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ABSTRACT 
 

When the size of a CMOS imaging sensor array is fixed, the only way to increase sampling density and spatial 
resolution is to reduce pixel size. But reducing pixel size reduces the light sensitivity. Hence, under these constraints, 
there is a tradeoff between spatial resolution and light sensitivity.  Because this tradeoff involves the interaction of many 
different system components, we used a full system simulation to characterize performance.  This paper describes 
system simulations that predict the output of imaging sensors with the same dye size but different pixel sizes and 
presents metrics that quantify the spatial resolution and light sensitivity for these different imaging sensors.  

 

1. INTRODUCTION 
 
Digital cameras are now a standard feature in cellular phones, driving the market for CMOS imagers that can fit within 
a small form factor. Given that the size of a CMOS imaging sensor array is fixed, the only way to increase sampling 
density and spatial resolution is to reduce pixel size. But reducing pixel size reduces the light sensitivity. Hence, under 
these constraints, there is a tradeoff between spatial resolution and light sensitivity.   
 
For any fixed process technology and pixel architecture, decreasing pixel size will decrease pixel performance.  Without 
compensating technologies, smaller pixels have lower dynamic range, lower fill factor, worse low light sensitivity, 
higher dark signal, and higher non-uniformity. Mobile imaging applications have driven innovations in image sensor 
technologies that significantly compensate for the expected degradation in performance with decreasing pixel sizes. 
Process modifications including improved micro-lenses, pinned photodiode, dual –gate oxide, floating diffusion, circuit 
techniques such as device sharing, and active reset, compensate for the many factors that would otherwise reduce 
performance.  
 
System simulation is a valuable tool for evaluating the complex set of factors involved in optimizing the image quality 
of CMOS imaging sensors. In this paper, we use the Image Systems Evaluation Toolkit (ISET) to quantify the 
relationship between spatial resolution and light sensitivity for imaging sensors with the same dye size but different 
pixel size.  ISET is an integrated suite of Matlab software routines designed to simulate the entire image processing 
pipeline of a digital camera [1].   The analysis described in this paper extends the work previously published by Chen et 
al [2] and Catrysse and Wandell [3] who also simulated the optical blurring, sensor transduction and image processing 
pipelines for CMOS imaging sensors with the same dye size but varying pixel sizes.  We extend their analysis to color 
imaging sensors and consider the role other sensor parameters, such as quantum efficiency, voltage swing, conversion 
gain and different noise sources, as well as pixel size and fill factor, have upon the spatial resolution and light sensitivity 
of an imaging sensor.  

2. SIMULATIONS 
 

The Image Systems Evaluation Toolkit (ISET) is organized around four key software modules: Scene, Optics, Sensor, 
and Processor. Each module includes a variety of specialized tools and functions that help the user set parameters, 
experiment with alternative designs and component properties, and calculate relevant metrics.  
 
The Scene module represents the input to the simulated digital camera as a multidimensional array describing the 
spectral radiance (photons/sec/nm/sr/m2) at each pixel in the sampled scene.  The Optics module converts the scene 



radiance data into an irradiance image at the sensor.  The conversion of scene radiance image to irradiance is 
determined by the properties of the simulated optics.  The Sensor module manages the transformation from irradiance 
to sensor signal.  This transformation includes an extensive model of both optical and electrical properties of the sensor 
and pixel.  The Processor module transforms the electron count into a digital image that is rendered for a simulated 
color display.  This module includes algorithms for demosaicing, color conversion to a calibrated color space, and color 
balancing. 
 
In our simulations, we use synthetic scene data designed for specific image quality metrics.    For example, we use an 
image of a slanted edge to calculate the spatial modulation transfer function (using the ISO 12233 method) and we use a 
Lambertian surface uniformly illuminated with a D65 light to calculate sensor dynamic range, SNR and photometric 
exposure.  The optical image is calculated using a diffraction-limited model of a lens with an f-number of 2.8.  We 
simulate the effects of an optical diffuser that filters out signals above the Nyquist frequency limit of the imaging 
sensor.  This is accomplished using a Gaussian filter with full-width half maximum equal to the pixel width.  We 
simulate a color imaging sensor with a dye size of 512 x 512 microns and with system spectral quantum efficiency 
equal to those measured for a Nikon D100 digital camera.  The peak quantum efficiency is 0.65 and the pixel fill factor 
is 50%. All other sensor parameters, such as pixel size, read noise, dark voltage, photoresponse non-uniformity levels 
(prnu), voltage swing and conversion gain were derived from Rhodes [4] and are listed in Table 1 (below).  The image 
processing pipeline is based on bilinear demosaicing and “Gray World” color balancing that scales the sensor values so 
that their mean is the same as that produced by an 18% neutral gray target. The optical, sensor and image processing 
parameters are important only in the sense that they define viable design solutions. The purpose of this paper is to 
describe a methodology for evaluating potential sensor designs.   
 
 

Table 1: Sensor parameters derived from Rhodes et al [4] 

Pixel size 
(um) 

Peak 
voltage 

(V) 

Conv.  gain 
(V/e-) 

Well-cap 
 (e-) 

Dark 
voltage e-

/sec 

Read noise 
(e-) 

PRNU  
(st. dev. % 

gain change) 
DSNU 

2 2 125 16,000 7 6 0.03 0 
2.6 1.8 64 28,150 11 7 0.02 0 
2.9 1.6 64 25,000 10 7 0.01 0 
3.2 1.4 42 33,333 12 8 0.01 0 
5.2 1.2 32 37,500 22 10 0.01 0 

 
 
 

3. SENSOR PERFORMANCE 
 
The metrics for characterizing spatial resolution and light sensitivity are performance summaries derived from the 
complete system modulation transfer function (MTF) and the system signal-to-noise ratio (SNR), respectively. These 
measures depend, in turn, on a variety of sensor properties, including read noise, dark noise, conversion gain, and 
voltage swing.  All of these parameters vary with pixel size and influence the MTF and SNR.    

3.1. Light sensitivity  
 
Well capacity declines with pixel size. This has consequences both for high and low levels of scene luminance and for 
short and long exposure durations. Small pixels have fewer photons incident at their aperture than large pixels and 
saturate at lower photometric exposure values.   These properties have implications for sensor dynamic range and 
signal-to-noise ratios. 
 
 
  



The sensor dynamic range (DR) is calculated using the formula, 
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In this case, maxE is the well-capacity in electrons and noiseE  is the noise contributed by the variances of the dark noise, 
read noise, and dark-signal non-uniformity.  The well-capacity declines with pixel size and thus reduces the dynamic 
range. However, as Rhodes et al [4] pointed out, advances in technology have make it possible to reduce the noise levels 
associated with small pixels which, in turn, increases the dynamic range. For example, higher conversion gain helps 
reduce noiseE . The combined effect is to maintain the dynamic range across pixel size at a level of roughly 45-48 dB for 
a 16 millisecond exposure duration for the simulated color imaging sensors. 
 
The sensor signal-to-noise ratio (SNR) is calculated using the formula 
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All of the quantities are measured in units of electrons. The term sE is the signal level, and 2 ( )s sEσ =  is the shot noise 

variance; 2 2 2, ,R DSNU PRNUσ σ σ  are the variances of the read noise, dark signal non-uniformity and photo-response non-
uniformity, respectively.  
 
Figure 1 plots the sensor SNR for color imaging sensors with pixels described in Table 1. The peak SNR declines with 
pixel size mainly because well-capacity (maximum number of electrons prior to saturation) decreases with pixel size 
from about 37,500 (5.2um) to 16,000 (2um) electrons.  The reduction in well-capacity alone, without any other noise 
contributions, would produce a decline in the peak SNR of more than 3dB.   The SNR drop is larger, however, because 
the effect of noise is more significant when added into lower signal levels. Thus, even though the technology advances 
described in Rhodes [4] result in lower levels of read noise and dark voltage, their impact remains high because these 
noises are superimposed on relatively low signal levels.  The peak SNR of the smallest pixel is approximately 8dB 
lower than that of the largest pixel. 

 

 

 
Figure 1: SNR plotted for imaging sensors with different pixel 
size. 

Figure 2: The minimum photometric exposure to 
produce an SNR of 30 (MPE30) plotted as a function of 
pixel size. 
  

 



Even ideal sensors with no electronic sources of noise will generate visible noise at low light levels.  This is because 
photon noise will be a significant source of image contrast.  The results of visual psychophysical experiments reported 
by Xiao et al [5] show that sensor SNR must be 30dB or greater to render photon noise invisible.  We use these results 
to define a psychophysical threshold for the detection of luminance noise and apply this threshold to quantify the light 
sensitivity of imaging sensors with different pixel size. Our luminance noise visibility metric is based the minimum 
photometric exposure that will capture an image of a uniform field with less than 3% noise variation or, conversely, an 
SNR > 30db.  We refer to this metric as MPE30.   
 
Figure 2 plots the MPE30 for the simulated color imaging sensors as a function of the pixel size. The decline in the 
MPE30 value means that at any scene luminance level the exposure duration required to reach a sensor SNR of 30db 
decreases with increasing pixel size.  Or, equivalently, for any exposure duration the scene luminance required to reach 
a sensor SNR of 30 db decreases with increasing pixel size 
 

3.2.  Spatial resolution 
 
The Modulation Transfer Function (MTF) describes the ability of an imaging system to capture image contrast over a 
range of spatial frequencies.  We measured the system MTF using the ISO standard ISO 12233 [6].  This method 
measures the system response to a slanted edge.  The lines passing through the edge measure the step response in a 
variety of different phase relationships to the pixel sampling grid.  These responses are combined to estimate the system 
MTF.  
 
Figure 3 plots the MTF of the green sensor channel for the simulated color imaging sensors.  Sensors with smaller 
pixels can capture and preserve higher spatial frequency details, as expected.  These curves are summarized by a single 
value, the spatial frequency at which the amplitude falls to 50% of the highest amplitude (MTF50), in Figure 4. 
 
System properties other than pixel size influence the sensor MTF and MTF50 as well.   For example, the choice of 
optics and demosaicing algorithm will determine the sensor MTF.  Another important factor to consider is camera 
motion.  Camera motion introduces blur and reduces the system MTF.  Camera motion is greatest when the button that 
initiates a photo is depressed.  This motion is also greater for smaller cameras and increases with exposure duration [7].  
Camera motion is, then, a significant problem for small high-resolution cameras and camera phones and it limits their 
effective imaging resolution [7].  
 
 
 
 

 

 
Figure 3: Luminance MTFs for imaging sensors with different 
pixel size. 

Figure 4: Spatial frequency for which the amplitude of 
the luminance MTF (see Figure 3) falls to 50%,  
plotted as a function of pixel size. 
 



 

4. IMAGE QUALITY TRADEOFFS 
 
The tradeoff between spatial resolution and light sensitivity is illustrated in Figure 5 which plots the MTF50 against the 
reciprocal of MPE30 for each of the simulated color imaging sensors. Higher image quality is associated with higher 
values of MTF50 and higher values of 1/MPE30.  Smaller pixels are associated with high values of MTF50 but low 
values of 1/MPE30.  Larger pixels are associated with high values of 1/MPE30 but low values of MTF50.  There is no 
obvious optimal point along the tradeoff function depicted in Figure 5.   
 
Chen et al [2] used the SCIELAB metric [8] to define the “optimal” pixel size for a given sensor dye size.  In their 
analysis, an imaging sensor is “optimal” if it produces an image that is similar to the image that would be captured by a 
hypothetical ideal imaging sensor with high spatial resolution (small pixel size), high dynamic range and no sensor 
noise.  Chen et al [2] use the SCIELAB metric to quantify the similarity or, conversely, the visible difference between 
an ideal monochrome imaging sensor and each of the lower resolution monochrome imaging sensors.  We extend their 
analysis to color imaging sensors by calculating the SCIELAB difference between images captured by a simulated 
“ideal” color imaging sensor and all other simulated color imaging sensors. The simulated “ideal” color imaging sensor 
has 1 micron pixels with read noise, dark voltage, prnu, dsnu values set to 0, peak QE and pixel fill factor equal to 1, 
and the maximum settings for conversion gain (125 volts/electron) and voltage swing (2).   

 
Once again, we create an image of a noise-free 
slanted edge as our original scene data. We chose 
this image to highlight uncorrelated image noise 
visible in the uniform areas and blur visible along 
the edge. We set the scene luminance to 60 cd/m2 
and the exposure duration to 1/60 second. All other 
sensor properties remain the same (see the section 
on Simulations above).   
 
The simulated sensors generate images with sizes 
ranging from 512x512 ( for the “ideal” sensor) to 
98x98 (for the sensor with 5.2 micron pixels). The 
SCIELAB metric compares images with the same 
size.  To create same size display images, we 

down-sample the simulated sensor images to produce 98x98 images. We justify the down-sampling by noting that most 
digital camera images are too large to view on a typical 100 dpi computer display. Consequently, image rendering 
software must down-sample the high resolution digital camera images in order to view the entire image on a display.  
Moreover, a 98x98 image will subtend a visual angle of 4.8 degrees when it is displayed on a 100 dpi display and 
viewed at a distance of 12 inches. From the point of view of observers, therefore, a 98x98 image is larger than the 2 
degree fovea over which they have their highest visual acuity.  
 
Figure 6 illustrates the 98x98 images produced by imaging sensors with different pixel sizes. When displayed on a 100 
dpi display the images acquired by small pixel sensors (e.g.  2 micron) have visible noise in the uniform bright areas; 
the images acquired by large pixel sensors (e.g.  5.2 micron) have blurred edges. 
 

 
Figure 5: MTF50 plotted  against 1/MPE30 for each of the 
simulated color imaging sensors. 
 



To calculate the SCIELAB difference 
between the images generated by the 
“ideal” color imaging sensor (with 1 
micron pixels and no noise) and each of 
the other sensor images, we must first 
calculate the CIE Standard Observer 
XYZ values that would be measured 
when the images are displayed on a 
computer monitor. We assume that the 
images are displayed on a standard 100 
dpi sRGB display [9] and that observers 
are sitting 12 inches from the display.  
The XYZ images, along with the 
viewing parameters (i.e. viewing 
distance and display resolution), are 
sent to the ISET function that calculates 
the S-CIELAB color image difference.    
 
Figure 7 shows SCIELAB color 
differences between displayed images 
generated by the “ideal” color imaging 

sensor and each of the other sensor images.  The difference images highlight the type of distortion that will be visible in 
the images of the slanted edge captured by each of the simulated color imaging sensors.  For example, the difference 
images show that uncorrelated noise will be visible in images captured by color imaging sensors with small pixels (e.g. 
2.0 microns)  and that the blurred edge will be visible in images captured by sensors with large pixels (e.g. 5.2 microns). 
 

 
Figure 8 shows a histogram of the 
SCIELAB differences shown in Figure 
7.  Figure 9 plots the 95th percentile 
and median values for each of these 
images as a function pixel size.   These 
figures show that the noise generated 
by imaging sensors with small pixels 
(e.g. 2 microns) is slightly more visible 
than the blur generated by sensors with 
larger pixels (e.g. 5.2 microns). 
 
 

 
Figure 6: Images captured by sensors with same optics and dye size but 
with different pixel sizes.   
 

  
Figure 7: SCIELAB color differences between images captured by a 
simulated “ideal” high-resolution noise-free imaging sensor and a lower-
resolution sensor for a 1/60 second exposure duration.  Each of the 
difference images is labeled according to the size of the sensor pixel.  
 
 



 

 

Figure 8: Histogram of SCIELAB differences between images 
captured by the hypothetical “ideal” sensor and each of the 
simulated color imaging sensors for exposure durations of 
1/60 second. 

Figure 9 : The 95th percentile and the median of the 
SCIELAB differences shown in Figure 8.  

 
The image noise and blur are less visible at longer exposure durations.  Figure 10 shows a histogram of the SCIELAB 
differences between the simulated “ideal” high-resolution noise-free imaging sensor and each of the lower-resolution 
color imaging sensors for exposure durations of 1/15 seconds.  The fact that the SCIELAB values are low (< 5 ΔE) 
suggest that for these images the image noise and blur are barely visible.  The histogram plots are similar indicating that 
the image noise and blur are equally visible.  
 
 

 
 

Figure 10 : Histogram of SCIELAB differences between images 
captured by the hypothetical “ideal” sensor and each of the 
simulated color imaging sensors for exposure durations of 
1/15 msec. 

Figure 11 : The 95th percentile and the median of the 
SCIELAB differences shown in Figure 10.  

 

5. SUMMARY 
 
This paper describes simulations that predict the output of color imaging sensors with the same dye size but different 
pixel sizes and electrical properties.  Image quality is quantified with respect to light sensitivity and spatial resolution as 
a function of pixel size. Uncorrelated image noise is visible in images generated by sensors with small pixels (e.g. 2 
micron); image blur is visible in images generated by sensors with larger pixels (e.g. 5.2 microns). We introduce a new 



metric (MPE30) to quantify the visibility of uncorrelated image noise, and we use the MTF50 metric to quantify the 
amount of image blur. The SCIELAB metric quantifies how the visibility of these two types of image distortions 
(uncorrelated noise and image blur) tradeoff.  At short exposure durations (e.g. 1/60 second), image noise is more 
visible than image blur.  At longer exposure durations (e.g. 1/15 second), these two different types of image distortions 
are equally visible. Although these two types of image distortions can be equated for visibility that does not imply that 
the two types of distortions are equally preferred.  In the future, we will perform human psychophysical measurements 
based on images generated by the simulated color imaging sensors, and we will have observers indicate their preference. 
These experiments should allow us to superimpose iso-preference curves on the image quality metrics and thus choose a 
preferred system design. 
 
The ISET software scripts used in our analyses are available at www.imageval.com 
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