities of the device completely. Real
samples, however, are far from such an ideal set of surfaces.
As has been noted elsewhere, the reflectance functions of the
Macbeth ColorChecker and other typical ink sets are de-
scribed well by low-dimensional linear models.*®12

Most of the variance in the Macbeth surfaces is described
by a linear model consisting of a few smooth functions. We
plot the first six basis functions of the linear model that de-
scribe the Macbeth ColorChecker surfaces in Fig. 1(a). The
amplitude of these functions represents their significance.
Plainly, beyond these functions there is very little variance
left to explain in the data. The presence of sensor noise makes
it impossible to measure the small contributions of compo-
nents beyond the first few. In the calculations that follow,
we report estimates assuming that only the first six terms
contribute to the scanner responses. The main features of our
data remain unchanged if we use from five to eight terms.

The limited input set implies that we cannot estimate the
sensors perfectly; our estimates are constrained to be a
weighted sum of the six functions shown in Fig. 1(a). Fig-
ure 1(b) shows how closely we can estimate Sharp sensor
functions (rms error sense) using these six curves as the basis
functions. Because the surface contains no material with a
steep transition in the short-wavelength region, our estimates
cannot capture the narrow tuning of the blue sensor. These
curves show the best one can do in estimating the sensors
using the Macbeth samples.

Next, we derived an estimate of the scanner transfer matrix
from our measurements according to the linear model in
Eq. (3). In Fig. 1(c), we plot the estimated transfer matrix
curves.

Finally, to compensate for the internal electronic matrix-
ing, we found the linear transformation that maps the scanner
transfer matrix into the scanner sensor curves [Fig. 1(d)]. Our
empirically derived estimates of the sensor sensitivity are

*The sensor responsivities have been measured independently for the Sharp
JX450 and HP Scanjet2C. We thank Pooh Chie Hung for estimates of the
Sharp sensors and Doug Gennetten for the HP data.

about as close to the underlying sensor sensitivities as the
best estimate we can obtain for these samples [Fig. 1(c)].

5 Departures from Linearity

For some samples, Eq. (3) served as a useful model. For other
sample sets, however, the linear model failed. Because we
know that the CCD sensor encoding is linear, failures of
linearity are likely to arise from the imaging process and
errors implicit in the formulation of our simple linear model.
In this section, we discuss two sources of error that we have
observed in our data set. First, we discuss the failure of the
linear model to take into account surface fluorescence. We
then describe how to extend the linear model to characterize
the scanner response to surfaces that fluoresce as well as
reflect. Second, we describe failures in scanner linearity that
result from stray light in the imaging process.

5.1 Fluorescence

Many common inks and papers fluoresce. A surface flu-
oresces when light absorbed in one waveband, usually a short-
wavelength band, generates emissions in longer wavelength
bands. This process is often linear in the sense that the emis-
sions from the sum of illuminants is equal to the sum of the
emissions from each illuminant separately. (We refer the
reader to p. 235 et seq. of Ref. 13 for a lucid discussion of
the properties and calibration procedures of fluorescent sam-
ples.)

We can describe the light reflected from a fluorescent
sample as the weighted sum of two terms. The first term is
the diffuse reflection component. The second term is the
fluorescent component. Both terms depend on the illuminant.
Thus, both the diffusely reflected light and the fluorescence
depend on the spectral power distribution of the scanner light.
Whereas diffusely reflecting surfaces can be represented by
a vector or a diagonal matrix, surfaces that fluoresce as well
as reflect must be represented by a full matrix that includes
measurements of the fluorescence.

As we noted earlier, the failures of linearity we observed
for fluorescent surfaces most likely arise from the formulation
of our simple linear model. Equation (2) is predicted on the
assumption that we know the signal incident on the scanner
sensors. But the equation makes no provision for fluores-
cence, assuming a diffuse illuminant-surface interaction.
When surfaces fluoresce, the linear equations contain an in-
correct term for the scanner input. This appears as an error
when we solve the linear equations.

It is possible to extend our linear model of the scanner
responses, but this requires that we measure the light incident
on the scanner detectors. In other words, we must measure
the color signal produced by the input surface and the scanner
illumination. We were not able to make these measurements
at the time of this publication. But we briefly describe the
analysis one would perform to determine whether a scanner
responds linearly to fluorescent surfaces.

Let C be a N, X M matrix containing the color signals
corresponding to N surfaces and X be a N,, X 3 matrix whose
columns contain the detector responsivities at the sample
wavelengths. We can solve for X, using the scanner responses
to M inputs,

R=XC , 4)
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Fig. 1 (a) The first six basis functions of a linear model that approximates the Macbeth ColorChecker
optimally in the least-squared error sense; (b) the measured Sharp sensors (dashed line) and the best
estimate of these sensors (solid line) that can be obtained by the use of surfaces within the linear
model defined in (a); (c) the scanner transfer matrix for the RGB signals; and (d) the measured Sharp
sensors again and the sensors estimated by linearly transforming the scanner transfer matrix in (b) to

approximate the Sharp sensors.

where the N,, X M matrix C contains the color signals in its
columns and the 3 X M matrix R contains the RGB values
for each of the input samples. As shown in Sec. 4.1, we can
only estimate the portion of the scanner sensor responsivities
that falls in the space spanned by the columns of C.

The method described earlier for estimating scanner de-
tector responsivities can be applied to diffuse as well as flu-
orescent surfaces. In the case of fluorescence, however, the
method requires that we measure the color signals C produced
by fluorescent surfaces under the scanner illuminant.
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5.2 Stray Light

We have observed nonlinearities due to stray light created in
the imaging process. To illustrate this effect, we scanned a
gray target in two different contexts. When the target was
scanned with a black surround, the mean scanner values were
always less than when the target was scanned with a white
surround.

Figure 2 compares the mean scanner RGB values produced
by the Sharp JX450 scanner for a 0.25-in.> matte gray target
placed against a matte white background and for the same
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Fig. 2 Mean scanner values for gray targets placed against dark
and light backgrounds. The top panels show the mean scanner val-
ues produced by the Sharp JX450 (left) and the HP Scanjet2C (right)
scanners for matte gray targets placed against matte white and
black backgrounds. The bottom panels show the mean scanner val-
ues for glossy surfaces.

target placed against a matte black background. For matte
targets and backgrounds, the stray light reflected off the white
background increases the R, G, and B values by nearly the
same amount.

Figure 2 also shows the mean RGB values for a 0.25-in?
glossy gray target placed against glossy white and glossy
black backgrounds. For glossy targets and background, the
stray light increases the R value more than the G value, and
the G value more than the B value. Apparently, the stray light
from glossy surfaces has a specular angle and differentially
affects the sensors.

Figure 2 also shows the Hewlett-Packard Scanjet2C scan-

ner values recorded for the matte gray and glossy gray targets
placed against white and black backgrounds. For this scanner,
there is a much smaller effect of stray light.

Stray light in the imaging process violates the linear model
of scanner responses. Stray light implies that the scanner
response depends on the surrounding surfaces, not just the
surface reflectance of the sample. We believe that the stray
light artifact did not violate the linearity in the data we report
here because of the way in which we collected the sample
data. The samples were large patches and our measurements
were based on a small selection taken from the center of the
target. Under these conditions the stray light that contributes
to the measurements is the same as the light we measure. If
the targets are small, or measured in varying contexts, this
calibration artifact becomes significant.

6 Summary

Most present-day flatbed scanners are not colorimetric in the
sense that the scanner RGB sensors are not within a linear
transformation of the CIE colorimetric XYZ functions. The
failures of transformations that map RGB into XYZ have usu-
ally been attributed to the fact that scanners are not colori-
metric. Whereas, under certain circumstances, it is possible
to produce colorimetric output from scanners that are linear
but not colorimetric,*'*!? it is not possible to produce col-
orimetric output from a scanner that does not respond linearly
to the input materials.

In this paper, we describe a linear scanner model that
provides a useful characterization of the response of a scanner
to diffusely reflecting surfaces. The linear model can be used
to estimate the portion of the scanner sensor responsivities
that falls within the linear space of the input signals. We
describe how to extend the model to characterize the scan-
ner’s response to surfaces that fluoresce under the scanner
illuminant. We also describe conditions in which the linear
model fails to predict scanner response.
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