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Abstract

The Stata package krls implements kernel-based regularized least squares (KRLS), a
machine learning method described in Hainmueller and Hazlett (2014) that allows users to
tackle regression and classification problems without strong functional form assumptions
or a specification search. The flexible KRLS estimator learns the functional form from
the data, thereby protecting inferences against misspecification bias. Yet it nevertheless
allows for interpretability and inference in ways similar to ordinary regression models. In
particular, KRLS provides closed-form estimates for the predicted values, variances, and
the pointwise partial derivatives that characterize the marginal effects of each independent
variable at each data point in the covariate space. The method is thus a convenient and
powerful alternative to OLS and other GLMs for regression-based analyses. We also
provide a companion package and replication code that implements the method in R.
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1. Overview

GLMs remain the workhorse modeling technology for most regression and classification prob-
lems in social science research. GLMs are relatively easy to use and interpret, and allow a
variety of outcome variable types with different assumed conditional distributions. However,
by using the data in a linear way within the appropriate link function, all GLMs impose strin-
gent functional form assumptions that are often potentially inaccurate for social science data.
For example, linear regression typically requires that the marginal effect of each covariate is
constant across the covariate space. Similarly, logistic regression assumes that the log-odds

http://www.jstatsoft.org/
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(that the outcome equals one) are linear in the covariates. Such constant marginal effect
assumptions can be dubious in the social world, where marginal effects are often expected to
be heterogenous across units and levels of other covariates.

It is well-known that misspecification of models leads not only to an invalid estimate of how
well the covariates explain the outcome variable, but may also lead to incorrect inferences
about the effects of each covariate (see e.g., Larson and Bancroft 1963; Ramsey 1969; White
1981; Hardie and Linton 1994; Sekhon 2009). In fact, for parametric models, leaving out an
important function of an observed covariate can result in the same type of omitted variable
bias as failing to include an important unobserved confounding variable. The conventional
approach to dealing with this risk is for the user to attempt to add additional terms (e.g.,
a squared term, interaction, etc.) that can account for specific forms of interactions and
nonlinearities. However “guessing” the correct functional form is often difficult. Moreover,
including these higher-order terms can actually worsen the problem and lead investigators
to make incorrect inferences due to misspecification (see Hainmueller and Hazlett 2014). In
addition, results may be highly model dependent, with slight modifications to the functional
form changing estimates radically (e.g., King and Zeng 2006; Ho, Imai, King, and Stuart
2007).

Presumably, social scientists are aware of these problems but commonly resort to GLMs
because they lack convenient alternatives that would allow them to easily relax the functional
form assumptions while maintaining a high degree of interpretability. While more flexible
methods, such as neural networks (e.g., Beck, King, and Zeng 2000a) or generalized additive
models (GAMs, e.g., Hastie and Tibshirani 1990; Beck and Jackman 1998; Wood 2004) have
occasionally been proposed, they have not received widespread usage by social scientists, most
likely because they lack the ease of use and interpretation that GLMs afford.

This paper introduces a Stata (StataCorp 2015) package called krls which implements kernel-
based regularized least squares (KRLS), a machine learning method described in Hainmueller
and Hazlett (2014) that allows users to tackle regression and classification problems without
manual specification search and strong functional form assumptions. To our knowledge, Stata
currently offers no packaged routines to implement machine learning methods like KRLS.1

One important contribution of this article therefore is to close this gap by providing Stata
users with a routine to implement the KRLS method and thus to benefit from advances in
machine learning. In addition, we also provide a package called KRLS that implements the
same methods in R (R Core Team 2014). While the focus of this article is on the Stata
package, below we also briefly discuss the R version and provide companion replication code
that implements all examples in both Stata and R.

KRLS was designed to allow investigators to move beyond GLMs for classification and re-
gression problems, while retaining their ease-of-use and interpretability. The KRLS estimator
operates in a much larger space of possible functions based on the idea that observations with
similar covariate values are expected to have similar outcomes on average.2 Furthermore,
KRLS employs regularization which amounts to a prior preference for smoother functions

1One exception is the gam command by Royston and Ambler (1998), which provides a Stata interface to
a version of the Fortran program gamfit for the GAM model written by Trevor Hastie and Robert Tibshirani
(Hastie and Tibshirani 1990).

2This notion that similar observations should having similar outcomes is also a motivation for methods
such as smoothers and k-nearest neighbors models. However, while those other methods are “local” and thus
susceptible to the curse of dimensionality, KRLS retains the characteristics of a “global” estimator, i.e., the
estimate at a given point may depend to some degree on any other observation in the dataset. Accordingly, it
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over erratic ones. This allows KRLS to minimize over-fitting, reducing the variance and
fragility of estimates, and diminishing the influence of “bad leverage” points. As explained
in Hainmueller and Hazlett (2014), the regularization also helps to recover efficiency so that
KRLS is typically not much less efficient than OLS even if the data are truly linear. KRLS ap-
plies most naturally to continuous outcomes, but also works well with binary outcomes. The
method has been shown to have comparable or superior performance to many other machine
learning approaches for both (continuous) regression and (binary) classification tasks, such
as k-nearest neighbors, support vector machines, neural networks, and generalized additive
models (Rifkin, Yeo, and Poggio 2003; Zhang and Peng 2004; Hainmueller and Hazlett 2014).

Central to its useability, the KRLS approach produces interpretable results similar to the
traditional output of GLMs, while allowing richer interpretations if desired. In addition, it
allows closed-form solutions for many quantities of interest. Finally, as shown in Hainmueller
and Hazlett (2014), the KRLS estimator has desirable statistical properties, including un-
biasedness, consistency, and asymptotic normality under mild regularity conditions. Given
its combination of flexibility and interpretability, KRLS can be used for a wide variety of
modeling tasks. It is suitable for modeling problems whenever the correct functional form is
not known, including exploratory analysis, model-based causal inference, prediction problems,
propensity score estimation, or other regression and or classification problems.

The krls package is distributed through the Statistical Software Components (SSC) archive
provided at http://ideas.repec.org/c/boc/bocode/s457704.html.3 The key command
in the krls package is krls which functions much like Stata’s reg command and fits a KRLS
model where the outcome variable is regressed on a set of covariates. Following this model
fit, a second function, predict, can be used to predict fitted values, residuals, and other
quantities just like with other Stata estimation commands. We illustrate the use of this
function with example data originally used in Beck, Levine, and Loayza (2000b). This data
file, growthdata.dta, “ships” with the krls package.

2. Understanding kernel-based regularized least squares

The approach underlying KRLS has been well established in machine learning since the 1990s
under a host of names including regularized least squares (e.g., Rifkin et al. 2003), regular-
ization networks (e.g., Evgeniou, Pontil, and Poggio 2000), and kernel ridge regression (e.g.,
Saunders, Gammerman, and Vovk 1998, Cawley and Talbot 2002).4

Hainmueller and Hazlett (2014) provide a detailed explanation of the KRLS methodology and
establish its statistical properties together with simulations and real-data examples. Here we
focus on how users can implement this approach through the krls package. We thus provide
only a brief review of the theoretical background.

We first set notation and key definitions. Assume that we draw i.i.d. data of the form (yi, xi),
where i = 1, ..., N indexes the observations, yi ∈ R is the outcome of interest, and xi is
a 1 × D real-valued vector xi in RD, taken to be our vector of covariate values. For our
purposes, a kernel is defined as a (symmetric and positive semi-definite) function of two input

is more resistant to the curse of dimensionality and can be used in data with hundreds or even thousands of
dimensions.

3We thank the editor Christopher F. Baum for managing the SSC archive.
4The method discussed here may also be considered a (Gaussian) radial basis function (RBF) neural network

with weight decay and is also closely related to Gaussian process regression (Wahba 1990; Rasmussen 2003).

http://ideas.repec.org/c/boc/bocode/s457704.html
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patterns, k(xi, xj), mapping onto a real-valued output.5,6 For our purpose, kernel functions
can be treated as providing a measure of similarity between the covariate vectors of two
observations. Here we use the Gaussian kernel, defined as

k(xj , xi) = e−
‖xj−xi‖

2

σ2 , (1)

where ‖xj−xi‖ is the Euclidean distance between the covariate vectors xj and xi and σ2 ∈ R+

is the bandwidth of the kernel function. This kernel function evaluates to its maximum value
of one only when the covariate vectors xj and xi are identical, and approaches zero as xj and
xi grow far apart.

As examined in Hainmueller and Hazlett (2014), KRLS can be understood through several
perspectives. Here we limit discussion to the viewpoint we believe is most valuable for those
without prior experience in kernel methods, the “similarity-based view” in which the KRLS
method can be thought of in two stages. First, it fits functions using kernels, based on the
presumption that there is useful information embedded in how similar a given observation is
to other observations in the dataset. Second, it utilizes regularization, which gives preference
to simpler functions. We describe both stages below.

2.1. Fitting with kernels

We begin by assuming that the target function y = f(x) can be well approximated by some
function in the space of functions represented by

f(x) =
N∑
i=1

cik(x, xi) (2)

where k(x, xi) measures the similarity between our point of interest (x) and one of N covariate
vectors xi, and ci is a weight for each covariate vector. Functions of this type leverage
information about the similarity between observations. Imagine we have some test-point x?

at which we would like to evaluate the function value, and suppose that the covariate vectors
xi and their weights ci have all been fixed. For such a test point, the predicted value is given
by

f(x?) = c1k(x?, x1) + c2k(x?, x2) + . . .+ cNk(x?, xN ).

Since k(x?, xj) is a measure of the similarity between x? and xj , we see that the value of
k(x?, xj) will grow larger as we move the test-point x? closer to xj . In other words, the
predicted outcome at the test point is given by a weighted sum of how similar the test point
is to each observation in the (training) data set. The equation can thus be thought of as

f(x?) = c1(similarity of x? to x1) + c2(sim. of x? to x2) + . . .+ cN (sim. of x? to xN ).

Introducing a matrix notation helps to illustrate the underlying operations. Let matrix K be
the N ×N symmetric kernel matrix whose jth, ith entry is k(xj , xi); it measures the pairwise

5The use of kernels for regression in our context should not be confused with non-parametric methods
commonly called “kernel regression” that involve using a kernel to construct a weighted local estimate (Fan
and Gijbels 1996; Li and Racine 2007).

6By positive semi-definite, we mean that
∑
i

∑
j αiαjk(xi, xj) ≥ 0, ∀αi, αj ∈ R, x ∈ RD, D ∈ Z+.
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similarities between each of the N covariate vectors xi. Let c = [c1, ..., cN ]> be the N × 1
vector of choice coefficients and y = [y1, ..., yN ]> be the N × 1 vector of outcome values.
Equation 2 as applied to each observed x in the observed data or training set can then be
rewritten in vector form as:

y = Kc =


k(x1, x1) k(x1, x2) . . . k(x1, xN )

k(x2, x1)
. . .

...
k(xN , x1) k(xN , xN )



c1
c2

cN

 . (3)

In this form we see KRLS as a linear system in which we estimate y? for any x? as a lin-
ear combination of basis functions, each of which is a measure of x?’s similarity to other
observations in the (training) data set.

2.2. Regularization

While this approach re-expresses the data in terms of new basis functions, it effectively solves
for N parameters using N observations. A perfect fit could be sought by choosing ĉ =
K−1y, but even when K is invertible, such a fit would be highly unstable and lacking in
generalizability. To make use of the information in the columns of K, we impose an additional
assumption: that we prefer smoother, less complicated functions. We thus employ Tikhonov
regularization (Tychonoff 1963), solving an optimization problem over both empirical fit and
model complexity given by choosing

argmin
f∈H

∑
i

(V (yi, f(xi))) + λR(f) (4)

where V (yi, f(xi)) is a loss function that computes how “wrong” the function is at each
observation, H is a hypothesis space of possible functions, R is a “regularizer” measuring the
“complexity” of function f , and λ ∈ R+ is a parameter that determines the tradeoff between
model fit and complexity. Larger values of λ result in a larger penalty for the complexity of
the function thus placing a higher premium on model parsimony; lower values of λ will have
the opposite effect of placing a higher premium on model fit.

For KRLS, we choose V to be squared loss, and we choose the regularizer R to be the square
of the L2 norm,7 〈f, f〉H = ||f ||2K . For the Gaussian kernel, this choice of norm imposes an
increasingly high penalty on “wiggly” or higher-frequency components of f . Moreover, this
norm can be computed as ||f ||2K =

∑
i

∑
j cicjk(xi, xj) = c>Kc (Schölkopf and Smola 2002).

Finally, the hypothesis space H is the space of functions described above, y = Kc. The
resulting Tikhonov problem is

c? = argmin
c∈RD

(y −Kc)>(y −Kc) + λc>Kc. (5)

Accordingly, y? = Kc? provides the best fitting approximation. For a fixed choice of λ,
since this fit is a least-squares fit, it can be interpreted as providing the best approximation

7To be precise, this the L2 norm in the Reproducing Kernel Hilbert Space of functions defined by our choice
of kernel.
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to the conditional expectation function, E[y|X,λ]. Notice that this minimization is almost
equivalent to a ridge regression in a new set of features, one which measures the similarity of
a covariate vector to each of the other covariate vectors.8

Finally, we can solve for the solution by differentiating the objective function with respect
to the choice coefficients c and solving the resulting first order conditions, arriving at the
closed-form solution

c? = (K + λI)−1y. (6)

3. Numerical implementation

One key advantage of KRLS is that we have a closed-form solution for the estimator of the
choice coefficients that provides the solution to the Tikhonov regularization problem within
our flexible space of functions. This estimator, as described in Equation 6, is numerically
attractive. We need to build the kernel matrix K by computing all pairwise distances and
then add λ to the diagonal. The resulting matrix is symmetric, positive definitive, and well-
conditioned (for large enough λ) so inverting it is straightforward. The only caveat here is
that creating the (N ×N) kernel matrix can be memory intensive in very large data sets.

3.1. Data processing and choice of parameters

Before examining the choice of λ and σ2, it is important to note that krls always standardizes
variables prior to analysis by subtracting off the sample means and dividing by the sample
standard deviations.9

First, we must chose the regularization parameter λ. The default in the krls function is to
use a standard cross-validation technique, choosing the value of λ that minimizes the sum
of the squared leave-one-out errors. In other words, we find the λ that optimizes how well
a model that is fitted on all but one observation predicts the left-out observation. For any
choice of λ, N different leave-one-out predictions can be made. The sum of squared errors
over these gives the leave-one-out error (LOOE). One nice numerical feature of this approach
is that the LOOE can be efficiently computed in O(N1) time for any valid choice of λ using
the formula LOOE = c

diag(G−1)
where G = K+λI (see Rifkin and Lippert 2007). Notice that

the krls function also provides the lambda() option which users can use to supply a desired
value of λ and this feature can be used to implement more complicated approaches if needed.

Second, we also must choose the kernel bandwidth σ2. In the context of KRLS this is princi-
pally a measurement decision incorporated into the kernel definition that governs how distant
two covariate vectors xi and xj can be from each other and still be considered relatively

8A conventional ridge regression using the columns of K as predictors would use the norm ||f ||2 = 〈c, c〉,
while we use the norm ||f ||2K = c>Kc, corresponding to a space of functions induced by the kernel. This is
more fully explained in Hainmueller and Hazlett (2014).

9De-meaning the data (or otherwise accounting for an intercept) is important in regularized methods: the
functions f(x) and f(x) + b for constant b do not in general have the same norm, and thus will be penalized
differently by regularization. Since this is generally undesirable, we simply remove additive constants by de-
meaning the data. Normalizing the data to have a variance of one for each covariate is commonly used in
penalized methods such as KRLS to ensures that the model is invariant to unit-of-measure decisions on any
of the covariates. All estimates are subsequently returned to the original scale and location so this re-scaling
does not affect the generalizability or interpretation.
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similar.10 Accordingly, for KRLS our objective is to chose σ2 such that the columns of K
extract useful information from X. A reasonable requirement for social science data is that at
least some observations can be considered similar to each other, some are different from each
other, and many fall in-between. As explained in Hainmueller and Hazlett (2014), a reliable
choice to satisfy this prior is to set σ2 = D, where D = dim(X). A theoretical justification
for this default choice is that for standardized data the average (Euclidean) distance between
two observations that enters into the kernel calculation, E[||xj − xi||2], is equal to 2D. The
choice of σ2 = 1D typically produces a reasonable empirical distribution of the values in K.
The krls command also provides a sigma() that allows the user to apply her own value for
σ2 if needed.

3.2. Interpretation and quantities of interest

One important benefit of KRLS over many other flexible modeling approaches is that the
fitted KRLS model lends itself to a range of interpretational tools. Below we briefly discuss
the quantities of interest that users may wish to extract and make inferences about from fitted
models.

Estimating E[y|X] and first differences

KRLS provides an estimate of the conditional expectation function that describes how the
average of y varies across levels of X = x. This allows the routine to produce fitted values
or out-of-sample predictions. Other quantities of interest such as first differences can also be
computed. For example, to estimate the average treatment effect of a binary variable, W , we
can simply create two datasets that are identical to the original X, but in the first set W to one
for all observations and in the second set W to zero. We can then compute the first difference
using 1

N

∑
i[ŷ|W = 1, X]− 1

N

∑
i[ŷ|W = 0, X] as our estimate of the average marginal effect.

Of course, the covariates can be set to other values such as the sample means, medians, etc.
The krls command automatically computes and reports average first differences of this type
when covariates are binary, with closed-form estimates of standard errors.

Partial derivatives

KRLS also provides a closed-form estimator for the pointwise partial derivatives of y with re-
spect to any particular covariate. Let x(d) be a particular variable, such thatX = [x1 . . . x(d) . . . xD].
Then for a single observation, j, the partial derivative of y with respect to variable d can be
estimated by

∂̂y

∂x
(d)
j

=
−2

σ2

∑
i

cie
−||xi−xj ||

2

σ2 (x
(d)
i − x

(d)
j ) (7)

Estimating the partial derivatives allows researchers to explore the pointwise marginal effects

10Note that this differs from the role of the kernel bandwidth in traditional kernel regression or kernel density
estimation where the bandwidth is typically the only smoothing parameter used for fitting. In KRLS the kernel
is simply used to form K and then fitting occurs through the choice of c and a complexity penalty that is
governed by λ. The resulting fit is thus expected to be less dependent on the exact choice of σ2 than is true
of those kernel methods in which the bandwidth is the only parameter. Moreover, since there is a tradeoff
between σ2 and λ (increasing either can increase smoothness), a range of σ2 values is typically acceptable and
leads to similar fits after optimizing over λ.
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of each covariate and to summarize them as desired. By default, krls computes the sample-
average partial derivative of y with respect to x(d) at each point in the observed dataset

1

N

N∑
i

[
∂̂y

∂x
(d)
j

]
=
−2

σ2N

∑
j

∑
i

cie
−||xi−xj ||

2

σ2 (x
(d)
i − x

(d)
j ). (8)

These average marginal effects are reported in an output table that may be interpreted in
a manner similar to a regression table produced by reg or other GLM commands. These
are convenient to examine as they are somewhat analogous to the β coefficients in a linear
model. However, it is important to remember that the underlying KRLS model now also
captures non-linear relationships, and the sample average pointwise marginal effects provide
only a summary. For example, a covariate could have a positive marginal effect on one area
of the covariate space and a negative effect in the other, but the average marginal effect may
be near zero. To this end, KRLS allows for interpretation beyond these average values. In
particular, krls provides users with the means to directly assess marginal effect heterogeneity
and interpret interactions, as we explain in the empirical illustrations below.

4. Implementing kernel-based regularized least squares

In this section we describe how users can utilize kernel-based regularized least squares with
the krls package.

4.1. Installation

krls can be installed from the Statistical Software Components (SSC) archive by typing

ssc install krls, all replace

on the Stata command line. A dataset associated with the package, growthdata.dta, will be
downloaded to the default Stata folder when the option all is specified.

4.2. Basic syntax

The main command in the package is the krls command that fits the KRLS model. The
basic syntax of the krls command follows the standard Stata command form

krls depvar covar [if] [in] [, options]

A dependent variable and at least one independent variable are required. Both the dependent
and independent variables may be either continuous or binary. The if and in options can be
used to restrict the estimation sample to subsets of the full data set in memory.

4.3. Data

We illustrate the use of krls with the growthdata.dta data set (Beck et al. 2000b) that con-
tains average GDP growth rates over 1960-1995 for 65 countries and various other covariates
that are potentially related to growth. For each country the data set measures the following
variables:
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• country_name: Name of the country.

• growth: Average annual percentage growth of real gross domestic product (GDP) from
1960 to 1995.

• rgdp60: The value of GDP per capita in 1960 (converted to 1960 US dollars).

• tradehare: The average share of trade in the economy from 1960 to 1995, measured as
the sum of exports plus imports, divided by GDP.

• yearsschool: Average number of years of schooling of adult residents in that country
in 1960.

• assassinations: Average annual number of political assassinations in that country
from 1960 to 1995 (per million population).

4.4. Basic fits

To begin, we fit a simple bivariate regression of growth on yearsschool to see if growth rates
are related to the average years of schooling.

use growthdata.dta, clear

reg growth yearsschool, r

Linear regression Number of obs = 65

F( 1, 63) = 9.28

Prob > F = 0.0034

R-squared = 0.1096

Root MSE = 1.8043

------------------------------------------------------------------------------

| Robust

growth | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

yearsschool | .2470275 .0810945 3.05 0.003 .084973 .409082

_cons | .9582918 .4431176 2.16 0.034 .072792 1.843792

------------------------------------------------------------------------------

The results suggest a statistically significant relationship between growth rates and schooling.
According to this model, schooling accounts for about 11% of the variation in growth rates
across countries. The coefficient estimate suggests that a one year increase in average schooling
is associated with a .25 increase in growth rates on average. We also extract the fitted values
from the regression model to see how well the model fits the data.

predict Yhat_OLS

Next, we compare the results to those obtained from a KRLS model applied to the same data.

krls growth yearsschool

Iteration = 1, Looloss: 108.3811

Iteration = 2, Looloss: 104.8647
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Iteration = 3, Looloss: 101.6262

Iteration = 4, Looloss: 98.96312

Iteration = 5, Looloss: 96.97307

Iteration = 6, Looloss: 95.62673

Iteration = 7, Looloss: 94.85052

Pointwise Derivatives Number of obs = 65

Lambda = .9855

Tolerance = .065

Sigma = 1

Eff. df = 4.879

R2 = .3191

Looloss = 94.54

growth | Avg. SE t P>|t| P25 P50 P75

-------------+--------------------------------------------------------------------

yearsschool | .336662 .076462 4.403 0.000 -.107486 .136233 .914981

-------------+--------------------------------------------------------------------

The upper left shows the iterations from the cross-validation to find the regularization pa-
rameter λ that minimizes the leave-one-out error.11 The upper right reports details about
the sample and model fit, similar to the output of reg. The table below reports the average
of the pointwise marginal effects of schooling along with its standard error, t statistic, and
p value. It also reports the 1st quartile, median, and 3rd quartile of the pointwise marginal
effects under the P25, P50, and P75 columns.

In comparison to the OLS results, the KRLS results also suggest a statistically significant
relationship between growth rates and schooling, but the average marginal effect estimate is
somewhat bigger and suggests that a one year increase in schooling is associated with a .34
percentage point increase in growth rates on average. Moreover, we find that the R2 from
KRLS is about three times higher and schooling now accounts for about 32% of the variation
in growth rates.

Further investigation reveals that this improved model fit results because the relationship
between growth and schooling is not well characterized by a simple linear relationship as
implied by the OLS model above. Instead, the relationship is highly non-linear and the
KRLS fit accurately learns the shape of this conditional expectation function from the data.
To observe this we can use the predict function to obtain fitted values from the KRLS
model. The predict function works much as the predict function for post model estimation
in Stata, producing fitted values by default. Other options include se and residuals to
calculate standard errors of predicted values or residuals respectively.

predict Yhat_KRLS

Now we plot the fitted values to compare the model fits from the regression and the KRLS
model. We also add to the plot the fitted values from a more flexible OLS model, Yhat_OLS2,
that includes as predictors a third order polynomial of schooling.

twoway (scatter growth yearsschool, sort) ///

(line Yhat_KRLS yearsschool, sort) ///

11In the remaining examples, we show only values from the final iteration.
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(line Yhat_OLS yearsschool, sort) ///

(line Yhat_OLS2 yearsschool , sort lpattern(dash)), ///

ytitle("GDP growth rate (%)") ///

legend(order(2 "KRLS fitted values" 3 "OLS fitted values" ///

4 "OLS polynomial fitted values"))
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Figure 1: Fitted values from KRLS and OLS models.

Figure 1 reveals the results. The simple OLS fit (green solid line) fails to capture the nonlinear
relationship; it over-estimates the growth rate at low and high values of schooling and under-
estimates the growth rate at medium values of schooling. In contrast, the KRLS model (solid
red line) accurately learns the non-linear relationship from the data and attains an improved
model fit that is very similar to the flexible OLS model with the third order polynomial (red
dashed line). In fact, in the flexible OLS model the three polynomial coefficients are highly
jointly significant (p value < 0.0001) and the new R2, at 0.31, is close to that of the KRLS
model (0.32).

Notice that in this simple bivariate example, the misspecification can be easily corrected by
making the regression model more flexible with a third-order polynomial. However, applying
such diagnostics and finding the correct functional form by trial and error becomes inconve-
nient, if not infeasible, as more covariates are included in the model. KRLS eliminates the
need for such a specification search.

4.5. Pointwise partial derivatives

An additional advantage of KRLS is that it provides closed-form estimates of the pointwise
derivatives that characterize the marginal effect of each covariate at each data point in the
covariate space. To illustrate this with multivariate data, we fit a slightly more complex
regression in which growth rates are regressed on schooling and the average number of political
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assassinations in a country.

reg growth yearsschool assassinations , r

Linear regression Number of obs = 65

F( 2, 62) = 7.13

Prob > F = 0.0016

R-squared = 0.1217

Root MSE = 1.8064

--------------------------------------------------------------------------------

| Robust

growth | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------------+----------------------------------------------------------------

yearsschool | .2366611 .0859996 2.75 0.008 .0647505 .4085718

assassinations | -.4282405 .3216043 -1.33 0.188 -1.071118 .2146374

_cons | 1.118467 .5184257 2.16 0.035 .0821487 2.154785

--------------------------------------------------------------------------------

With this OLS model we find that one additional year of schooling is associated with a
.24 increase in the growth rate. However, this model assumes that this marginal effect of
schooling is constant across the covariate space. To probe this assumption, we can generate a
component-plus-residual (CR) plot to visualize the relationship between growth and schooling,
controlling for the linear component of the assassinations variable. The results are shown in
Figure 2. As in the first example, the regression is clearly misspecified; as indicated by the
lowess line, the conditional relationship is nonlinear.

cprplot yearsschool , lowess
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Figure 2: Conditional relationship between growth and schooling (controlling for assassina-
tions).

In contrast to OLS, KRLS does not impose a constant marginal effect assumption. Instead, it
directly obtains estimates of the response surface that characterizes how average growth varies
with schooling and assassinations, along with closed-form estimates of the pointwise marginal
derivatives that characterize the marginal effects of each covariate at each data point.

To do so we run krls with the deriv(str) option, which requests that derivatives should
also be stored as new variables in the current dataset with the name str followed by each in-
dependent variable. For example, if deriv(d) is added as an option, the pointwise derivatives
for schooling would be stored in a new variable named d_yearsschool.

krls growth yearsschool assassinations, deriv(d)

Iteration = 10, Looloss: 91.44527

Pointwise Derivatives Number of obs = 65

Lambda = .4317

Tolerance = .065

Sigma = 2

Eff. df = 10.24

R2 = .4129

Looloss = 91.29

growth | Avg. SE t P>|t| P25 P50 P75

----------------+--------------------------------------------------------------------

yearsschool | .354338 .074281 4.770 0.000 -.139242 .13793 .938411

assassinations | -1.13958 .992716 -1.148 0.255 -2.31577 -1.42087 .13132

----------------+--------------------------------------------------------------------
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The closed-form estimate of the pointwise derivatives is very useful as an interpretational tool
because we can use these estimates to examine the heterogeneity of the marginal effects. For
example, we can summarize the distribution of the pointwise marginal effects of schooling by
typing

sum d_yearsschool, detail

d_yearsschool

-------------------------------------------------------------

Percentiles Smallest

1% -.375314 -.375314

5% -.3497108 -.3700694

10% -.2884114 -.3682136 Obs 65

25% -.1392421 -.3497108 Sum of Wgt. 65

50% .1379297 Mean .3543377

Largest Std. Dev. .5869914

75% .9384111 1.371787

90% 1.205191 1.384984 Variance .3445589

95% 1.371787 1.396414 Skewness .4491842

99% 1.475469 1.475469 Kurtosis 1.717391

Here, we can see that the average pointwise marginal effect of schooling is .35, which is also
the quantity displayed in the KRLS table under the Avg. column. This quantity is akin to
the β coefficient estimate from the linear regression and can be interpreted as the average
marginal effect. However, we can also clearly see the heterogeneity in the marginal effect:
at the 1st quartile a one unit increase in schooling is associated with a .14 percentage point
decrease in growth, while at the 3rd quartile it is associated with a .94 percentage point
increase in growth. The median of the marginal effects is .14.12

Another option to quickly examine effect heterogeneity is to plot a histogram of the point-
wise marginal effect, as displayed in Figure 3. The histogram confirms the substantial ef-
fect heterogeneity; clearly the average marginal effect is only partially informative about the
heterogeneous effects of schooling on growth. Note that such histograms are automatically
computed for every covariate if krls is called with the graph option.

hist d_yearsschool

12Note that these quantile are also displayed under the P25, P50, and P75 columns in the KRLS table. The
krls command also has a quantile(numlist) option that allows the user to manually specify the derivative
quantiles that should be displayed in the krls output table. By default, the 25th, 50th, and 75th percentiles
are displayed. Users may input a minimum of 1 and a maximum of 3 quantiles to be displayed in the table.
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Figure 3: Distribution of pointwise marginal effect of schooling on growth.

Going further, we can also ask how and why the marginal effects of schooling vary. To do
so we can plot the marginal effects against levels of schooling. The results are displayed in
Figure 4. Here we can see how the marginal effect estimates from KRLS accurately track
the derivative of the nonlinear conditional relationship revealed in the CR plot in Figure 2
above. We see that the marginal effect is positive at low levels of schooling, shrinks towards
zero at medium level of schooling, and turns slightly negative at high levels of schooling. This
is consistent with the idea that a country’s human capital investments exhibit decreasing
marginal returns.

lowess d_yearsschool yearsschool

This simple multivariate example illustrates the interpretability offered by KRLS. It accu-
rately fits smooth functions without requiring a specification search, while enabling simple
interpretations akin to the coefficient estimates from GLMs. Moreover, it also allows for
much richer interpretations regarding effect heterogeneity through the examination of point-
wise marginal effects. As seen in this example, examining the distribution of the marginal
effects can lead to interesting insights about non-constant marginal effects. In some cases we
might find that a covariate has fairly uniform marginal effects, while in other cases the effects
might be highly heterogeneous (e.g., the effects are negative in some and positive in other
parts of the covariate space).

4.6. The full model

Having demonstrated the interpretive benefits of KRLS, in this section we fit a full model
and compare the results obtained by OLS and KRLS in detail. As will be shown, KRLS is
able to provide a flexible fit, improving both in- and out-of-sample accuracy.
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Figure 4: Pointwise marginal effect of schooling and level of schooling.

reg growth rgdp60 tradeshare yearsschool assassinations, r

Linear regression Number of obs = 65

F( 4, 60) = 9.68

Prob > F = 0.0000

R-squared = 0.3178

Root MSE = 1.6183

--------------------------------------------------------------------------------

| Robust

growth | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------------+----------------------------------------------------------------

rgdp60 | -.000392 .0001365 -2.87 0.006 -.000665 -.000119

tradeshare | 1.812192 .630398 2.87 0.006 .5512078 3.073175

yearsschool | .5662416 .1358543 4.17 0.000 .2944925 .8379907

assassinations | -.0535174 .3610177 -0.15 0.883 -.7756603 .6686255

_cons | -.1056025 .6997676 -0.15 0.881 -1.505346 1.294141

--------------------------------------------------------------------------------

krls growth rgdp60 tradeshare yearsschool assassinations , deriv(d)

Iteration = 8, Looloss: 98.29569

Pointwise Derivatives Number of obs = 65

Lambda = .4805

Tolerance = .065

Sigma = 4

Eff. df = 16.17

R2 = .5238
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Looloss = 97.5

growth | Avg. SE t P>|t| P25 P50 P75

----------------+--------------------------------------------------------------------

rgdp60 | -.000181 .000095 -1.918 0.060 -.000276 -.000206 -.000124

tradeshare | .510791 .650697 0.785 0.435 -.795706 .189738 2.04949

yearsschool | .44394 .081513 5.446 0.000 .061748 .389433 .823161

assassinations | -.899533 .589963 -1.525 0.132 -1.78801 -.872617 -.123334

----------------+--------------------------------------------------------------------

Comparing the two models, we first see that the (in-sample) R2 for KRLS is 52%, while that
of OLS is only 31%. The average marginal effects from KRLS differ from the coefficients in
the OLS model for many of the covariates. For example, the effect of trade’s share of GDP
is 1.81 and significant in the OLS model, while in the KRLS models the average marginal
effect is less than a third of the size, 0.51, and highly insignificant. Moreover, while the OLS
model suggests that assassinations have essentially no relationship with growth, the average
marginal effect from the KRLS model is sizable: Increasing the number of assassination by
one is associated with a decrease of 0.90 percentage points in growth on average.

What explains the differences in the coefficient estimates? At least part of the discrepancy
is due to the previously established nonlinear relationship between schooling and growth.
Accordingly, we introduce a third order polynomial for schooling to capture this nonlinearity.

reg growth rgdp60 tradeshare c.yearsschool##c.yearsschool##c.yearsschool ///

assassinations , r

Linear regression Number of obs = 65

F( 6, 58) = 7.80

Prob > F = 0.0000

R-squared = 0.4515

Root MSE = 1.476

----------------------------------------------------------------------------------

| Robust

growth | Coef. Std. Err. t P>|t|

------------------------------------------+---------------------------------------

rgdp60 | -.0003038 .0001372 -2.21 0.031

tradeshare | 1.436023 .6188359 2.32 0.024

yearsschool | 2.214037 .6562595 3.37 0.001

c.yearsschool#c.yearsschool | -.3138642 .1416605 -2.22 0.031

c.yearsschool#c.yearsschool#c.yearsschool | .0150468 .0088306 1.70 0.094

assassinations | -.3608613 .3457803 -1.04 0.301

_cons | -1.888819 .8992876 -2.10 0.040

----------------------------------------------------------------------------------

This improves the model fit to an R2 of 0.45 and the polynomial terms are highly jointly
significant. But even with this improved regression model our fit is still lower than that
from the KRLS model, and results remain widely different for trade’s share in the economy
and assassinations. To determine the source of these differences, we next examine how the
marginal effects of the trade share variable depend on other variables. As a useful diagnostic,
we regress the pointwise marginal effect estimates on the whole set of covariates.
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reg d_tradeshare rgdp60 tradeshare yearsschool assassinations

Source | SS df MS Number of obs = 65

-------------+------------------------------ F( 4, 60) = 11.11

Model | 102.319069 4 25.5797673 Prob > F = 0.0000

Residual | 138.099021 60 2.30165035 R-squared = 0.4256

-------------+------------------------------ Adj R-squared = 0.3873

Total | 240.41809 64 3.75653266 Root MSE = 1.5171

--------------------------------------------------------------------------------

d_tradeshare | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------------+----------------------------------------------------------------

rgdp60 | .0000478 .0001369 0.35 0.728 -.0002261 .0003216

tradeshare | 2.822354 .7162343 3.94 0.000 1.389672 4.255035

yearsschool | -.2612007 .1335487 -1.96 0.055 -.5283379 .0059365

assassinations | -1.275047 .4112346 -3.10 0.003 -2.097639 -.4524557

_cons | .1635381 .5924303 0.28 0.783 -1.021499 1.348575

--------------------------------------------------------------------------------

The results suggest that the pointwise marginal effect of trade share strongly depends on the
levels of trade share itself (indicating a nonlinearity) and also the number of assassinations
(indicating an interaction).

A strong nonlinearity is also visible when plotting the marginal effect (vertical axis) against
levels of trade share in Figure 5. If the relationship between trade share and economic growth
was linear, we would expect to observe a similar marginal effect across each level (a horizontal
line). However, as is evident from the figure, the marginal effect on growth is much larger at
higher levels of trade share.

lowess d_tradeshare tradeshare

The interaction between the trade shares and assassinations is also visible when plotting the
pointwise marginal effect of trade shares against the number of assassinations:

lowess d_tradeshare assassinations

The result is provided in Figure 6, showing that the effect of trade shares is positive at zero
assassinations, but as the number of assassinations increases, the effect turns negative.13

Both of these important relationships are absent even in the more flexible regression speci-
fication. To capture these complex heterogeneities in an OLS model, we must add a third
order polynomial in trade shares, and a full set of interactions with assassinations.

reg growth rgdp60 c.tradeshare##c.tradeshare##c.tradeshare##c.assassinations ///

c.yearsschool##c.yearsschool##c.yearsschool , r

13Figure 6 also shows that for the most extreme values of trade share or assassinations, the marginal effect
of trade share returns to zero. This is in part due to a property of KRLS by which E[y|X] tends towards zero
for extreme examples far from that remaining data to protect against extrapolation bias. See Hainmueller and
Hazlett (2014).
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Figure 5: Pointwise marginal effect of trade share and level of trade share.
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Figure 6: Pointwise marginal effect of trade share and number of assassinations.

Linear regression Number of obs = 65

F( 11, 53) = 89.65

Prob > F = 0.0000

R-squared = 0.5012

Root MSE = 1.4723

------------------------------------------------------------------------------------------------
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| Robust

growth | Coef. Std. Err. t P>|t|

--------------------------------------------------------+---------------------------------------

rgdp60 | -.0002845 .0001422 -2.00 0.051

tradeshare | -7.674608 3.812536 -2.01 0.049

c.tradeshare#c.tradeshare | 10.15347 4.865014 2.09 0.042

c.tradeshare#c.tradeshare#c.tradeshare | -2.954996 1.610982 -1.83 0.072

assassinations | -4.823411 2.308085 -2.09 0.041

c.tradeshare#c.assassinations | 37.04956 19.61796 1.89 0.064

c.tradeshare#c.tradeshare#c.assassinations | -86.43233 47.34634 -1.83 0.074

c.tradeshare#c.tradeshare#c.tradeshare#c.assassinations | 59.24934 35.34809 1.68 0.100 |

yearsschool | 2.174512 .7132229 3.05 0.004 |

c.yearsschool#c.yearsschool | -.3192074 .1488919 -2.14 0.037

c.yearsschool#c.yearsschool#c.yearsschool | .0158121 .0090637 1.74 0.087

_cons | .3710328 1.213694 0.31 0.761

------------------------------------------------------------------------------------------------

The augmented regression that results from this “manual” rebuilding of the model now finally
captures the most evident nonlinearities and interactions in the data generation process that
are automatically captured by the KRLS model without any human specification search. The
R2 is now .50, compared to .52 in the KRLS model. The fitted values from both models are
now highly correlated at .94, up from .80 using the original OLS model.

Finally, we consider the out-of-sample performance. Given the very small sample size (N=65),
one might expect that a far more flexible model such as KRLS would suffer in terms of out-of-
sample performance owing to the usual bias-variance tradeoff. However, using leave-one-out
forecasts to test model performance, we find that KRLS and the original OLS models have
similar performance (MSE of 2.97 for KRLS and 2.75 for OLS), with slightly over half (34
out of 65) of observations having smaller prediction errors under KRLS than under OLS. The
KRLS model is also far more stable than the “comparable” OLS model augmented to have
additional flexibility as above, which produces very high-variance estimates, for a MSE of
17.6 on leave-one-out forecasts.

In summary, this section illustrates how in this still fairly low dimensional example with
only four covariates, linear regression is susceptible to misspecification bias, failing to capture
nonlinearities and interactions in the data. By contrast, non-linear, non-additive functions
are captured by the KRLS model without necessitating a specification search that is, at best,
tedious and error-prone.

The example also illustrates the rich interpretations that can be gleaned from examining
the pointwise partial derivatives provided by KRLS. In this case, the effect heterogeneities
revealed by KRLS could be confirmed by building an augmented OLS model, illustrating the
potential use of KRLS as a robustness-checking procedure. In practice, re-building an OLS
model in this way would be unnecessary in low-dimensional problems, and often infeasible
in high-dimensional problem, while KRLS directly provides an accurate fit together with
pointwise marginal effect estimates for interpretation.
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5. Further issues

5.1. Binary predictors

As explained in Hainmueller and Hazlett (2014), KRLS works well with binary independent
variables. However, their effects should be interpreted using first differences (rather than the
pointwise partial derivatives) to accurately capture the expected difference in the outcome
when moving from the low to the high value of the predictor. The krls command auto-
matically detects binary covariates and reports first differences rather than average marginal
effects in the output table and pointwise derivatives. Such variables are also marked with an
asterisk as binary variables in the output table. To briefly illustrate this we code a binary
variable for countries where the years of schooling is 3 years or higher and add this binary
regressor.

gen yearsschool3 = (yearsschool>3)

krls growth rgdp60 tradeshare yearsschool3 assassinations

.

Iteration = 5, Looloss: 105.6404

Pointwise Derivatives Number of obs = 65

Lambda = 1.908

Tolerance = .065

Sigma = 4

Eff. df = 8.831

R2 = .3736

Looloss = 104.8

growth | Avg. SE t P>|t| P25 P50 P75

----------------+--------------------------------------------------------------------

rgdp60 | -5.4e-06 .00005 -0.108 0.915 -.000106 -3.7e-06 .000122

tradeshare | .73428 .531422 1.382 0.172 -.083988 .611573 1.62604

*yearsschool3 | 1.26789 .42485 2.984 0.004 .750781 1.17464 1.8717

assassinations | -.26203 .317978 -0.824 0.413 -.660828 -.12919 .048142

----------------+--------------------------------------------------------------------

* average dy/dx is the first difference using the min and max (i.e., usually 0 to 1)

The results suggest that going from less to more than 3 years of schooling is associated with a
1.27 percentage point jump in growth rates on average. As can be seen by the lower R2 (0.37,
compared to 0.52), dichotomizing the continuous schooling variable results in a significant
loss of information. With KRLS there is typically no reason to dichotomize variables because
the model is flexible enough to capture nonlinearities in the underlying continuous variables.

5.2. Choosing the smoothing parameter by cross-validation

The krls command returns the number of iterations used to converge on a value for λ in the
upper left panel of the function output. By default, the tolerance for the choice of λ is set
such that a solution is reached when further changes in λ improve the proportion of variance
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explained (in a leave-one-out sense) by less than 0.01%. This sensitivity level can be adjusted
using the ltolerance() option. Decreasing the sensitivity may improve execution time but
may result in the selection of a suboptimal value for lambda.

Further options for predictions

If the user is interested only in predictions, they can specify the suppress option to instruct
krls not to calculate derivatives, first differences, and the output table. This significantly
decreases execution time, especially in higher dimensional examples.

In some cases the user might also be interested in obtaining uncertainty estimates for the
predicted values. These can be accomplished in KRLS because the method provides a closed-
form estimator of the full variance-covariance matrix for fitted and predicted values. Following
the model fit, users can simply use predict, se to generate a variable that contains the
standard errors for the predicted values.

The variance-covariance matrix of the coefficients is stored by default in e(Vcov_c). Users
may also wish to obtain the full variance-covariance matrix for the fitted values for further
computations. To save execution time this matrix is not saved by default, but it can be
requested using the vcov option of the krls command. If the model is fit with this option
specified, the variance-covariance matrix of the fitted values is returned in e(Vcov_y). Alter-
natively, the svcov(filename) option can be used to save this variance-covariance matrix to
an external dataset.

Further options for extracting results

By default, krls returns the output table of pointwise derivatives and first differences in
matrix form in e(Output). Alternatively, the keep(filename) option can be used to store
the output table in a new dataset specified by filename.dta. sderiv(filename) can be
similarly used to save derivatives in a new dataset.

6. Kernel-based regularized least squares in R

For R users we have developed the KRLS package (Hainmueller and Hazlett 2015) which
implements the same methods as in the Stata package described above. The KRLS pack-
age is available for download on the Comprehensive R Archive Network (CRAN, http:

//CRAN.R-project.org/). We also provide a companion script that replicates all the ex-
amples described above in the R version of the package.

Overall, the R and the Stata versions produce the same results and we see no significant
advantage in using one or the other (except that R is available as Free Software under the
terms of the Free Software Foundation’s GNU General Public License). In particular, the
numerical implementation of the KRLS estimator is nearly identical across the two versions,
with comparable run times and memory requirements.

The command structure is also broadly similar in both packages, although the commands
in the R version more closely follow the typical structure of R estimation commands. In
particular, the main function in the R package is krls() which fits the KRLS model once
the user–at a minimum–has specified the dependent and independent variables. In addition,
the convenience functions summary(), plot(), and predict() are provided to summarize or

http://CRAN.R-project.org/
http://CRAN.R-project.org/
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plot the results from the fitted KRLS model object and to generate predicted values (with
standard errors) for in-sample and out-of-sample predictions. For example, we can replicate
the full model described above using the following code

R> library(foreign)

R> library(KRLS)

R> growth <- read.dta("growthdata.dta")

R> covars <- c("rgdp60", "tradeshare",

"yearsschool", "assassinations")

R> k.out <- krls(y=growth$growth,

X=growth[,covars])

R> summary(k.out)

* *********************** *

Model Summary:

R2: 0.5237912

Average Marginal Effects:

Est Std. Error t value Pr(>|t|)

rgdp60 -0.0001814697 9.462225e-05 -1.9178330 5.981703e-02

tradeshare 0.5107908139 6.506968e-01 0.7849905 4.354973e-01

yearsschool 0.4439403707 8.151325e-02 5.4462354 9.729103e-07

assassinations -0.8995328084 5.899631e-01 -1.5247272 1.324954e-01

Quartiles of Marginal Effects:

25% 50% 75%

rgdp60 -0.0002764298 -0.0002057956 -0.0001242661

tradeshare -0.7957059378 0.1897375034 2.0494918408

yearsschool 0.0617481348 0.3894334721 0.8231607478

assassinations -1.7880077113 -0.8726170582 -0.1233344601

7. Conclusion

In this article we have described how to implement kernel regularized least squares using the
krls package for Stata. We also provided an implementation in R through the KRLS package
(Hainmueller and Hazlett 2015).

The KRLS method allows researchers to overcome the rigid assumptions in widely used models
such as GLMs. KRLS fits a flexible, minimum-complexity regression surface to the data,
accommodating a wide range of smooth non-linear, non-additive functions of the covariates.
Because it produces closed-form estimates for both the fitted values and partial derivatives
at every observation, the approach lends itself to easy interpretation. In future releases, we
hope to improve upon the krls function by improving its speed (the current implementation
begins to slow with several thousand observations), by allowing for weights, and by providing
options for heteroskedasticity-robust and cluster-robust standard errors.

We illustrate the use of the krls function by analyzing GDP growth rates over 1960-1995 for 65
countries (Beck et al. 2000b). Compared to OLS implemented through reg, krls reveals non-
linearities and interactions that substantially alter both the quality of fit and the inferences
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drawn from the data. In this case, an OLS model could be re-built using insights from the
krls model. In general, however, use of krls obviates the need for a tedious specification
search which may still leave some important non-linearities and interactions undetected.
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