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Abstract

Illumination plays an important role in the image cap-
ture process. Too little or too much energy in particular
wavelengths can impact the scene appearance in a way that
is difficult to manage by color constancy post processing
methods. We use an adjustable multispectral flash to modify
the spectral illumination of a scene. The flash is composed
of a small number of narrowband lights, and the imaging
system takes a sequence of images of the scene under each
of those lights. Pixel data is used to estimate the spectral
power distribution of the ambient light, and to adjust the
flash spectrum either to match or to complement the ambi-
ent illuminant. The optimized flash spectrum can be used
in subsequent captures, or a synthetic image can be compu-
tationally rendered from the available data. Under extreme
illumination conditions images captured with the matching
flash have no color cast, and the complementary flash pro-
duces more balanced colors. The proposed system also im-
proves the quality of images captured in underwater envi-
ronments.

1. Introduction
Light is necessary for a camera to capture an image of

a scene. Photons propagate from the light source, interact
with objects and are focused by the lens onto sensor pixels.
Images are often captured under different sources of illu-
mination, as well as in photon-deprived conditions such as
indoors, at night and in underwater environments.

There are two approaches to capturing images at low
light levels. Passive strategies involve adjusting camera set-
tings during the capture process. An increase in the sensor
exposure time allows pixels to capture more photons, how-
ever any movement of the photographed target will produce
blur in the image. Exposure durations can be decreased by
increasing sensor gain (ISO) however this often increases
the visibility of photon noise [26]. In both instances, vary-
ing exposure duration does not change the spectral power of
the scene illumination.
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Figure 1. The red light component in daylight spectrum becomes
absorbed when light travels underwater. This causes images cap-
tured underwater to have a strong greenish or blueish tint (left pan-
els). A computational multispectral flash can estimate the ambient
illuminant spectrum and adjust its own spectral power distribution
(red dashed line) to provide the missing wavelength components
and color balance the scene (right panels).

Active strategies include delivering more light into the
scene with a light source controlled by the photographer.
This approach dates back to the early days of photography,
where additional light was delivered by igniting flash pow-
der; a mixture of metallic fuel with oxidizer [24]. Over time
powder was replaced by a Xenon light discharge and more
recently high intensity light emitting diodes (LEDs).

Using an external light source solves the problem of pho-
ton scarcity, but very often produces unnaturally looking
images with color tint [21]. This is due to a spectral power
distribution mismatch between the low intensity ambient il-
lumination and the light emitted by the flash. Such color
artifacts are difficult to detect and correct during color bal-
ancing [9]. Some of these issues can be avoided when the
temperature of the flash is adjusted to match the temperature
of the ambient illumination, but this approach still requires
a method to estimate the ambient spectrum.

In this work we describe a multispectral flash and the
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accompanying computational algorithms. The flash is com-
posed of a small number of individually controlled narrow-
band lights. By adjusting their intensities the spectral power
distribution of the light emitted by the flash can be modified.
We describe how such a flash can be used to capture images
of the scene in a way that makes it possible to estimate the
spectrum of the ambient illuminant. Given this estimate we
then propose to optimize the spectrum of the flash for two
different imaging scenarios; complementary and matching.

The first scenario involves computation of the flash spec-
trum that would complement the light wavelengths missing
from the ambient illuminant in order to produce a color bal-
anced image. This use case is most applicable to situations
where the ambient contains a lot of energy in some por-
tions of the spectrum and very little in others. In addition to
tungsten and fluorescent lighting conditions, we also con-
sider the more extreme case of underwater imaging where
water absorbs energy in the long wavelengths causing un-
derwater photographs to have a strong green or blue tint
(Figure 1). The methods we describe can also be applied
to complement office fluorescent lighting and other ’unbal-
anced’ lighting.

The other scenario involves adjusting the flash to match
the illuminant spectrum in order to deliver more light into
the scene. One can then either reduce exposure level to min-
imize blur or keep exposure level constant and minimize the
visibility of photon noise.

In summary, our contributions include

• A new flash design for consumer applications with ad-
justable spectral power distribution of the light output,

• A method to estimate the ambient illuminant spectrum,

• New modes of flash spectrum adjustment: comple-
mentary that delivers light components missing from
the ambient, and matching that reproduces the ambi-
ent light spectrum.

This paper is organized as follows; we briefly review
related work in Section 2 and the image formation model
in Section 3. We introduce the design of the multispectral
flash, and the corresponding computational algorithms in
Section 4. We evaluate the performance in a series of simu-
lations in Section 5, and practical experiments in Section 6.
The summary and conclusions are presented in Section 7.

2. Related work
The potential of flash, no-flash image pairs for com-

putational photography applications has been extensively
explored. Algorithms can be broadly categorized around
image quality improvement, semantic analysis and surface
property estimation.

One class of algorithms uses flash to improve image
quality. For example, DiCarlo et al. presented a method

to estimate the ambient illuminant from a flash and no-flash
image pair [5]. Eisemann and Durand combined color in-
formation from the no-flash image with the intensity of the
flash image to create a detail rich image preserving the am-
biance of the original scene [6]. These ideas were extended
further by Petschnigg et al. who proposed a sequence of
algorithms that used flash, no-flash image pairs to transfer
image detail, enable white balancing and remove red-eye
artifacts [18]. Zhuo et al. proposed a motion blurred image
enhancement method, where the blur kernel was estimated
from the flash, no-flash image pair [28]. Dark flash tech-
niques use emitters outside of the visible range; in the ultra-
violet and near-infrared, and leverage correlations between
spectral channels to improve the quality of images captured
in the visible portion of the spectrum [4, 12, 14].

Another class of methods uses flash to enhance semantic
understanding of the scene. For example, Raskar et al. [20]
extracted information about scene geometry from flash, no-
flash images and performed image segmentation and styl-
ized rendering. Sun et al. [21] captured images with and
without a flash to robustly segment foreground from the
background. Stereo flash, no-flash image pairs were also
used to enhance depth estimation [27].

Multispectral light sources are primarily used for surface
property estimation [2, 3, 16, 17]. These systems operate
in the absence of ambient illumination and derive the re-
flectance and fluorescence properties from a sequence of
images using inverse estimation methods.

Our work is most similar to that of Vasukescu et al. [22]
who demonstrated that a spectrally tunable flash can im-
prove color rendering in underwater environments. Unlike
the authors, who fixed the spectrum of the flash for particu-
lar imaging conditions, we developed adaptable algorithms
that can automatically adjust the flash spectrum to provide
wavelengths that are missing from the ambient illumina-
tion. Also, unlike multispectral imaging systems that are
designed to estimate surface reflectance, our system is easy
to calibrate and only requires the knowledge of the spectral
properties of the camera and light sources.

3. Image formation
The intensity mj of a particular camera pixel is a linear

function of the surface spectral reflectance r, the spectral
responsivity of the jth camera channel cj , and the total illu-
mination i

mj = g

∫
r(λ)cj(λ)i(λ)dλ. (1)

The scalar g represents the gain and incorporates the effects
of camera ISO setting, aperture diameter and the exposure
duration.

The illumination i at every point in the scene can be de-
composed into two components; global, ambient ia that is



Figure 2. The imaging system equipped with a multispectral flash
captures the image of the scene under the ambient illuminant, and
a sequence with each of the narrowband lights turned on at a time.
By linearity of image formation the flash only image can be esti-
mated by subtraction.

beyond user’s control, and the user controlled flash if

i(λ) = ia(λ) + if (λ). (2)

For convenience, continuous wavelength variables can be
discretized to n spectral bands, so that the image formation
model becomes

m = ma +mf

= gCTdiag(r)ia + gCTdiag(r)if , (3)

where C ∈ Rn×nc is a matrix containing the spectral re-
sponsivities of the nc camera channels (for consumer cam-
eras nc = 3). Vectors r, ia, if ∈ Rn represent surface spec-
tral reflectance, ambient and the flash illuminant spectra re-
spectively. The diag(x) operator distributes the entries of
x along the diagonal of a matrix.

4. Multispectral flash
The multispectral flash we propose is an easy-to-build

device that produces a small number k of spectrally narrow-
band lights. The intensity of each narrowband light is inde-
pendently controlled, allowing us to shape the total emis-
sion spectrum of the flash. There are a variety of ways in
which such a flash can be built. One way is to use bandpass
filters together with broadband light sources, another way is
to use high power LEDs.

The flash can be operated in a few different ways. For ex-
ample, a flash, no-flash image pair can be captured and used
with the illuminant estimation method of DiCarlo et al. [5].
In this case the flash is adjusted to produce a flat spectral

power distribution. This method however, requires a model
for the spectral surface reflectance of imaged objects.

We propose a more flexible approach in which the acqui-
sition system captures a sequence of images in quick suc-
cession. First we capture an image of the scene under the
ambient illuminant only. Next, we collect a set of images
where the scene is illuminated by a single narrowband as
well as the ambient light. For a particular pixel this opera-
tion produces a sequence of measurements ma, ma +mf,1,
. . . , ma +mf,k ∈ R3. Due to linearity of image formation
mf,k are estimated by subtracting the measured pixel inten-
sities of the ambient illuminant from the ambient and flash
images (Figure 2). This image sequence is used to estimate
the ambient illuminant spectrum and to compute the opti-
mal spectrum of the flash operating in the complementary
or matching modes.

4.1. Illuminant spectrum estimation

The illuminant estimation is a fundamental problem in
photography. In order to correctly render colors in captured
images it is necessary to know the properties of the ambient
illumination as the image is captured [25]. Most algorithms
analyze pixel value statistics to estimate the spectrum of the
illuminant [8], although active techniques have also been
proposed [5].

The method we propose relies on finding a weighted sum
of flash-only image intensities that best predicts the ambient
image intensity. Unlike Legendre et al. [13], we perform
spectral estimation rather than appearance matching, and
we do not make any assumptions regarding surface spec-
tral reflectances [5]. The weights applied to the flash-only
image pixels that best approximate the ambient image can
be found by solving a least-squares problem

minimize ‖ma −
∑
k

wa,kmf,k‖, (4)

where wa,k represent the mixing weight scalars. Under the
linear image formation model (3) this is equivalent to

minimize ‖CTdiag(r) (ia − Iwa) ‖, (5)

where I ∈ Rn×k is a matrix whose columns contain the
spectral power distributions of the narrowband lights un-
der which the images were captured. Note that the above
minimization can be interpreted as finding the best approx-
imation to the ambient with the narrowband flashes i.e.
ia = Iwa, up to a nullspace formed by camera sensor re-
sponsivities and surface spectral reflectance CTdiag(r).

The optimization can be made more robust by incorpo-
rating prior knowledge about physical and statistical prop-
erties of natural illuminants. For example a modified opti-



mization problem

minimize ‖ma −
∑
k

wa,kmf,k‖+ α‖∇Iwa‖

subject to Iwa ≥ 0, (6)

enforces nonnegativity and imposes a roughness penalty on
the estimated spectrum. The strength of the penalty is con-
trolled by a scalar α and ∇ is the 1st order difference oper-
ator.

Our illuminant estimation process is inherently self-
calibrating. Unlike systems such as [2], the knowledge
about the absolute intensity of the narrowband lights, nor
the scalar gain g are not required. These unknown scale
factors are incorporated directly into the estimated weights
wa. This robustness makes practical implementations eas-
ier.

4.2. Flash spectrum adjustment

The information about the spectral power distribution of
the ambient illuminant can be used to adjust the spectrum
of the flash. We propose two different strategies for adjust-
ing the flash spectrum. One approach is to match the flash
and the ambient illuminant spectra so that the relative spec-
tral power distribution of the ambient and the light delivered
by the flash are similar. The other is to adjust the flash to
complement the ambient illuminant. In this mode, the flash
delivers light at wavelengths missing from the ambient illu-
mination.

Once the ambient illuminant spectrum is known the
matching flash can be easily derived by solving a least-
squares problem

minimize ‖CT I(wa − wf )‖
subject to 1 ≥ wf ≥ 0, (7)

where Iwa is the estimated ambient illuminant spectrum
and wf ∈ Rnf is a vector containing the matching flash
intensity weights. To achieve the best performance, and to
deliver the largest amount of light into the scene the esti-
mated flash weights can be scaled so that max(wf ) = 1.
This operation will not change the shape of the flash spec-
trum but maximize its intensity.

The complementary flash is particularly useful under ex-
treme illumination conditions where the ambient light con-
tains little energy in some portions of the spectrum, and a lot
in others. Many color balancing algorithms use a von Kries
like transformation to adjust the gains of the red, green and
blue camera channels [8, 23]. When a particular channel
carries little energy, the corresponding gain is large. Un-
fortunately, in noise limited systems this process accen-
tuates the noise component leading to poor visual effects
(Figure 3). In those cases the spectrally adjustable flash in

(a) Raw image (b) Color balanced

Figure 3. Conventional, von Kries like color balancing algorithms
amplify the noise when applied for underwater image correction
where little light is present in the red camera channel (best viewed
on a computer screen).

the complementary mode will deliver photons at the precise
wavelengths missing from the ambient illumination.

Consider the estimated spectrum of ambient illuminant
to be Iwa ∈ Rn. The goal is to find such spectral power
distribution of the flash that complements this ambient to
some desired illuminant spectrum id ∈ Rn. The optimal
flash weight assignment wf ∈ Rnf that will complement
the desired illuminant spectrum is given by

minimize ‖CT I(wa + wf )− sCT id‖
subject to 1 ≥ wf ≥ 0, (8)

s ≥ 0. (9)

The scalar s is a slack variable that makes the system in-
tensity scale invariant. The inequality constraint (8) applies
bounds on the intensity of each of the narrowband lights
from the multispectral flash. When wf = 1 then the light is
fully on and emits maximal amount of light, when w = 0 it
is off, with intermediate states in between.

4.3. Image capture

To capture dynamic scenes with fast moving objects the
final image can be acquired during a single exposure, with
the flash producing light of the desired spectrum. The con-
straint (8) assures that the flash spectrum is physically real-
izable, can be produced by hardware and delivered into the
scene.

An alternative to re-capturing images with a correctly ad-
justed flash spectrum is to take advantage of the linearity of
image formation model. An equivalent image can be syn-
thesized by computing a sum of the ambient image ma and
led only images mf weighted by the corresponding flash
weights (Figure 4). When operating in the computational
flash mode, the constraint (8) is no longer required, and may
be dropped from the optimization.

This computational approach has two disadvantages.
First, for dynamic scenes, objects could have moved in the
time between the first and last frames were captured pro-
ducing a blurry image. Second, if the constraint (8) is ig-
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Figure 4. Computational image synthesis is equivalent to re-
capturing the image of the scene under the computed flash spec-
trum due to the linearity of the image formation model.

Table 1. Quantitative root-mean-squared error (RMSE) for differ-
ent number of narrowband lights forming the multispectral flash.
All error metrics decrease as the number of lights increases. The
accuracy of spectrum estimation approaches that of a multispectral
system for six LEDs.

# LEDs 3 4 5 6 7

Pixel (×10−2) 1.5 1.0 0.4 0.3 0.2
CIE xy (×10−2) 0.3 0.1 0.05 0.03 0.03
Spectrum 0.22 0.18 0.16 0.13 0.13

Multispectral 0.14 0.12 0.14 0.13 0.13

nored, some of the entries of wf can become large, ampli-
fying noise in the final image.

5. Simulations

We evaluated the performance of the proposed illumi-
nant estimation algorithm using the ISET camera simula-
tion software package [7]1. In our simulations, we created
a test chart composed of 110 different surfaces with natural
spectral reflectance properties. The chart was illuminated
with lights having different chromaticity coordinates in the
CIE xy space. We varied, between three and seven, the
number of narrowband LEDs which formed the multispec-
tral flash. We also evaluated the influence of camera spec-
tral properties on the accuracy of the estimated illuminant
spectrum. We examined 34 different camera models we cal-
ibrated ourselves or used the spectral responsivity functions
from [11].

The quality of the ambient illuminant estimate depends
on the distribution and variability of surface spectral re-
flectances present in the scene. We explore this relationship
by providing the illuminant estimation algorithm with sim-
ulated pixel intensities from different numbers of patches
from the test chart. We randomly draw, with repetition, a
fixed number of patches from our 110-patch chart and use
this set to estimate the illuminant spectrum. The sampling

1Code available for download at
https://github.com/hblasins/compMultispFlash.git
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Figure 5. Errors in the illuminant spectrum estimate decrease with
increasing variability in scene surface spectral reflectances. When
about 10 different surfaces are visible, the error approaches the
lower bound set by directly approximating the illuminant spectrum
with a given number of LED spectra.

process is repeated 10 times for each patch collection size
we evaluate. In this simulation we fix the illuminant chro-
maticity coordinates (x = 0.2, y = 0.2) the camera spectral
responsivities and we use a multispectral flash with seven
LEDs. For each illuminant spectrum estimate we compute
the RMS error with the ground truth. Figure 5 demonstrates
that the errors plateau when a scene contains about 10 dis-
tinct reflectance spectra.

Pixel RGB values of a surface illuminated with an ambi-
ent illuminant can be approximated with RGB values of the
same surface illuminated with narrowband lights, as long as
the RGB pixel values of the ambient are within the convex
hull formed by the RGB values of the narrowband lights.
Our simulations show that this is only approximately true
when three or four narrowband lights are used. The root-
mean-squared errors (RMSE) values, both for pixel as well
as spectral power distributions, (Table 1) are high. Further-
more, for those cases we observed large variability across
different camera models.

Figure 6 compares the estimated and measured ambient
illuminant spectra for different numbers of LEDs. The esti-
mates improve and become camera invariant when at least
five LEDs are used. With six or more LEDs in use the errors
in illuminant spectrum estimates asymptote and approach
the error achieved by direct optimization of LED weights
in the wavelength domain, i.e. min ‖ia − Iwa‖. A multi-
spectral flash with seven LEDs can accurately reproduce the
ambient illuminant spectrum across many different illumi-
nant chromaticities (Figure 7). Also note that linear models
for the reflectance of objects typically require 6–7 spectral
basis functions [10].

6. Experiments

We also conducted experiments using real scenes, illu-
minants and narrowband lights. We assembled a collec-
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(a) 3 LEDs (b) 4 LEDs (c) 5 LEDs (d) 6 LEDs (e) 7 LEDs

Figure 6. Spectral estimation accuracy increases with the number of narrowband illuminants in the spectral flash. Even when the chromatic-
ity of the illuminant (�) falls within the convex hull of the LED chromaticities (+), at least five LEDs are needed to approximate camera
pixel intensities. Black × represent variability in chromaticity coordinates of the estimated illuminant across different camera models. This
variability is also represented by red shaded areas in the Spectra plots, where the red solid line shows the average spectrum estimate. These
plots also contain the ground truth spectrum (−) and the best least-squared approximation under the narrowband illuminants (- -).
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(a) x = 0.1, y = 0.1 (b) x = 0.1, y = 0.5 (c) x = 0.2, y = 0.2 (d) x = 0.2, y = 0.5 (e) x = 0.5, y = 0.2

Figure 7. Estimation accuracy is independent of the illuminant spectrum, and the spectral properties of the camera provided that the
multispectral flash contains sufficiently many narrowband illuminants. Different columns correspond to lights with different CIE xy
chromaticity coordinates, that are approximated with seven narrowband lights. Refer to Figure 6 for notation details.
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Figure 9. Average Macbeth chart CIE ∆E errors. Appearance
comparison between the chart imaged under the D65 illuminant
and the chart illuminated with different ambient lights and the
multispectral flash. The complementary flash mode reduces color
rendering errors. Red line represents the lowest error that can
be achieved when approximating D65 with LEDCube narrowband
lights.

tion of natural objects inside a LEDCube light booth2. The
booth contains eight different narrowband LEDs which we
adjusted to model the spectral flash. The interior of the
booth was illuminated from the outside with different nar-
rowband and broadband light sources. Finally, we captured
images with a 1.3 megapixel Ximea xiQ (MQ013CG-E2)
RGB camera.

Figure 8 shows the test scene captured under a variety
of ambient illuminants. Images were minimally processed
for rendering purposes; corrected for different sensitivities
of color channels and gamma encoded. These processing
steps were identical across all conditions. We estimated the
spectrum of the ambient light using all non-saturated pixels
and assumed that the light was spectrally uniform across the
entire scene. Even this very simplistic assumption proved to
work well in the conditions we tested. First we estimated
the ambient illumination spectrum by approximating the

2http://www.thouslite.com/show.asp?id=16



(a) No water (b) With water (c) Water+flash

Figure 10. Underwater scene simulation. The original colors in the
scene (a) are distorted in the presence of different water types (b),
but are recovered when the multispectral flash in the complemen-
tary mode is used (c).

Figure 11. The portable, ruggedized version of the computa-
tional spectral flash built for underwater photography applications.
Camera and LEDs are synchronized using a Raspberry Pi mini-
computer (not shown).

ambient image with a weighted sum of the narrowband only
images (Figure 8a, 8b). Given the illumination spectrum we
then rendered scene images under matching (Figure 8c) and
complementary flash spectra (Figure 8d). Note that the esti-
mated illuminant spectra (Figure 8e, red line) are imperfect,
but correctly identify the bands, where the ambient light de-
livers the most energy. This is sufficient to produce images
without color cast due to the flash in the matching mode, or
with more balanced colors under the complementary flash.

To demonstrate the improvement in color rendering we
computed CIE ∆E error metrics between an image of a
Macbeth chart captured under a standard D65 illuminant
and images captured with our computational flash. In our
measurements we assumed that images were displayed on
an sRGB color monitor, with D65 as the white point. Fig-
ure 9 demonstrates that the matching flash does not affect
the colors, while the complementary flash reduces color re-
production errors.

The final image appearance is also affected by the direc-
tionality of light and scene geometry. The computational

(a) Ambient (b) Complementary flash

Figure 12. Underwater photography with computational multi-
spectral flash. The flash operating in the complementary mode can
deliver the red light that is missing from the ambient underwater
conditions.

spectral flash will adapt to the ambient light spectral power
distribution, but will physically be located at a different
point in space. For this reason the matching and comple-
mentary flash images are, in general, unable to reproduce
the same shading effects as in the original image.

6.1. Underwater imaging

Imaging in water is more difficult because light interacts
with the volume of water through absorption and scatter-
ing phenomena. For clear waters, the effects of scattering
are small, and absorption is the primary factor influencing
image appearance. Absorption is a wavelength dependent
process that reduces the intensity of light traveling in a cer-
tain direction and depends on the distance through medium
that the light covers. When the camera is close to the tar-
get, relative to the depth, light is primarily affected by the
water column between the target and the surface. Under
this simplistic model, underwater scenes are illuminated by
a significantly distorted daylight spectrum, which typically
has little energy in the long wavelenghts (>∼ 600nm).

The specific spectral shape of the underwater ambient
depends not only on the depth but also the chemical com-
position of water and, in general, varies a lot. Figure 10
shows renderings of coral reef models above and underwa-
ter, and demonstrates the effects of water composition vari-
ability on image appearance. These images were generated
using PBRT ray-tracing software [19] and a water model
of [1, 15]. We also used the same rendering environment
to simulate the images a camera with a computational mul-
tispectral flash would capture and how the complementary
flash algorithm helps recover the original scene colors. The
proposed complementary flash algorithm makes it possible
to recover much of the scene appearance lost due to water
absorption.

To evaluate the performance of the proposed system in
real underwater photography applications we built an un-
derwater version of the computational multispectral flash.
The system was battery powered and used the same Ximea



xiQ color camera, seven Luxeon Star high power LEDs with
BuckPuck led drivers, and a Raspberry Pi 3 computer for
data capture and synchronization. The system was enclosed
by a waterproof Ikelite 5710 Housing (Figure 11).

Figure 12 shows an image of a Macbeth chart captured in
a swimming pool a depth of about 5 meters with and without
the complementary flash. Even though at this depth the light
still contains some energy in the red portion of the spectrum,
its intensity is reduced. The complementary, computational
multispectral flash algorithm can correctly estimate that the
red component is attenuated and can adjust the flash spec-
trum accordingly making colors more vivid and natural.

7. Conclusions

We presented a computational multispectral flash com-
posed of a small number of narrowband lights. We showed
how to use this device to derive the ambient illuminant spec-
trum. Given the ambient estimate, we programmed the flash
to produce two types of light spectra. In the matching mode,
the spectrum produced by the flash is visually similar to the
ambient and consequently does not change the color cast.
In the complementary mode the flash delivers the light at
wavelengths that are missing from the ambient illumina-
tion and produces more natural-looking images. We also
showed that the desired effects can be achieved computa-
tionally from the acquired set of images.

The color balancing effect of the complementary flash
becomes useful in environments where certain wavelengths
are missing from the ambient illumination. For example
light underwater typically does not contain any energy in
the longer wavelenghts (>∼ 600nm). Consequently red is
absent from underwater images. We showed, through sim-
ulations and experiments that the computational multispec-
tral flash enhances underwater image quality.

The design and the algorithms have some limitations.
The flash is physically located at a particular spatial location
and therefore it cannot reproduce the same shadow effects
as the ambient light. The algorithms we presented operate
under the simplifying assumption that the light spectrum is
uniform across the scene. In the future we plan on explor-
ing patch based methods where the ambient and the flash
spectra are estimated locally thus allowing for spectral vari-
ability across the whole scene.
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