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Abstract

This online appendix presents various additional results referenced in the main
paper. In particular, it contains two additional simulations studies and two
additional empirical applications.



I. Monte Carlo Simulations

In addition to the simulation experiment presented in the main paper we conducted two

smaller simulation experiments which we describe in the sections below. We also show

additional results for the third simulation study that is presented in the main text.

A. Monte Carlo Experiment I: EPBR Data

The first experiment follows the design presented in Diamond and Sekhon (2006) for a

setting that meets the EPBR conditions. We use 50 treated observations and 100 control

observations, with three baseline covariates X that are multivariate normal with zero co-

variances. For the treated observations the means of the X variables are .20 and for the

control observations the means are equal to 0. We generate outcomes with a linear mapping

Y = Xβ + ε where ε ∼ N(0, .5) and β = (1, 1, 1)′. The true treatment effect is zero for all

units. We consider three variants of this design:

• Design A: the variances of the covariates in X are unity in both groups; the easiest,

but presumably most unrealistic case.

• Design B: the variances of the covariates in X are .5 in the control group and and 1.5

in the treatment group. This provides a somewhat more difficult but realistic case;

in many empirical cases variances may differ between the two groups.

• Design C: the variances of the covariates in X are equal to unity, but we include

all three squared terms in the preprocessing adjustment. Since these squared terms

are omitted from the outcome equation (ie. the mapping from X to Y ), this sce-

nario mirrors a case where a researcher adjusts for three irrelevant covariates (as in

Brookhart, Schneeweiss, Rothman, Glynn, Avorn and Sturmer (2006)). We include

this case because adjusting for squared terms is often recommended in practice.

For the propensity score methods we use the correctly estimated propensity score (from

a logistic regression that is linear in X), instead of the true score because the former is

1



known to be more efficient. We run 1,000 simulations and report the mean estimate which

indicates the bias (multiplied by 100) and the root mean squared error (MSE).

A.1. Results for Design A: Equal Variances

The results for design A (equal variances), design B (unequal variances), and design C (irrel-

evant covariates) are shown in the upper, middle, and lower panel of Table I respectively.

We find that across all three designs the entropy balancing adjustment is unbiased and

highly efficient; it outperforms all other propensity score methods and multivariate match-

ing methods in terms of MSE. In particular for design A, the entropy balancing adjustment

has an MSE that is more than four times lower than that of the conventional propensity

score weighting estimator where a probit regression is used to estimate the score. This

is expected because the entropy balancing adjustment fully incorporates the information

about the known sample moments. The MSE of entropy balancing is 13 times lower com-

pared to propensity score matching, about 8 times lower than Mahalanobis matching and

about 11 times lower than the joint propensity score Mahalanobis distance matching. Con-

sistent with Diamond and Sekhon (2006), Genetic matching dominates the other matching

techniques in terms of MSE, but its MSE is still more than 3 times larger than that of

entropy balancing. The fact that the matching adjustment (except Genetic matching) are

generally less efficient is consistent with the results from Abadie and Imbens (2006). We

also find that the multivariate matching methods are all biased. This is consistent with

Abadie and Imbens (2006) who show that the bias of matching is of order O(N−1/k) where

k is the number of continuous covariates. The patterns are very similar for design B with

unequal variances, except that the the differences in MSE are now amplified due to the

higher variances in the treatment group. The results for design C (lower panel) shows that

the inclusion of the irrelevant variables does not adversely affect entropy balancing, but

the other methods now exhibit lower MSE compared to design A.

In summary, the first monte carlo experiment shows that in this setting where the

conditions necessary for EPBR hold, entropy balancing outperforms the other preprocessing

techniques.
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B. Monte Carlo Experiment II: Non-EPBR Data

B.1. Design

The second experiment follows the second experiment in Diamond and Sekhon (2006).

The covariates are taken from the Dehejia and Wahba (1999) experimental sample of the

LaLonde (1986) data (see Diamond and Sekhon (2006) for details). The covariates are not

ellipsoidally distributed and thus the EPBR conditions do not hold. Assuming a constant

treatment effect of $1, 000 the fictional earnings are a non-linear function of only two

covariates:

Y = 1000D + .1 exp[ .7 log(re74 + .01)] + .7 log(re75 + .01)]) + ε

where ε ∼ N(0, .5), re74 and re75 are real earnings in 1974 and 1975 andD is the treatment

indicator. The true propensity score is:

πi = logit−1[1 + .5.µ+ .01log(age2)− .3log(educ2)− .01log(re74 + .01)2 + .01log(re75 + .01)2]

where the linear predictor µ is obtained from regressing the actual treatment indicator

on age2, educ2, black, hispanic, married, nodegree, re742, re752, u74, and u75 in

the Dehejia Wahba sample. So the true propensity score is a combination of this logistic

regression plus the extra variables specified in the equation above.

In the Monte Carlo replications we use the following incorrect functional form to esti-

mate the propensity score:

µ̂ = α0 + α1age + α2educ + α3black + α4hispanic +

α5married + α6nodegree + α7re74 + α8re75 + α9u74 + α10u75

We run 1,000 simulations and report the mean estimate which indicates the bias (multi-

plied by 100) and the root mean squared error (MSE). We also report the average computing

time per simulation measured in seconds.

B.2. Results

The results are displayed in Table II. Entropy balancing achieves the second lowest bias

and the lowest MSE across all adjustments. It is also much faster compared to Genetic

3



Matching, which achieves the second lowest MSE in this experiment. The propensity score

methods perform badly given the incorrect specification of the propensity score model.

This indicates that entropy balancing retains good finite sample properties in this situation

where the EPRB conditions do not hold.

C. Additional Tables for Monte Carlo Experiment III

Tables III and IV display the results for the third simulation discussed in the main paper

for the samples sizes N = 600 and N = 1, 500 respectively. Overall the results are very

similar to the case of N = 300 except that the propensity score methods (with a correctly

estimated score) improve as the sample size grows. Entropy balancing achieves the lowest

MSE across all simulations.

II. Additional Results for LaLonde Application

Table V presents additional statistics for the covariate balance in the LaLonde application

described in the main text. We can see that both the means and the variances are much

more similar after entropy balancing when comparing the treatment and control group in

the preprocessed data (the last few columns present the balance results form propensity

score weighting as a benchmark). Figure 1 shows the QQ-plots that compare the distribu-

tions for all four continuous variables: pretreatment earnings in 1975 and 1974, age, and

education. The black dots represent empirical quantile estimates for the raw data. The

gray dots represent quantile estimates for the reweighted data. The distributions of all four

variables are much more similar after the entropy balancing adjustment.

III. Additional Results for News Media Persuasion Application

Table VI shows additional balance statistics for the data used in the Ladd and Lenz (2010)

study on the effect of news media persuasion in the 1997 British general election. As

discussed in the main text, entropy balancing exactly adjusts all the means and almost all

of the variances in this data.
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IV. Additional Application: The Fox News Effect

In this section we provide another application of entropy balancing by reanalyzing data

from DellaVigna and Kaplan (2007) who study the effect of media bias on voting. The

authors exploit the fact that between 1996 and 2000 the conservative Fox News Channel was

introduced in the cable programming of about 20 percent of U.S. towns. Using voting data

that is aggregated at the town level, the study compares the gain in Republican two-party

vote share from the 1996 to 2000 Presidential election between towns that broadcasted

Fox News by 2000 in their cable programming and towns that did not. The data covers

9,256 towns overall, 1,807 of which had Fox News availability by 2000 (the treated towns).

Using various regression specifications, the authors find that the introduction of Fox News

increased Republican vote share gains by 0.4 to 0.7 percentage points.

The authors control for a range of confounders that capture town characteristics mea-

sured in the 2000 census including the population size, median income, unemployment

rate, and other socio-demographic characteristics for race, gender, urban, education, and

married. They include additional controls that measure the trend in each of these variables

from the 1990 to 2000 census. The authors also control for the number of cable channels

and the number of potential cable subscribers in 2000. There are 26 covariates overall.1

Estimating the effect of Fox News from this data is difficult for various reasons. First, the

effect is fairly small according to the original study. Second, all of the control variables are

continuous and given the heterogeneity across towns their distributions are often heavily

skewed as can be seeen in Figure 2 which visualizes the distributions using histograms.

Third, since the introduction of Fox News into local cable markets was highly selective,

the treatment and control towns strongly differ on many important characteristics. In

particular, towns with Fox News availability in 2000 were much larger markets with more

channels and potential cable subscribers; the standardized difference in means exceeds the

1Notice that the authors also control for House district or county fixed effects in some of their analysis,
but many districts and counties have no variation on the treatment variable and including these fixed effects
if anything lowers the positive effect of Fox News on vote shares according to the authors’ specifications.
Also notice that the authors weight many of their regressions by population size which we ignore here (they
do state that their results are robust to using no weights and a linear regression of the outcomes on all
covariates confirms this).
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extreme level of one on both of these key variables. The areas with Fox News were also

more urban, richer, and more highly educated. To correct for these imbalances we conduct

entropy balancing on all covariates and their squared terms to equalize the means as well as

the variances between the two groups (52 covariates overall). As in the other examples we

also apply the other perprocessing methods and for this purpose estimate the propensity

score with a logistic regression of the treatment indicator on the raw variables and squared

terms (below we replicate the same analysis while omitting the squared terms).

Figure 3 displays the standardized means (left panel) and p-values for the difference in

means tests (right panel) for the raw data and after the various adjustment methods. After

entropy balancing the means between the two groups are equal for all 52 covariate combina-

tions. Given that we also include squared terms for each of the raw covariates, the variances

on these variables are also equal as can be seen in Table VII which shows additional bal-

ance statistics. According to these metrics the balance is higher than that produced by the

other adjustment methods. The other methods often leave several of the most important

covariates imbalanced (the differences in means remain large and significant) and in several

cases the imbalance on key moments is actually increased over the unadjusted data which

can be avoided in entropy balancing by including the relevant moments in the reweighting.

A comparison of the average Republican two-party vote share between the treated and

control towns in the preprocessed data yields an insignificant effect estimate that is very

close to zero. To investigate the model dependency we again examine the effect estimates

across a wide range of possible specifications. We create a dataset that includes all raw

covariates, their squared terms, and all pairwise interactions (377 covariate combinations

overall). We then fit one million regressions of the outcome on the treatment variable and

covariates that we randomly sample from the set of all possible subsets of the covariates.2

We fit each regression in the raw and the preprocessed data (regressions are weighted by the

entropy balancing weights). Figure 4 shows the densities of the estimates of the Fox News

effect across the regression specifications. In the raw data the estimates vary rather widely

2Notice that there are 3.078282× 10113 possible subsets (
∑377

i=1

(
377
i

)
).
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within ±1.5 percentage points of vote share, which may be expected given the limited

overlap in the data. The model dependency is much reduced after the entropy balancing

adjustment; the range of effect estimates is now narrowed down to ±.3 percentage points.3

Finally, to more closely mirror common practice in applied work, Figures 5 and 6 show

a replication of the balance figures for the same analysis where we now omit all squared

terms from the preprocessing; the propensity score is estimated with a logistic regression

of the treatment indicator on all raw covariates. Such simple propensity score models

are widely used in practice where researchers often do not include all squared terms. We

can see that the balancing property of the propensity score is now much worse. In fact,

when squared terms are omitted the balance on many variables is significantly worse after

the propensity score weighting adjustment compared to the raw data (the results look

slightly better for propensity score matching). This shows that ill-estimated propensity

scores can fail to produce good balance. In this case weighting on the logistic propensity

score increases the imbalance over the unadjusted data on many covariates. This may

be expected given that the simple model with only the raw covariates does a poor job of

capturing the assignment process and the procedure also assigns some very extreme weights

since the logistic propensity score is close to zero for some units (Rosenbaum, 1987).

Taken together the application suggests that entropy balancing delivers a high degree of

balance in this dataset (as measured by standard metrics). Higher balance reduces model

dependence for the estimation of causal effects. It is important to recognize that this repli-

cation is intended to simply illustrate the use of entropy balancing in an interesting dataset,

it does not invalidate the results of the original study which contains many additional tests

and evidence that we do not consider here. We are grateful to the authors for making their

data freely available.

3Notice that the variability in the preprocessed estimates is entirely driven by the fact that the interac-
tion terms are not included in the reweighting adjustment but only in the outcome regressions. Since the
entropy balancing includes all raw covariates and their squared terms, the regression estimates are identical
across all subsets that do not involve interaction terms.
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V. Additional Application: The Financial Returns to Political Office

In this section we provide another application of entropy balancing by reanalyzing data from

Eggers and Hainmueller (2010), who study the financial returns to serving in parliament

using data on the estates of recently deceased British politicians. We focus on their sample

of 223 conservative candidates that ran for the House of Commons during the 1950-1970

period (see the article for a detailed discussion of the data). The treatment variable is a

binary indicator that is coded as one for the 104 candidates that ran successfully and served

in parliament and zero for the 119 control candidates that lost and did not enter parliament.

The outcome variable is logged wealth at death, which is measured using probate values

that capture the value of the candidate’s estate at the time of death (in real 2007 British

Pounds). In order to account for the selection into political office the authors control for

a variety of background covariates including the candidate’s gender, year of birth, year

of death, as well as educational, occupational, and aristocratic background. There are 18

covariates in total.

Columns 1-4 in Table VIII display the covariate balance in the unmatched data. As dis-

cussed by the authors there are important imbalances in this data. In particular, successful

candidates are more likely than unsuccessful candidates to be male and to have aristocratic

backgrounds and elite educations (Eton Schooling and Oxbridge Degrees). Successful can-

didates are also less likely to be in white-collar professions (engineering, accounting, or

public relations), journalism, and teaching professions, and less likely to have business

backgrounds. The standardized bias exceeds |.1| for all but three of the covariates.

To correct for these imbalances we conduct entropy balancing and specify moment

conditions to equalize the means of all 18 covariates between the treatment and the re-

weighted control group. Columns 5-8 in Table VIII display the covariates means as well

as the various balance metrics computed with the re-weighted control group. The mean

differences are now reduced to zero on all covariates. Except for the year of birth and

year of death measures, all variables are binary so by adjusting their means the variances

are also adjusted. This constitutes a higher level of balance than previously achieved for
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these metrics in this dataset. The difference in means between the treatment group and

the reweighted control group yields an average treatment effect on the treated of .99 with

a t-statistic of about 2.8, indicating that at serving in Parliament considerably increased

wealth at death from conservative MPs. This estimate is close to the magnitude estimated

by the authors (the original study used genetic matching).

As a comparison the last few columns present similar balance measures when propen-

sity score weighting, based on a score that is estimated with a logistic regression of the

treatment indicator on all covariates, is applied to the same data. While propensity score

weighting leads to some balance improvements, important imbalances remain one some key

variables such as Oxbridge Degrees, Barrister and Solicitor, and aristocratic background an

even worse one some covariates like White Collar professions and year of death the imbal-

ance actually increases over the unmatched data. These imbalances may be corrected by

tinkering with the propensity score specification. However, with 18 covariates is is difficult

and tedious to find a model that jointly balance all covariates. This shows the benefits

of entropy balancing which provides balance by construction of the moment conditions.

Figures 7 and 8 show the standardized bias and p-value for the difference in means tests for

each covariate when we apply various other matching methods to the same data. Entropy

balancing improves on these balance metrics over all other methods including Mahalanobis

distance matching, genetic matching, and matching or weighting on the logistic propensity

score. Among the other methods, genetic matching does best although some imbalances

remain on aristocratic backgrounds and Oxbridge degrees.
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Table III: Results for Monte Carlo Experiment (N=600)
Sample Design 1: Strong Separation and Normal Errors

MSE RAW MD PSM1 PSM2 PSM3 PSMD1 PSMD2 PSMD3 PSW1 PSW2 PSW3 EB
Ratio CtoT 1 Y1 320 21 14 358 182 46 352 186 15 354 183 2
Ratio CtoT 1 Y2 497 15 7 153 524 49 164 449 19 152 529 2
Ratio CtoT 1 Y3 997 915 671 1326 1640 1764 1479 2026 742 1205 1526 172
Ratio CtoT 3 Y1 323 18 12 363 185 39 353 190 10 356 185 2
Ratio CtoT 3 Y2 499 13 5 153 525 41 155 459 12 156 532 2
Ratio CtoT 3 Y3 1041 807 599 1186 1675 1601 1357 2035 592 1123 1547 168
Ratio CtoT 5 Y1 324 17 14 368 186 33 352 190 8 360 182 2
Ratio CtoT 5 Y2 499 12 7 155 525 34 143 467 9 158 526 2
Ratio CtoT 5 Y3 1125 739 604 1133 1719 1431 1269 2022 627 1072 1589 186

BIAS RAW MD PSM1 PSM2 PSM3 PSMD1 PSMD2 PSMD3 PSW1 PSW2 PSW3 EB
Ratio CtoT 1 Y1 177 42 6 185 132 65 185 135 7 186 134 0
Ratio CtoT 1 Y2 222 35 10 121 227 68 126 211 8 121 229 2
Ratio CtoT 1 Y3 294 292 72 333 393 412 374 443 51 329 384 69
Ratio CtoT 3 Y1 178 38 7 187 133 60 185 136 11 186 134 0
Ratio CtoT 3 Y2 222 31 8 120 227 61 121 213 14 123 229 2
Ratio CtoT 3 Y3 296 272 63 311 393 390 355 441 76 314 384 61
Ratio CtoT 5 Y1 177 35 5 187 131 54 183 135 12 187 133 −1
Ratio CtoT 5 Y2 222 28 7 120 226 54 115 213 17 123 227 1
Ratio CtoT 5 Y3 294 253 58 284 389 362 335 432 96 302 384 50

Sample Design 2: Weaker Separation and Normal Errors
MSE RAW MD PSM1 PSM2 PSM3 PSMD1 PSMD2 PSMD3 PSW1 PSW2 PSW3 EB

Ratio CtoT 1 Y1 144 8 5 126 82 18 126 88 3 121 78 1
Ratio CtoT 1 Y2 223 4 3 53 222 13 44 191 3 50 221 1
Ratio CtoT 1 Y3 514 440 273 458 823 859 722 1143 219 372 767 95
Ratio CtoT 3 Y1 145 8 5 126 85 16 124 89 2 123 79 1
Ratio CtoT 3 Y2 224 4 3 51 227 12 42 199 3 50 224 1
Ratio CtoT 3 Y3 557 387 259 431 861 775 659 1149 200 354 783 103
Ratio CtoT 5 Y1 146 8 8 131 86 14 123 92 2 124 80 1
Ratio CtoT 5 Y2 225 4 4 54 230 10 38 204 3 51 225 2
Ratio CtoT 5 Y3 629 362 387 458 939 708 630 1138 215 330 786 130

BIAS RAW MD PSM1 PSM2 PSM3 PSMD1 PSMD2 PSMD3 PSW1 PSW2 PSW3 EB
Ratio CtoT 1 Y1 118 25 1 107 87 40 109 91 1 107 87 0
Ratio CtoT 1 Y2 148 15 2 68 147 33 63 136 1 68 147 1
Ratio CtoT 1 Y3 195 200 15 175 269 284 257 329 6 173 267 18
Ratio CtoT 3 Y1 117 23 2 107 87 37 107 91 3 108 87 0
Ratio CtoT 3 Y2 148 13 2 67 147 31 60 138 4 68 147 1
Ratio CtoT 3 Y3 199 184 18 161 271 266 241 326 22 165 267 14
Ratio CtoT 5 Y1 117 20 −1 107 86 32 104 91 2 107 86 −1
Ratio CtoT 5 Y2 147 10 1 67 147 26 54 138 4 67 147 −0
Ratio CtoT 5 Y3 198 171 6 146 270 246 226 316 22 154 261 3

Sample Design 3: Medium Separation and Leptokurtic Errors
MSE RAW MD PSM1 PSM2 PSM3 PSMD1 PSMD2 PSMD3 PSW1 PSW2 PSW3 EB

Ratio CtoT 1 Y1 218 16 12 239 138 32 233 150 10 234 139 1
Ratio CtoT 1 Y2 343 10 6 103 398 31 108 346 15 115 409 2
Ratio CtoT 1 Y3 1049 794 583 843 1346 1512 1219 1721 506 862 1210 234
Ratio CtoT 3 Y1 216 14 11 237 138 27 227 148 8 234 139 1
Ratio CtoT 3 Y2 341 9 5 104 396 27 99 348 13 116 405 2
Ratio CtoT 3 Y3 1069 680 577 761 1399 1352 1044 1644 512 789 1218 222
Ratio CtoT 5 Y1 224 14 13 249 144 25 232 152 7 246 141 2
Ratio CtoT 5 Y2 343 9 6 108 402 23 92 358 11 118 407 2
Ratio CtoT 5 Y3 1172 655 820 723 1462 1244 1006 1670 524 780 1233 238

BIAS RAW MD PSM1 PSM2 PSM3 PSMD1 PSMD2 PSMD3 PSW1 PSW2 PSW3 EB
Ratio CtoT 1 Y1 146 36 7 150 115 54 150 121 25 151 116 0
Ratio CtoT 1 Y2 184 29 11 98 198 53 101 184 35 105 201 4
Ratio CtoT 1 Y3 301 273 74 247 351 381 339 407 177 274 339 121
Ratio CtoT 3 Y1 145 32 6 149 114 50 147 119 24 151 116 0
Ratio CtoT 3 Y2 184 25 10 98 197 49 96 185 33 106 200 3
Ratio CtoT 3 Y3 302 250 63 217 357 358 309 395 181 263 339 117
Ratio CtoT 5 Y1 146 31 5 151 115 45 147 119 20 154 116 −0
Ratio CtoT 5 Y2 183 23 10 98 197 43 90 186 28 105 199 3
Ratio CtoT 5 Y3 297 237 42 195 351 335 292 388 167 245 333 103

Note: Results show MSE and Bias across 1,000 simulations. Six covariates with a mixture of continuous, binary, and categorical
variables. Experimental factors are: 3 sample designs (sample design 1: strong separation and normal errors; sample design 2: weaker
separation and normal errors; sample design 3: medium separation and leptokurtic errors), 3 outcome designs (Y1 linear: Y 1 =

X1 + X2 + X3 − X4 + X5 + X6 + η; Y2 somewhat non-linear Y 2 = X1 + X2 + 0.2X3X4 −
√
X5 + η; Y3 highly non-linear:

Y 3 = (X1 + X2 + X5)2 + η), and 3 controls-to-treated ratios (Ratio CtoT 1, 3, and 5). Estimators are Raw: Difference of means;
MD: Mahalanobis distance matching, GM: Genetic matching; PSM: Propensity score matching; PSMD: MD matching on the PS and
orthogonalized covariates; PSW: weighting on the PS; EB: entropy balancing. All matching is 1:1 pair matching. We use three
specifications (labeled with a 1, 2, or 3 postfix) for all propensity score based methods (PSM, PSW, PSMD). The first propensity
score model is correct for sample designs 1 and 2, and slightly misspecified for sample design 3. Propensity score models 2 and 3 are
increasing in misspecification (as measured by the linear correlation between the true and the estimated score). 1000 simulations for
each scenario; the true treatment effect is zero.
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Table IV: Results for Monte Carlo Experiment (N=1,500)
Sample Design 1: Strong Separation and Normal Errors

MSE RAW MD PSM1 PSM2 PSM3 PSMD1 PSMD2 PSMD3 PSW1 PSW2 PSW3 EB
Ratio CtoT 1 Y1 318 11 6 343 180 28 327 180 8 342 181 1
Ratio CtoT 1 Y2 496 8 2 147 526 30 134 467 10 146 530 1
Ratio CtoT 1 Y3 952 562 301 1097 1540 1262 1078 1863 488 1060 1498 95
Ratio CtoT 3 Y1 317 9 5 343 181 23 321 180 4 341 180 1
Ratio CtoT 3 Y2 495 6 2 143 522 24 123 468 6 149 524 1
Ratio CtoT 3 Y3 936 475 258 970 1547 1099 960 1833 280 977 1511 75
Ratio CtoT 5 Y1 318 9 5 343 180 20 318 181 4 348 181 1
Ratio CtoT 5 Y2 495 6 2 143 522 20 115 473 5 155 523 1
Ratio CtoT 5 Y3 988 420 263 837 1603 972 875 1833 263 910 1548 81

BIAS RAW MD PSM1 PSM2 PSM3 PSMD1 PSMD2 PSMD3 PSW1 PSW2 PSW3 EB
Ratio CtoT 1 Y1 178 31 3 184 133 52 180 133 3 184 134 0
Ratio CtoT 1 Y2 222 26 6 120 229 54 115 216 5 120 230 2
Ratio CtoT 1 Y3 300 232 44 318 388 352 323 429 30 316 384 54
Ratio CtoT 3 Y1 177 28 3 184 133 47 178 133 9 184 134 −0
Ratio CtoT 3 Y2 222 22 4 119 228 48 109 216 12 121 228 1
Ratio CtoT 3 Y3 296 213 32 297 388 327 304 424 61 304 385 41
Ratio CtoT 5 Y1 177 26 2 183 133 42 176 133 12 185 134 0
Ratio CtoT 5 Y2 222 20 4 118 227 43 105 216 17 123 228 1
Ratio CtoT 5 Y3 297 197 37 266 391 305 287 421 91 291 387 39

Sample Design 2: Weaker Separation and Normal Errors
MSE RAW MD PSM1 PSM2 PSM3 PSMD1 PSMD2 PSMD3 PSW1 PSW2 PSW3 EB

Ratio CtoT 1 Y1 140 4 2 114 77 10 109 81 1 114 77 0
Ratio CtoT 1 Y2 221 2 1 47 219 7 32 197 2 47 220 0
Ratio CtoT 1 Y3 444 238 95 329 774 557 465 972 103 298 734 41
Ratio CtoT 3 Y1 140 4 2 115 78 9 104 82 1 115 77 0
Ratio CtoT 3 Y2 220 1 1 47 221 6 28 201 1 47 219 0
Ratio CtoT 3 Y3 448 206 104 289 754 495 409 954 80 277 731 42
Ratio CtoT 5 Y1 142 4 3 118 80 8 105 86 1 118 79 1
Ratio CtoT 5 Y2 221 2 1 48 222 5 28 205 1 49 220 1
Ratio CtoT 5 Y3 488 186 135 278 782 437 381 952 90 262 738 55

BIAS RAW MD PSM1 PSM2 PSM3 PSMD1 PSMD2 PSMD3 PSW1 PSW2 PSW3 EB
Ratio CtoT 1 Y1 117 18 1 105 87 31 103 89 0 106 87 0
Ratio CtoT 1 Y2 148 10 1 67 147 25 55 139 1 67 148 0
Ratio CtoT 1 Y3 196 150 11 163 271 232 210 308 1 164 267 10
Ratio CtoT 3 Y1 117 16 −0 105 87 28 100 89 2 106 87 −0
Ratio CtoT 3 Y2 148 9 0 67 148 23 51 140 3 68 147 0
Ratio CtoT 3 Y3 196 139 6 152 267 218 195 304 18 158 266 8
Ratio CtoT 5 Y1 117 15 −0 106 87 25 100 91 3 107 87 −0
Ratio CtoT 5 Y2 148 7 0 67 147 20 49 141 4 68 147 −0
Ratio CtoT 5 Y3 196 127 0 136 266 200 184 299 26 150 264 2

Sample Design 3: Medium Separation and Leptokurtic Errors
MSE RAW MD PSM1 PSM2 PSM3 PSMD1 PSMD2 PSMD3 PSW1 PSW2 PSW3 EB

Ratio CtoT 1 Y1 213 8 5 226 133 19 216 143 7 226 137 1
Ratio CtoT 1 Y2 339 5 3 98 390 19 87 354 13 112 403 1
Ratio CtoT 1 Y3 933 491 319 625 1264 1075 845 1468 379 745 1146 160
Ratio CtoT 3 Y1 217 7 5 230 134 17 212 144 6 231 137 0
Ratio CtoT 3 Y2 338 5 2 97 391 16 79 360 12 114 401 1
Ratio CtoT 3 Y3 967 426 291 557 1266 955 719 1450 386 700 1163 154
Ratio CtoT 5 Y1 216 7 6 229 135 15 208 144 5 235 136 1
Ratio CtoT 5 Y2 338 4 2 96 393 13 72 365 9 113 399 1
Ratio CtoT 5 Y3 1004 387 407 463 1307 850 640 1470 397 621 1189 166

BIAS RAW MD PSM1 PSM2 PSM3 PSMD1 PSMD2 PSMD3 PSW1 PSW2 PSW3 EB
Ratio CtoT 1 Y1 145 27 4 149 114 43 146 119 24 149 116 −0
Ratio CtoT 1 Y2 184 21 7 98 197 42 92 188 34 105 200 3
Ratio CtoT 1 Y3 296 218 44 228 350 324 286 380 174 265 335 111
Ratio CtoT 3 Y1 146 25 3 150 115 40 144 119 23 151 117 −0
Ratio CtoT 3 Y2 183 19 7 97 197 39 87 189 33 106 200 3
Ratio CtoT 3 Y3 301 202 34 210 349 305 262 376 178 257 337 109
Ratio CtoT 5 Y1 146 24 4 149 114 36 142 118 20 152 116 −0
Ratio CtoT 5 Y2 183 18 6 96 197 35 82 190 29 105 198 3
Ratio CtoT 5 Y3 298 190 29 176 351 284 242 375 176 239 338 107

Note: Results show MSE and Bias across 1,000 simulations. Six covariates with a mixture of continuous, binary, and categorical
variables. Experimental factors are: 3 sample designs (sample design 1: strong separation and normal errors; sample design 2: weaker
separation and normal errors; sample design 3: medium separation and leptokurtic errors), 3 outcome designs (Y1 linear: Y 1 =

X1 + X2 + X3 − X4 + X5 + X6 + η; Y2 somewhat non-linear Y 2 = X1 + X2 + 0.2X3X4 −
√
X5 + η; Y3 highly non-linear:

Y 3 = (X1 + X2 + X5)2 + η), and 3 controls-to-treated ratios (Ratio CtoT 1, 3, and 5). Estimators are Raw: Difference of means;
MD: Mahalanobis distance matching, GM: Genetic matching; PSM: Propensity score matching; PSMD: MD matching on the PS and
orthogonalized covariates; PSW: weighting on the PS; EB: entropy balancing. All matching is 1:1 pair matching. We use three
specifications (labeled with a 1, 2, or 3 postfix) for all propensity score based methods (PSM, PSW, PSMD). The first propensity
score model is correct for sample designs 1 and 2, and slightly misspecified for sample design 3. Propensity score models 2 and 3 are
increasing in misspecification (as measured by the linear correlation between the true and the estimated score). 1000 simulations for
each scenario; the true treatment effect is zero.

13



T
ab

le
V

:
C

ov
ar

ia
te

B
al

an
ce

in
L

al
on

d
e

D
at

a

R
a
w

D
a
ta

E
n
tr

o
p
y

B
a
la

n
c
in

g
P

S
W

e
ig

h
ti

n
g

M
e
a
n
s

S
td

.
V

a
r

T
M

e
a
n

S
td

.
V

a
r

T
p
v
a
l

M
e
a
n

S
td

.
V

a
r

T
T

re
a
te

d
C

o
n
tr

o
ls

D
iff

s
R

a
ti

o
p
v
a
l

C
o
n
tr

o
ls

D
iff

s
R

a
ti

o
p
v
a
l

C
o
n
tr

o
ls

D
iff

s
V

a
r

R
a
ti

o
p
v
a
l

A
g
e

2
5
.8

2
3
3
.2

3
−

0
.9

5
0
.4

2
0
.0

0
2
5
.8

2
0

1
.0

0
1

2
7
.7

6
−

0
.3

7
0
.9

2
0
.0

1
S
c
h
o
o
li
n
g

1
0
.3

5
1
2
.0

3
−

0
.8

3
0
.4

9
0
.0

0
1
0
.3

5
0

1
.0

0
1

1
0
.2

2
0
.0

9
1
.1

8
0
.5

1
B

la
c
k

0
.8

4
0
.0

7
3
.9

6
1
.9

5
0
.0

0
0
.8

4
0

1
.0

0
1

0
.8

8
−

0
.1

3
1
.2

1
0
.3

6
H

is
p
a
n
ic

0
.0

6
0
.0

7
−

0
.0

7
0
.8

4
0
.4

7
0
.0

6
0

1
.0

0
1

0
.0

4
0
.1

0
1
.3

5
0
.4

7
M

a
rr

ie
d

0
.1

9
0
.7

1
−

1
.6

2
0
.7

5
0
.0

0
0
.1

9
0

1
.0

0
1

0
.1

6
0
.1

2
1
.1

6
0
.3

9
H

S
D

ro
p

o
u
t

0
.7

1
0
.3

0
1
.2

7
1
.0

0
0
.0

0
0
.7

1
0

1
.0

0
1

0
.7

4
−

0
.1

0
1
.0

7
0
.4

9
E

a
rn

in
g
s

1
9
7
4

2
0
9
5
.5

7
1
4
0
2
4
.1

4
−

1
.7

5
0
.2

6
0
.0

0
2
0
9
5
.5

7
0

1
.1

5
1

1
6
8
4
.6

8
0
.1

3
1
.3

6
0
.3

7
E

a
rn

in
g
s

1
9
7
5

1
5
3
2
.0

6
1
3
6
4
2
.5

3
−

1
.8

4
0
.1

2
0
.0

0
1
5
3
2
.0

6
0

0
.9

0
1

1
3
0
7
.0

1
0
.1

0
1
.0

7
0
.4

8
U

n
e
m

p
lo

y
e
d

1
9
7
4

0
.7

1
0
.1

2
2
.5

0
1
.9

7
0
.0

0
0
.7

1
0

1
.0

0
1

0
.7

6
−

0
.1

7
1
.1

3
0
.2

4
U

n
e
m

p
lo

y
e
d

1
9
7
5

0
.6

0
0
.1

1
2
.1

8
2
.4

8
0
.0

0
0
.6

0
0

1
.0

0
1

0
.6

6
−

0
.1

8
1
.0

7
0
.2

2
A

g
e
*
A

g
e

7
1
7
.3

9
1
2
2
5
.9

1
−

0
.9

2
0
.3

0
0
.0

0
7
1
7
.3

9
0

1
.1

3
1

8
2
6
.1

3
−

0
.3

6
1
.0

3
0
.0

1
S
c
h
o
o
li
n
g
*
A

g
e

2
6
6
.9

8
3
9
5
.5

4
−

1
.1

7
0
.3

5
0
.0

0
2
6
6
.9

8
0

1
.0

2
1

2
8
2
.2

0
−

0
.2

4
1
.0

9
0
.0

9
S
c
h
o
o
li
n
g
*
S
c
h
o
o
li
n
g

1
1
1
.0

6
1
5
2
.9

0
−

0
.8

8
0
.3

4
0
.0

0
1
1
1
.0

6
0

1
.0

1
1

1
0
7
.8

2
0
.1

2
1
.1

6
0
.3

9
B

la
c
k
*
A

g
e

2
1
.9

1
2
.4

0
2
.9

7
1
.6

5
0
.0

0
2
1
.9

1
0

1
.0

0
1

2
4
.6

5
−

0
.3

3
1
.0

0
0
.0

2
B

la
c
k
*
S
c
h
o
o
li
n
g

8
.7

0
0
.8

1
3
.5

8
1
.9

9
0
.0

0
8
.7

0
0

1
.0

3
1

8
.9

0
−

0
.0

7
1
.2

5
0
.6

2
H

is
p
a
n
ic

*
A

g
e

1
.3

6
2
.3

8
−

0
.1

6
0
.3

7
0
.0

1
1
.3

6
0

0
.9

7
1

0
.9

6
0
.1

1
1
.3

6
0
.4

5
H

is
p
a
n
ic

*
S
c
h
o
o
li
n
g

0
.5

8
0
.7

3
−

0
.0

7
0
.7

0
0
.4

0
0
.5

8
0

0
.9

4
1

0
.4

2
0
.1

0
1
.2

8
0
.4

8
M

a
rr

ie
d
*
A

g
e

5
.5

6
2
5
.8

5
−

1
.5

5
0
.4

2
0
.0

0
5
.5

6
0

1
.0

4
1

4
.7

1
0
.1

0
1
.1

5
0
.4

6
M

a
rr

ie
d
*
S
c
h
o
o
li
n
g

1
.9

6
8
.5

6
−

1
.5

5
0
.4

9
0
.0

0
1
.9

6
0

0
.9

8
1

1
.5

8
0
.1

4
1
.2

0
0
.3

4
M

a
rr

ie
d
*
B

la
c
k

0
.1

6
0
.0

5
0
.7

4
3
.0

5
0
.0

0
0
.1

6
0

1
.0

0
1

0
.1

3
0
.1

1
1
.1

7
0
.4

4
M

a
rr

ie
d
*
H

is
p
a
n
ic

0
.0

2
0
.0

5
−

0
.2

3
0
.3

2
0
.0

0
0
.0

2
0

1
.0

0
1

0
.0

1
0
.0

3
1
.2

1
0
.8

1
H

S
D

ro
p

o
u
t*

A
g
e

1
7
.9

7
1
0
.0

9
0
.6

5
0
.5

9
0
.0

0
1
7
.9

7
0

0
.9

8
1

2
0
.4

2
−

0
.2

6
0
.8

9
0
.0

7
H

S
D

ro
p

o
u
t*

B
la

c
k

0
.6

1
0
.0

3
4
.2

5
7
.7

4
0
.0

0
0
.6

1
0

1
.0

0
1

0
.6

6
−

0
.1

6
1
.0

7
0
.2

6
H

S
D

ro
p

o
u
t*

H
is

p
a
n
ic

0
.0

5
0
.0

4
0
.0

7
1
.2

5
0
.5

3
0
.0

5
0

1
.0

0
1

0
.0

3
0
.1

0
1
.4

0
0
.4

7
H

S
D

ro
p

o
u
t*

M
a
rr

ie
d

0
.1

4
0
.2

0
−

0
.2

0
0
.7

7
0
.0

3
0
.1

4
0

1
.0

0
1

0
.1

1
0
.1

1
1
.1

9
0
.4

4
E

a
rn

in
g
s

1
9
7
4
*
A

g
e

5
4
0
7
4
.0

4
5
0
9
0
6
9
.2

5
−

1
.5

7
0
.1

0
0
.0

0
5
4
0
7
4
.0

4
0

1
.1

4
1

4
3
9
4
7
.3

9
0
.1

2
1
.3

3
0
.4

1
E

a
rn

in
g
s

1
9
7
4
*
S
c
h
o
o
li
n
g

2
2
8
9
8
.7

3
1
7
1
2
4
1
.5

6
−

1
.6

2
0
.2

0
0
.0

0
2
2
8
9
8
.7

3
0

1
.2

3
1

1
8
1
3
2
.7

8
0
.1

3
1
.5

2
0
.3

7
E

a
rn

in
g
s

1
9
7
4
*
B

la
c
k

1
8
1
7
.2

0
8
4
0
.5

9
0
.3

6
1
.5

4
0
.0

1
1
8
1
7
.2

0
0

1
.2

1
1

1
4
5
1
.4

5
0
.1

2
1
.4

6
0
.4

0
E

a
rn

in
g
s

1
9
7
4
*
H

is
p
a
n
ic

1
5
1
.4

0
8
9
3
.6

8
−

0
.2

6
0
.0

9
0
.0

0
1
5
1
.4

0
0

0
.7

9
1

1
2
6
.1

0
0
.0

3
0
.9

4
0
.8

3
E

a
rn

in
g
s

1
9
7
4
*
M

a
rr

ie
d

7
6
0
.6

3
1
1
8
0
9
.1

5
−

1
.4

8
0
.1

2
0
.0

0
7
6
0
.6

3
0

1
.3

7
1

6
0
8
.5

7
0
.0

7
1
.7

3
0
.6

4
E

a
rn

in
g
s

1
9
7
4
*
H

S
D

ro
p

o
u
t

1
0
9
4
.1

5
3
4
3
2
.6

1
−

0
.4

5
0
.2

1
0
.0

0
1
0
9
4
.1

5
0

1
.0

6
1

8
9
6
.9

4
0
.0

9
1
.2

6
0
.5

4
E

a
rn

in
g
s

1
9
7
5
*
A

g
e

4
1
1
6
7
.2

8
4
8
9
0
4
7
.9

5
−

1
.6

1
0
.0

6
0
.0

0
4
1
1
6
7
.2

8
0

1
.0

0
1

3
5
8
3
2
.8

2
0
.0

8
1
.1

4
0
.5

8
E

a
rn

in
g
s

1
9
7
5
*
S
c
h
o
o
li
n
g

1
5
8
8
0
.5

7
1
6
7
3
1
0
.7

6
−

1
.6

9
0
.0

7
0
.0

0
1
5
8
8
0
.5

7
0

0
.9

3
1

1
3
3
3
2
.8

3
0
.1

1
1
.1

4
0
.4

4
E

a
rn

in
g
s

1
9
7
5
*
B

la
c
k

1
2
5
7
.0

4
8
0
4
.3

2
0
.1

7
0
.6

9
0
.0

5
1
2
5
7
.0

4
0

0
.9

7
1

1
0
8
2
.1

9
0
.0

8
1
.1

4
0
.5

6
E

a
rn

in
g
s

1
9
7
5
*
H

is
p
a
n
ic

1
5
3
.7

3
8
8
4
.9

8
−

0
.2

7
0
.0

7
0
.0

0
1
5
3
.7

3
0

0
.6

5
1

1
2
2
.5

0
0
.0

4
0
.8

8
0
.7

6
E

a
rn

in
g
s

1
9
7
5
*
M

a
rr

ie
d

6
5
4
.3

4
1
1
3
6
6
.0

4
−

1
.4

7
0
.0

8
0
.0

0
6
5
4
.3

4
0

1
.1

4
1

5
4
9
.8

0
0
.0

6
1
.4

2
0
.6

9
E

a
rn

in
g
s

1
9
7
5
*
H

S
D

ro
p

o
u
t

1
1
3
4
.9

6
3
2
9
0
.7

8
−

0
.4

4
0
.1

8
0
.0

0
1
1
3
4
.9

6
0

0
.8

9
1

9
8
3
.5

7
0
.0

7
1
.0

6
0
.6

0
U

n
e
m

p
lo

y
e
d

1
9
7
4
*
A

g
e

1
8
.7

8
3
.6

0
1
.9

7
1
.6

3
0
.0

0
1
8
.7

8
0

0
.9

9
1

2
1
.9

2
−

0
.3

2
0
.9

5
0
.0

2
U

n
e
m

p
lo

y
e
d

1
9
7
4
*
S
c
h
o
o
li
n
g

7
.2

6
1
.4

2
2
.0

4
1
.5

8
0
.0

0
7
.2

6
0

1
.0

1
1

7
.7

1
−

0
.1

3
1
.1

7
0
.3

5
U

n
e
m

p
lo

y
e
d

1
9
7
4
*
B

la
c
k

0
.6

0
0
.0

1
6
.4

4
2
3
.6

3
0
.0

0
0
.6

0
0

1
.0

0
1

0
.6

8
−

0
.2

2
1
.1

0
0
.1

1
U

n
e
m

p
lo

y
e
d

1
9
7
4
*
H

is
p
a
n
ic

0
.0

3
0
.0

1
0
.3

6
3
.7

4
0
.0

7
0
.0

3
0

1
.0

0
1

0
.0

2
0
.1

0
1
.5

5
0
.4

7
U

n
e
m

p
lo

y
e
d

1
9
7
4
*
M

a
rr

ie
d

0
.1

1
0
.0

6
0
.3

3
1
.8

3
0
.0

2
0
.1

1
0

1
.0

0
1

0
.0

9
0
.1

0
1
.2

0
0
.4

9
U

n
e
m

p
lo

y
e
d

1
9
7
4
*
H

S
D

ro
p

o
u
t

0
.5

2
0
.0

5
2
.9

3
5
.2

8
0
.0

0
0
.5

2
0

1
.0

0
1

0
.5

9
−

0
.1

7
1
.0

3
0
.2

2
U

n
e
m

p
lo

y
e
d

1
9
7
4
*
E

a
rn

in
g
s

1
9
7
5

3
0
7
.4

4
1
7
5
.2

7
0
.1

4
0
.6

9
0
.1

2
3
0
7
.4

4
0

0
.5

0
1

3
1
0
.1

5
0
.0

0
0
.5

1
0
.9

8
U

n
e
m

p
lo

y
e
d

1
9
7
5
*
A

g
e

1
5
.9

8
3
.5

7
1
.5

8
1
.7

3
0
.0

0
1
5
.9

8
0

0
.9

9
1

1
9
.2

2
−

0
.3

1
0
.9

1
0
.0

3
U

n
e
m

p
lo

y
e
d

1
9
7
5
*
S
c
h
o
o
li
n
g

6
.1

5
1
.3

3
1
.7

2
1
.8

4
0
.0

0
6
.1

5
0

1
.0

1
1

6
.7

1
−

0
.1

5
1
.1

1
0
.2

8
U

n
e
m

p
lo

y
e
d

1
9
7
5
*
B

la
c
k

0
.5

2
0
.0

1
5
.5

1
2
2
.1

9
0
.0

0
0
.5

2
0

1
.0

0
1

0
.6

0
−

0
.2

2
1
.0

4
0
.1

1
U

n
e
m

p
lo

y
e
d

1
9
7
5
*
H

is
p
a
n
ic

0
.0

3
0
.0

1
0
.3

2
3
.6

1
0
.1

0
0
.0

3
0

1
.0

0
1

0
.0

2
0
.1

0
1
.5

9
0
.4

9
U

n
e
m

p
lo

y
e
d

1
9
7
5
*
M

a
rr

ie
d

0
.0

9
0
.0

6
0
.1

2
1
.3

1
0
.3

0
0
.0

9
0

1
.0

0
1

0
.0

7
0
.0

7
1
.1

7
0
.6

1
U

n
e
m

p
lo

y
e
d

1
9
7
5
*
H

S
D

ro
p

o
u
t

0
.4

3
0
.0

4
2
.8

4
7
.0

8
0
.0

0
0
.4

3
0

1
.0

0
1

0
.5

0
−

0
.1

9
0
.9

8
0
.1

9
U

n
e
m

p
lo

y
e
d

1
9
7
5
*
E

a
rn

in
g
s

1
9
7
4

4
3
.8

5
2
0
3
.6

5
−

0
.1

4
0
.0

8
0
.0

0
4
3
.8

5
0

0
.6

7
1

3
5
.6

8
0
.0

2
0
.7

7
0
.8

7
U

n
e
m

p
lo

y
e
d

1
9
7
5
*
U

n
e
m

p
lo

y
e
d

1
9
7
4

0
.5

9
0
.0

7
2
.6

9
3
.5

6
0
.0

0
0
.5

9
0

1
.0

0
1

0
.6

5
−

0
.1

8
1
.0

7
0
.2

0

N
o
te
:

S
td

.
D

iff
s:

S
ta

n
d
a
rd

iz
e
d

d
iff

e
re

n
c
e

in
m

e
a
n
s.

V
a
r

ra
ti

o
:

R
a
ti

o
o
f

v
a
ri

a
n
c
e
s.

T
-p

v
a
l:

p
-v

a
lu

e
fr

o
m

d
iff

e
re

n
c
e

o
f

m
e
a
n
s

t-
te

st

14



T
ab

le
V

I:
C

ov
ar

ia
te

B
al

an
ce

in
N

ew
s

M
ed

ia
P

er
su

as
io

n
D

at
a

R
a
w

D
a
ta

E
n
tr

o
p
y

B
a
la

n
c
in

g
P

S
W

e
ig

h
ti

n
g

M
e
a
n
s

S
td

.
V

a
r

T
M

e
a
n

S
td

.
V

a
r

T
p
v
a
l

M
e
a
n

S
td

.
V

a
r

T
T

re
a
te

d
C

o
n
tr

o
ls

D
iff

s
R

a
ti

o
p
v
a
l

C
o
n
tr

o
ls

D
iff

s
R

a
ti

o
p
v
a
l

C
o
n
tr

o
ls

D
iff

s
V

a
r

R
a
ti

o
p
v
a
l

P
ri

o
r

C
o
n
se

rv
a
ti

v
e

Id
e
n
ti

fi
c
a
ti

o
n

0
.4

1
0
.4

2
−

0
.0

2
1
.0

0
0
.8

6
0
.4

1
0

1
.0

0
1

0
.4

0
0
.0

4
1
.0

1
0
.7

6
P

ri
o
r

L
a
b

o
u
r

Id
e
n
ti

fi
c
a
ti

o
n

0
.3

4
0
.3

1
0
.0

7
1
.0

4
0
.5

3
0
.3

4
0

1
.0

0
1

0
.3

6
−

0
.0

6
0
.9

7
0
.6

6
P

ri
o
r

L
ib

e
ra

l
Id

e
n
ti

fi
c
a
ti

o
n

0
.1

3
0
.1

5
−

0
.0

8
0
.8

9
0
.4

0
0
.1

3
0

1
.0

0
1

0
.1

4
−

0
.0

1
0
.9

8
0
.9

3
W

h
it

e
0
.9

9
0
.9

8
0
.0

9
0
.6

0
0
.2

9
0
.9

9
0

1
.0

0
1

0
.9

8
0
.0

2
0
.9

2
0
.9

1
W

o
rk

in
g
-C

la
ss

0
.7

2
0
.5

8
0
.3

9
0
.8

4
0
.0

0
0
.7

2
0

1
.0

0
1

0
.7

2
−

0
.0

1
1
.0

1
0
.9

2
P

a
re

n
ts

V
o
te

d
L

a
b

o
u
r

0
.4

4
0
.3

5
0
.2

4
1
.0

8
0
.0

3
0
.4

4
0

1
.0

0
1

0
.4

4
−

0
.0

1
1
.0

0
0
.9

6
P

ri
o
r

Id
e
o
lo

g
ic

a
l

M
o
d
e
ra

ti
o
n

0
.6

5
0
.6

5
−

0
.0

2
0
.9

7
0
.8

8
0
.6

5
0

1
.0

0
1

0
.6

5
0
.0

1
1
.0

1
0
.9

5
P

ri
o
r

L
a
b

o
u
r

V
o
te

0
.3

9
0
.3

2
0
.2

0
1
.0

9
0
.0

7
0
.3

9
0

1
.0

0
1

0
.4

0
−

0
.0

3
0
.9

9
0
.8

3
P

ri
o
r

C
o
n
se

rv
a
ti

v
e

V
o
te

0
.3

9
0
.4

0
−

0
.0

4
0
.9

9
0
.6

8
0
.3

9
0

1
.0

0
1

0
.3

7
0
.0

4
1
.0

1
0
.7

6
P

ri
o
r

L
ib

e
ra

l
V

o
te

0
.1

6
0
.1

9
−

0
.1

2
0
.8

7
0
.2

4
0
.1

6
0

1
.0

0
1

0
.1

6
−

0
.0

1
0
.9

9
0
.9

6
P

ri
o
r

L
a
b

o
u
r

P
a
rt

y
S
u
p
p

o
rt

0
.4

9
0
.4

6
0
.1

1
1
.0

2
0
.3

1
0
.4

9
0

0
.9

6
1

0
.4

9
−

0
.0

3
0
.9

7
0
.8

2
P

ri
o
r

C
o
n
se

rv
a
ti

v
e

P
a
rt

y
S
u
p
p

o
rt

0
.5

2
0
.5

2
0
.0

1
1
.0

0
0
.9

0
0
.5

2
0

0
.9

9
1

0
.5

1
0
.0

5
1
.0

0
0
.7

3
P

ri
o
r

P
o
li
ti

c
a
l

K
n
o
w

le
d
g
e

0
.5

5
0
.6

7
−

0
.4

9
1
.1

4
0
.0

0
0
.5

5
0

1
.0

1
1

0
.5

5
0
.0

0
0
.9

9
0
.9

9
P

ri
o
r

T
e
le

v
is

io
n

V
ie

w
e
r

0
.2

2
0
.2

9
−

0
.2

2
0
.8

3
0
.0

2
0
.2

2
0

1
.0

0
1

0
.2

1
0
.0

3
1
.0

3
0
.8

4
P

ri
o
r

D
a
il
y

N
e
w

sp
a
p

e
r

R
e
a
d
e
r

0
.9

3
0
.6

6
0
.8

2
0
.3

0
0
.0

0
0
.9

3
0

1
.0

0
1

0
.9

3
0
.0

1
0
.9

8
0
.9

4
P

ri
o
r

Id
e
o
lo

g
y

0
.5

5
0
.5

4
0
.1

1
0
.8

5
0
.2

7
0
.5

5
0

1
.0

0
1

0
.5

5
−

0
.0

1
1
.0

2
0
.9

3
A

u
th

o
ri

ta
ri

a
n
is

m
0
.5

8
0
.5

7
0
.0

9
1
.2

9
0
.4

4
0
.5

8
0

1
.4

7
1

0
.5

8
−

0
.0

1
1
.4

4
0
.9

6
P

ri
o
r

T
ra

d
e

U
n
io

n
M

e
m

b
e
r

0
.2

2
0
.2

4
−

0
.0

7
0
.9

4
0
.4

7
0
.2

2
0

1
.0

0
1

0
.2

2
0
.0

1
1
.0

1
0
.9

6
P

ri
o
r

C
o
p
in

g
M

o
rt

g
a
g
e

0
.7

1
0
.6

8
0
.0

8
0
.4

6
0
.3

3
0
.7

1
0

0
.5

1
1

0
.7

1
0
.0

0
0
.4

5
0
.9

9
P

ri
o
r

E
d
u
c
a
ti

o
n

0
.7

5
0
.6

4
0
.4

2
0
.8

1
0
.0

0
0
.7

5
0

1
.0

9
1

0
.7

5
0
.0

0
1
.0

9
1
.0

0
P

ri
o
r

In
c
o
m

e
1
.2

0
1
.2

5
−

0
.0

3
1
.0

7
0
.8

1
1
.2

0
0

1
.0

6
1

1
.2

0
0
.0

0
1
.0

6
0
.9

9
P

ri
o
r

A
g
e

0
.5

1
0
.6

1
−

0
.1

4
0
.3

9
0
.0

6
0
.5

1
0

1
.2

5
1

0
.5

1
0
.0

0
1
.1

4
0
.9

9
M

a
le

0
.4

5
0
.5

6
−

0
.2

9
1
.0

1
0
.0

1
0
.4

5
0

1
.0

0
1

0
.4

5
0
.0

2
1
.0

0
0
.8

6
N

o
rt

h
W

e
st

0
.1

2
0
.0

9
0
.1

6
1
.3

4
0
.1

6
0
.1

2
0

1
.0

0
1

0
.1

3
−

0
.0

4
0
.9

3
0
.7

6
Y

o
rk

s
0
.0

8
0
.0

7
0
.0

3
1
.0

8
0
.7

6
0
.0

8
0

1
.0

0
1

0
.0

7
0
.0

4
1
.0

9
0
.7

8
W

e
st

M
id

la
n
d
s

0
.0

8
0
.0

8
−

0
.0

3
0
.9

4
0
.7

6
0
.0

8
0

1
.0

0
1

0
.0

7
0
.0

2
1
.0

5
0
.8

8
E

a
st

M
id

la
n
d
s

0
.0

7
0
.0

7
−

0
.0

1
0
.9

7
0
.9

0
0
.0

7
0

1
.0

0
1

0
.0

7
−

0
.0

1
0
.9

8
0
.9

5
E

a
st

A
n
g
li
a

0
.0

1
0
.0

3
−

0
.1

6
0
.4

4
0
.0

5
0
.0

1
0

1
.0

0
1

0
.0

1
0
.0

0
1
.0

3
0
.9

7
S
W

E
n
g
la

n
d

0
.0

7
0
.0

8
−

0
.0

5
0
.9

0
0
.6

3
0
.0

7
0

1
.0

0
1

0
.0

7
0
.0

1
1
.0

3
0
.9

3
S
E

E
n
g
la

n
d

0
.1

7
0
.1

7
0
.0

0
1
.0

0
1
.0

0
0
.1

7
0

1
.0

0
1

0
.1

6
0
.0

4
1
.0

6
0
.7

6
G

re
a
te

r
L

o
n
d
o
n

0
.1

1
0
.0

7
0
.2

3
1
.5

7
0
.0

6
0
.1

1
0

1
.0

0
1

0
.1

2
−

0
.0

4
0
.9

3
0
.7

8
W

a
le

s
0
.0

6
0
.0

3
0
.1

7
1
.6

4
0
.1

7
0
.0

6
0

1
.0

0
1

0
.0

5
0
.0

6
1
.1

8
0
.6

8
S
c
o
tl

a
n
d

0
.1

7
0
.2

6
−

0
.2

9
0
.7

4
0
.0

0
0
.1

7
0

1
.0

0
1

0
.1

7
−

0
.0

1
0
.9

9
0
.9

5
P

ro
fe

ss
io

n
:

L
a
rg

e
E

m
p
lo

y
e
r

0
.1

1
0
.1

6
−

0
.1

7
0
.7

6
0
.0

7
0
.1

1
0

1
.0

0
1

0
.1

2
−

0
.0

1
0
.9

9
0
.9

6
P

ro
fe

ss
io

n
:

S
m

a
ll

E
m

p
lo

y
e
r

0
.0

2
0
.0

5
−

0
.1

7
0
.5

0
0
.0

3
0
.0

2
0

1
.0

0
1

0
.0

2
0
.0

0
1
.0

0
1
.0

0
P

ro
fe

ss
io

n
:

S
e
lf

E
m

p
lo

y
e
d

0
.2

9
0
.4

1
−

0
.3

3
0
.8

6
0
.0

0
0
.2

9
0

1
.0

0
1

0
.2

9
0
.0

1
1
.0

1
0
.9

3
P

ro
fe

ss
io

n
:

E
m

p
lo

y
e
e

0
.0

5
0
.0

4
0
.0

6
1
.2

1
0
.5

9
0
.0

5
0

1
.0

0
1

0
.0

5
0
.0

2
1
.0

5
0
.9

1
P

ro
fe

ss
io

n
:

T
e
m

p
o
ra

ry
W

o
rk

e
r

0
.4

5
0
.2

8
0
.5

5
1
.2

4
0
.0

0
0
.4

5
0

1
.0

0
1

0
.4

6
0
.0

0
1
.0

0
0
.9

8
P

ro
fe

ss
io

n
:

J
u
n
io

r
0
.0

4
0
.0

5
−

0
.0

8
0
.7

7
0
.4

1
0
.0

4
0

1
.0

0
1

0
.0

4
−

0
.0

2
0
.9

3
0
.8

8

N
o
te
:

S
td

.
D

iff
s:

S
ta

n
d
a
rd

iz
e
d

d
iff

e
re

n
c
e

in
m

e
a
n
s.

V
a
r

ra
ti

o
:

R
a
ti

o
o
f

v
a
ri

a
n
c
e
s.

T
-p

v
a
l:

p
-v

a
lu

e
fr

o
m

d
iff

e
re

n
c
e

o
f

m
e
a
n
s

t-
te

st

15



T
ab

le
V

II
:

C
ov

ar
ia

te
B

al
an

ce
in

F
ox

N
ew

s
D

at
a

R
a
w

D
a
ta

E
n
tr

o
p
y

B
a
la

n
c
in

g
P

S
W

e
ig

h
ti

n
g

M
e
a
n
s

S
td

.
V

a
r

T
M

e
a
n

S
td

.
V

a
r

T
p
v
a
l

M
e
a
n

S
td

.
V

a
r

T
T

re
a
te

d
C

o
n
tr

o
ls

D
iff

s
R

a
ti

o
p
v
a
l

C
o
n
tr

o
ls

D
iff

s
R

a
ti

o
p
v
a
l

C
o
n
tr

o
ls

D
iff

s
V

a
r

R
a
ti

o
p
v
a
l

N
o
.

o
f

C
a
b
le

C
h
a
n
n
e
ls

2
0
0
0

4
.4

5
2
.4

7
1
.9

1
2
.0

0
0
.0

0
4
.4

5
0

1
.0

0
1

4
.5

1
−

0
.0

5
0
.9

5
0
.2

4
N

o
.

o
f

C
a
b
le

C
h
a
n
n
e
ls

2
0
0
0

S
q
.

2
2
.3

7
7
.4

0
1
.7

8
4
.7

5
0
.0

0
2
2
.3

7
0

1
.1

4
1

2
3
.0

6
−

0
.0

6
1
.0

6
0
.2

2
P

o
p
u
la

ti
o
n

2
0
0
0

1
.1

5
0
.9

2
0
.1

0
0
.9

8
0
.0

1
1
.1

5
0

1
.0

0
1

1
.1

8
−

0
.0

1
0
.9

7
0
.7

7
P

o
p
u
la

ti
o
n

2
0
0
0

S
q
.

1
1
.8

4
1
1
.5

3
0
.0

0
0
.1

7
0
.9

5
1
1
.8

4
0

0
.2

9
1

1
2
.2

3
0
.0

0
0
.1

4
0
.9

6
N

o
.

o
f

P
o
te

n
ti

a
l

C
a
b
le

S
u
b
sc

ri
b

e
rs

2
0
0
0

1
6
.3

6
5
.7

4
1
.0

1
5
.7

2
0
.0

0
1
6
.3

6
0

1
.0

0
1

1
3
.1

2
0
.2

2
2
.1

1
0
.0

0
N

o
.

o
f

P
o
te

n
ti

a
l

C
a
b
le

S
u
b
sc

ri
b

e
rs

2
0
0
0

S
q
.

8
7
5
.8

0
1
3
9
.2

8
0
.5

7
4
2
.3

3
0
.0

0
8
7
5
.8

0
0

4
.6

1
1

4
5
9
.8

2
0
.2

0
1
2
.9

9
0
.0

0
F
ra

c
ti

o
n

w
.

H
S

D
e
g
re

e
2
0
0
0

0
.3

6
0
.3

7
−

0
.1

8
1
.2

0
0
.0

0
0
.3

6
0

1
.0

0
1

0
.3

6
−

0
.0

6
1
.1

1
0
.2

0
F
ra

c
ti

o
n

w
.

H
S

D
e
g
re

e
2
0
0
0

S
q
.

0
.1

4
0
.1

5
−

0
.1

4
1
.2

0
0
.0

0
0
.1

4
0

1
.0

3
1

0
.1

4
−

0
.0

4
1
.1

5
0
.4

3
F
ra

c
ti

o
n

w
.

S
o
m

e
C

o
ll
e
g
e

2
0
0
0

0
.2

6
0
.2

6
0
.0

5
0
.9

7
0
.1

4
0
.2

6
0

1
.0

0
1

0
.2

6
0
.0

4
0
.9

1
0
.3

6
F
ra

c
ti

o
n

w
.

S
o
m

e
C

o
ll
e
g
e

2
0
0
0

S
q
.

0
.0

7
0
.0

7
0
.0

5
0
.9

5
0
.1

8
0
.0

7
0

0
.8

7
1

0
.0

7
0
.0

2
0
.7

0
0
.6

1
F
ra

c
ti

o
n

w
.

C
o
ll
e
g
e

D
e
g
re

e
2
0
0
0

0
.2

2
0
.1

9
0
.3

3
1
.3

1
0
.0

0
0
.2

2
0

1
.0

0
1

0
.2

1
0
.0

9
1
.1

3
0
.0

5
F
ra

c
ti

o
n

w
.

C
o
ll
e
g
e

D
e
g
re

e
2
0
0
0

S
q
.

0
.0

7
0
.0

5
0
.2

9
1
.4

8
0
.0

0
0
.0

7
0

0
.9

8
1

0
.0

6
0
.1

0
1
.1

3
0
.0

4
F
ra

c
ti

o
n

M
a
le

2
0
0
0

0
.4

9
0
.4

9
−

0
.0

9
0
.8

6
0
.0

1
0
.4

9
0

1
.0

0
1

0
.4

9
0
.0

4
1
.0

0
0
.3

6
F
ra

c
ti

o
n

M
a
le

2
0
0
0

S
q
.

0
.2

4
0
.2

5
−

0
.0

9
0
.8

5
0
.0

1
0
.2

4
0

1
.0

7
1

0
.2

4
0
.0

4
1
.0

6
0
.3

9
F
ra

c
ti

o
n

B
la

c
k

2
0
0
0

0
.0

3
0
.0

3
−

0
.0

5
0
.7

0
0
.1

1
0
.0

3
0

1
.0

0
1

0
.0

3
0
.0

2
1
.2

3
0
.6

0
F
ra

c
ti

o
n

B
la

c
k

2
0
0
0

S
q
.

0
.0

1
0
.0

1
−

0
.0

8
0
.6

1
0
.0

1
0
.0

1
0

0
.9

6
1

0
.0

1
0
.0

4
1
.3

0
0
.3

6
F
ra

c
ti

o
n

H
is

p
a
n
ic

2
0
0
0

0
.0

3
0
.0

3
0
.0

8
0
.9

8
0
.0

2
0
.0

3
0

1
.0

0
1

0
.0

3
0
.0

2
0
.9

5
0
.6

1
F
ra

c
ti

o
n

H
is

p
a
n
ic

2
0
0
0

S
q
.

0
.0

1
0
.0

1
0
.0

1
0
.8

2
0
.8

6
0
.0

1
0

1
.0

7
1

0
.0

1
−

0
.0

1
0
.9

6
0
.8

7
F
ra

c
ti

o
n

E
m

p
lo

y
e
d

2
0
0
0

0
.6

1
0
.6

1
0
.0

2
0
.9

6
0
.5

3
0
.6

1
0

1
.0

0
1

0
.6

0
0
.1

8
0
.9

7
0
.0

0
F
ra

c
ti

o
n

E
m

p
lo

y
e
d

2
0
0
0

S
q
.

0
.3

8
0
.3

8
0
.0

2
0
.9

6
0
.6

0
0
.3

8
0

1
.0

2
1

0
.3

7
0
.1

9
1
.0

3
0
.0

0
U

n
e
m

p
lo

y
m

e
n
t

R
a
te

2
0
0
0

0
.0

5
0
.0

5
−

0
.0

3
1
.0

3
0
.3

9
0
.0

5
0

1
.0

0
1

0
.0

5
−

0
.1

3
0
.9

1
0
.0

0
U

n
e
m

p
lo

y
m

e
n
t

R
a
te

2
0
0
0

S
q
.

0
.0

0
0
.0

0
−

0
.0

1
1
.7

1
0
.8

8
0
.0

0
0

1
.4

0
1

0
.0

0
−

0
.0

7
1
.4

6
0
.1

4
F
ra

c
ti

o
n

M
a
rr

ie
d

2
0
0
0

0
.6

1
0
.6

1
−

0
.0

4
1
.1

9
0
.3

2
0
.6

1
0

1
.0

0
1

0
.6

1
0
.0

0
1
.0

2
0
.9

3
F
ra

c
ti

o
n

M
a
rr

ie
d

2
0
0
0

S
q
.

0
.3

8
0
.3

8
−

0
.0

2
1
.1

7
0
.5

4
0
.3

8
0

1
.0

4
1

0
.3

8
0
.0

0
1
.0

2
0
.9

6
M

e
d
ia

n
In

c
o
m

e
2
0
0
0

4
.4

4
3
.9

9
0
.3

5
1
.4

7
0
.0

0
4
.4

4
0

1
.0

0
1

4
.2

5
0
.1

3
1
.2

2
0
.0

1
M

e
d
ia

n
In

c
o
m

e
2
0
0
0

S
q
.

2
4
.0

3
1
8
.9

0
0
.3

2
2
.0

2
0
.0

0
2
4
.0

3
0

1
.0

2
1

2
1
.6

3
0
.1

3
1
.2

9
0
.0

1
F
ra

c
ti

o
n

U
rb

a
n

2
0
0
0

0
.5

4
0
.3

7
0
.5

3
1
.0

8
0
.0

0
0
.5

4
0

1
.0

0
1

0
.5

3
0
.0

3
1
.0

0
0
.5

4
F
ra

c
ti

o
n

U
rb

a
n

2
0
0
0

S
q
.

0
.4

9
0
.3

2
0
.5

4
1
.1

8
0
.0

0
0
.4

9
0

1
.0

1
1

0
.4

8
0
.0

3
1
.0

2
0
.5

0
P

o
p
u
la

ti
o
n

2
0
0
0
-1

9
9
0

0
.0

8
0
.0

7
0
.0

3
1
.2

5
0
.3

8
0
.0

8
0

1
.0

0
1

0
.0

6
0
.0

8
1
.4

1
0
.0

9
P

o
p
u
la

ti
o
n

2
0
0
0
-1

9
9
0

S
q
.

0
.1

5
0
.1

2
0
.0

3
0
.7

9
0
.4

7
0
.1

5
0

1
.1

3
1

0
.1

0
0
.0

4
1
.2

5
0
.3

6
F
ra

c
ti

o
n

w
.

H
S

D
e
g
re

e
2
0
0
0
-1

9
9
0

−
0
.0

1
0
.0

0
−

0
.1

1
0
.9

7
0
.0

0
−

0
.0

1
0

1
.0

0
1

−
0
.0

1
−

0
.0

2
1
.0

7
0
.7

1
F
ra

c
ti

o
n

w
.

H
S

D
e
g
re

e
2
0
0
0
-1

9
9
0

S
q
.

0
.0

0
0
.0

0
0
.0

0
0
.5

3
0
.9

3
0
.0

0
0

0
.5

4
1

0
.0

0
0
.0

3
0
.8

2
0
.5

2
F
ra

c
ti

o
n

w
.

S
o
m

e
C

o
ll
e
g
e

2
0
0
0
-1

9
9
0

0
.0

3
0
.0

4
−

0
.2

0
0
.9

0
0
.0

0
0
.0

3
0

1
.0

0
1

0
.0

4
−

0
.0

3
1
.1

1
0
.4

7
F
ra

c
ti

o
n

w
.

S
o
m

e
C

o
ll
e
g
e

2
0
0
0
-1

9
9
0

S
q
.

0
.0

0
0
.0

0
−

0
.1

6
0
.6

7
0
.0

0
0
.0

0
0

0
.9

2
1

0
.0

0
0
.0

4
1
.1

1
0
.4

5
F
ra

c
ti

o
n

w
.

C
o
ll
e
g
e

D
e
g
re

e
2
0
0
0
-1

9
9
0

0
.0

4
0
.0

4
0
.1

6
1
.1

4
0
.0

0
0
.0

4
0

1
.0

0
1

0
.0

4
0
.0

5
1
.1

2
0
.2

7
F
ra

c
ti

o
n

w
.

C
o
ll
e
g
e

D
e
g
re

e
2
0
0
0
-1

9
9
0

S
q
.

0
.0

0
0
.0

0
0
.1

5
1
.4

0
0
.0

0
0
.0

0
0

1
.0

9
1

0
.0

0
0
.0

8
1
.2

0
0
.1

1
F
ra

c
ti

o
n

M
a
le

2
0
0
0
-1

9
9
0

0
.0

0
0
.0

0
−

0
.0

5
0
.9

7
0
.1

6
0
.0

0
0

1
.0

0
1

0
.0

0
0
.0

2
1
.2

9
0
.7

5
F
ra

c
ti

o
n

M
a
le

2
0
0
0
-1

9
9
0

S
q
.

0
.0

0
0
.0

0
−

0
.0

1
0
.7

5
0
.8

2
0
.0

0
0

1
.0

5
1

0
.0

0
0
.0

6
1
.8

9
0
.2

1
F
ra

c
ti

o
n

B
la

c
k

2
0
0
0
-1

9
9
0

0
.0

0
0
.0

0
−

0
.0

4
0
.9

3
0
.2

8
0
.0

0
0

1
.0

0
1

0
.0

0
−

0
.0

1
1
.2

3
0
.8

6
F
ra

c
ti

o
n

B
la

c
k

2
0
0
0
-1

9
9
0

S
q
.

0
.0

0
0
.0

0
−

0
.0

2
0
.8

3
0
.6

6
0
.0

0
0

1
.0

5
1

0
.0

0
0
.0

4
1
.8

4
0
.3

9
F
ra

c
ti

o
n

H
is

p
a
n
ic

2
0
0
0
-1

9
9
0

0
.0

1
0
.0

1
0
.1

4
1
.3

5
0
.0

0
0
.0

1
0

1
.0

0
1

0
.0

1
0
.0

4
1
.0

6
0
.4

3
F
ra

c
ti

o
n

H
is

p
a
n
ic

2
0
0
0
-1

9
9
0

S
q
.

0
.0

0
0
.0

0
0
.1

0
1
.6

3
0
.0

2
0
.0

0
0

1
.0

4
1

0
.0

0
0
.0

2
1
.3

3
0
.6

3
F
ra

c
ti

o
n

E
m

p
lo

y
e
d

2
0
0
0
-1

9
9
0

0
.0

1
0
.0

1
−

0
.0

9
1
.0

9
0
.0

2
0
.0

1
0

1
.0

0
1

0
.0

1
0
.0

0
1
.1

8
0
.9

4
F
ra

c
ti

o
n

E
m

p
lo

y
e
d

2
0
0
0
-1

9
9
0

S
q
.

0
.0

0
0
.0

0
0
.0

2
1
.0

5
0
.5

3
0
.0

0
0

0
.9

8
1

0
.0

0
0
.0

6
1
.6

5
0
.1

9
U

n
e
m

p
lo

y
m

e
n
t

R
a
te

2
0
0
0
-1

9
9
0

−
0
.0

1
−

0
.0

1
0
.0

8
0
.9

2
0
.0

3
−

0
.0

1
0

1
.0

0
1

−
0
.0

1
−

0
.0

7
1
.0

5
0
.1

6
U

n
e
m

p
lo

y
m

e
n
t

R
a
te

2
0
0
0
-1

9
9
0

S
q
.

0
.0

0
0
.0

0
−

0
.0

2
0
.4

7
0
.5

2
0
.0

0
0

0
.5

6
1

0
.0

0
0
.0

2
0
.8

3
0
.7

4
F
ra

c
ti

o
n

M
a
rr

ie
d

2
0
0
0
-1

9
9
0

−
0
.0

2
−

0
.0

2
0
.0

5
0
.9

5
0
.1

4
−

0
.0

2
0

1
.0

0
1

−
0
.0

2
0
.0

5
1
.1

1
0
.2

9
F
ra

c
ti

o
n

M
a
rr

ie
d

2
0
0
0
-1

9
9
0

S
q
.

0
.0

0
0
.0

0
−

0
.0

2
0
.5

7
0
.5

7
0
.0

0
0

0
.8

3
1

0
.0

0
0
.0

2
0
.8

5
0
.6

7
M

e
d
ia

n
In

c
o
m

e
2
0
0
0
-1

9
9
0

1
.3

2
1
.2

3
0
.1

7
1
.3

0
0
.0

0
1
.3

2
0

1
.0

0
1

1
.2

4
0
.1

5
1
.3

0
0
.0

0
M

e
d
ia

n
In

c
o
m

e
2
0
0
0
-1

9
9
0

S
q
.

2
.4

5
2
.0

5
0
.1

5
1
.5

8
0
.0

0
2
.4

5
0

0
.9

8
1

2
.0

7
0
.1

4
1
.6

8
0
.0

0
F
ra

c
ti

o
n

U
rb

a
n

2
0
0
0
-1

9
9
0

0
.0

8
0
.0

8
−

0
.0

3
1
.0

1
0
.4

9
0
.0

8
0

1
.0

0
1

0
.0

9
−

0
.0

4
1
.0

1
0
.3

7
F
ra

c
ti

o
n

U
rb

a
n

2
0
0
0
-1

9
9
0

S
q
.

0
.0

6
0
.0

6
0
.0

0
1
.0

8
0
.9

8
0
.0

6
0

1
.0

2
1

0
.0

6
0
.0

0
1
.0

4
0
.9

4

N
o
te
:

S
td

.
D

iff
s:

S
ta

n
d
a
rd

iz
e
d

d
iff

e
re

n
c
e

in
m

e
a
n
s.

V
a
r

ra
ti

o
:

R
a
ti

o
o
f

v
a
ri

a
n
c
e
s.

T
-p

v
a
l:

p
-v

a
lu

e
fr

o
m

d
iff

e
re

n
c
e

o
f

m
e
a
n
s

t-
te

st

16



T
ab

le
V

II
I:

C
ov

ar
ia

te
s

B
al

an
ce

in
C

on
se

rv
at

iv
e

C
an

d
id

at
es

D
at

a
R

a
w

D
a
ta

E
n
tr

o
p
y

B
a
la

n
c
in

g
P

S
W

e
ig

h
ti

n
g

M
e
a
n
s

S
td

.
V

a
r

T
M

e
a
n

S
td

.
V

a
r

T
p
v
a
l

M
e
a
n

S
td

.
V

a
r

T
T

re
a
te

d
C

o
n
tr

o
ls

D
iff

s
R

a
ti

o
p
v
a
l

C
o
n
tr

o
ls

D
iff

s
R

a
ti

o
p
v
a
l

C
o
n
tr

o
ls

D
iff

s
V

a
r

R
a
ti

o
p
v
a
l

Y
e
a
r

o
f

B
ir

th
1
9
1
6
.5

7
1
9
1
8
.3

4
−

0
.2

9
0
.8

7
0
.1

3
1
9
1
6
.5

7
0

1
.1

2
1

1
9
1
6
.2

2
0
.0

6
1
.0

3
0
.7

7
Y

e
a
r

o
f

D
e
a
th

1
9
9
5
.4

8
1
9
9
5
.0

3
0
.1

0
0
.9

8
0
.6

0
1
9
9
5
.4

8
0

0
.9

4
1

1
9
9
6
.0

0
−

0
.1

1
0
.9

4
0
.5

6
F
e
m

a
le

0
.0

3
0
.0

6
−

0
.2

1
0
.5

0
0
.2

7
0
.0

3
0

1
.0

0
1

0
.0

4
−

0
.0

7
0
.7

7
0
.7

1
T

e
a
c
h
e
r

0
.0

2
0
.0

5
−

0
.2

4
0
.3

9
0
.2

0
0
.0

2
0

1
.0

0
1

0
.0

2
−

0
.0

4
0
.8

2
0
.8

3
B

a
rr

is
te

r
0
.1

2
0
.1

5
−

0
.1

1
0
.8

5
0
.5

5
0
.1

2
0

1
.0

0
1

0
.1

0
0
.1

1
1
.2

2
0
.5

6
S
o
li
c
it

o
r

0
.0

6
0
.0

8
−

0
.1

5
0
.7

0
0
.4

3
0
.0

6
0

1
.0

0
1

0
.0

4
0
.1

5
1
.5

7
0
.4

6
D

o
c
to

r
0
.0

2
0
.0

3
−

0
.1

3
0
.5

8
0
.5

0
0
.0

2
0

1
.0

0
1

0
.0

3
−

0
.0

9
0
.6

6
0
.6

4
C

iv
il

S
e
rv

a
n
t

0
.0

2
0
.0

1
0
.1

3
2
.2

5
0
.5

0
0
.0

2
0

1
.0

0
1

0
.0

1
0
.0

7
1
.4

6
0
.7

3
L

o
c
a
l

P
o
li
ti

c
ia

n
0
.2

1
0
.2

0
0
.0

3
1
.0

3
0
.8

8
0
.2

1
0

1
.0

0
1

0
.2

0
0
.0

5
1
.0

5
0
.7

9
B

u
si

n
e
ss

0
.1

4
0
.2

6
−

0
.4

1
0
.6

4
0
.0

3
0
.1

4
0

1
.0

0
1

0
.1

3
0
.0

7
1
.1

1
0
.7

3
W

h
it

e
C

o
ll
a
r

0
.1

1
0
.1

4
−

0
.1

3
0
.8

1
0
.5

0
0
.1

1
0

1
.0

0
1

0
.1

5
−

0
.2

0
0
.7

3
0
.3

1
J
o
u
rn

a
li
st

0
.0

5
0
.0

8
−

0
.2

1
0
.5

9
0
.2

7
0
.0

5
0

1
.0

0
1

0
.0

4
0
.0

9
1
.3

3
0
.6

5
S
c
h
o
o
li
n
g
:

E
to

n
0
.2

0
0
.0

3
0
.7

5
4
.9

3
0
.0

0
0
.2

0
0

1
.0

0
1

0
.2

1
−

0
.0

2
0
.9

8
0
.9

3
S
c
h
o
o
li
n
g
:

P
u
b
li

c
0
.3

8
0
.4

7
−

0
.2

6
0
.9

5
0
.1

8
0
.3

8
0

1
.0

0
1

0
.4

2
−

0
.1

0
0
.9

7
0
.6

2
S
c
h
o
o
li
n
g
:

R
e
g
u
la

r
0
.1

9
0
.3

8
−

0
.5

9
0
.6

6
0
.0

0
0
.1

9
0

1
.0

0
1

0
.1

8
0
.0

4
1
.0

5
0
.8

3
S
c
h
o
o
li
n
g
:

N
o
t

re
p

o
rt

e
d

0
.2

2
0
.1

1
0
.4

2
1
.7

6
0
.0

3
0
.2

2
0

1
.0

0
1

0
.1

9
0
.1

0
1
.1

0
0
.6

3
U

n
iv

e
rs

it
y
:

O
x
b
ri

d
g
e

0
.3

7
0
.3

0
0
.2

1
1
.1

1
0
.2

8
0
.3

7
0

1
.0

0
1

0
.3

3
0
.1

1
1
.0

5
0
.5

7
U

n
iv

e
rs

it
y
:

D
e
g
re

e
0
.2

8
0
.3

1
−

0
.1

1
0
.9

4
0
.5

7
0
.2

8
0

1
.0

0
1

0
.3

3
−

0
.1

6
0
.9

1
0
.4

1
U

n
iv

e
rs

it
y
:

N
o
t

re
p

o
rt

e
d

0
.3

6
0
.3

9
−

0
.1

0
0
.9

6
0
.6

0
0
.3

6
0

1
.0

0
1

0
.3

4
0
.0

5
1
.0

2
0
.8

1
A

ri
st

o
c
ra

t
0
.1

0
0
.0

2
0
.4

9
5
.2

2
0
.0

1
0
.1

0
0

1
.0

0
1

0
.0

7
0
.1

3
1
.3

2
0
.5

1

N
o
te
:

S
td

.
D

iff
s:

S
ta

n
d
a
rd

iz
e
d

d
iff

e
re

n
c
e

in
m

e
a
n
s.

V
a
r

ra
ti

o
:

R
a
ti

o
o
f

v
a
ri

a
n
c
e
s.

T
-p

v
a
l:

p
-v

a
lu

e
fr

o
m

d
iff

e
re

n
c
e

o
f

m
e
a
n
s

t-
te

st

17



VII. Figures

Figure 1: Covariate Balance: QQ plots of Continuous Covariates
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Note: QQ plots of pretreatment earnings in 1975 and 1974, age, and education. The black dots represent empirical QQ estimates for the raw
data. The gray dots represent QQ estimates for the matched data. The superimposed 45-degree line indicates identical distributions for the
treatment and control group.
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Figure 3: Covariate Balance in Fox News Data

standardized difference in means

Fraction Urban 2000−1990 Sq.
Fraction Urban 2000−1990

Median Income 2000−1990 Sq.
Median Income 2000−1990

Fraction Married 2000−1990 Sq.
Fraction Married 2000−1990

Unemployment Rate 2000−1990 Sq.
Unemployment Rate 2000−1990

Fraction Employed 2000−1990 Sq.
Fraction Employed 2000−1990

Fraction Hispanic 2000−1990 Sq.
Fraction Hispanic 2000−1990

Fraction Black 2000−1990 Sq.
Fraction Black 2000−1990

Fraction Male 2000−1990 Sq.
Fraction Male 2000−1990

Fraction w. College Degree 2000−1990 Sq.
Fraction w. College Degree 2000−1990

Fraction w. Some College 2000−1990 Sq.
Fraction w. Some College 2000−1990

Fraction w. HS Degree 2000−1990 Sq.
Fraction w. HS Degree 2000−1990

Population 2000−1990 Sq.
Population 2000−1990

Fraction Urban 2000 Sq.
Fraction Urban 2000

Median Income 2000 Sq.
Median Income 2000

Fraction Married 2000 Sq.
Fraction Married 2000

Unemployment Rate 2000 Sq.
Unemployment Rate 2000

Fraction Employed 2000 Sq.
Fraction Employed 2000

Fraction Hispanic 2000 Sq.
Fraction Hispanic 2000

Fraction Black 2000 Sq.
Fraction Black 2000

Fraction Male 2000 Sq.
Fraction Male 2000

Fraction w. College Degree 2000 Sq.
Fraction w. College Degree 2000

Fraction w. Some College 2000 Sq.
Fraction w. Some College 2000

Fraction w. HS Degree 2000 Sq.
Fraction w. HS Degree 2000

No. of Potential Cable Subscribers 2000 Sq.
No. of Potential Cable Subscribers 2000

Population 2000 Sq.
Population 2000

No. of Cable Channels 2000 Sq.
No. of Cable Channels 2000

−.5 −.1 0 .1 .5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Unadjusted
MahaDist Matching
Genetic Matching
PS Matching
PS Weighting
Entropy Balancing

●

●

p−value: difference of means test
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Note: Left panel shows plot of covariate-by-covariate standardized bias in the unadjusted data and after the various preprocessing methods.
The standardized bias measures the difference in means between the treatment and control group (scaled by the standard deviation). Zero bias
indicates identical means, dots to the right (left) of zero indicate a higher mean among the treatment (control) group. The right panel shows the
p-value for a covariate-by-covariate t-test for the differences in means after the unadjusted data and after the various preprocessing methods.
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Figure 4: Model Dependency in Fox News Data
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Note: Density of estimated treatment effects across one million randomly samples model specifications in the unadjusted data (dashed line) and
the data preprocessed with entropy balancing (solid line).
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Figure 5: Covariate Balance in Fox News Data - Using Only the Raw Covariates (Stan-
dardized Bias)

standardized difference in means
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Note: Covariate-by-covariate standardized bias in the unadjusted data and after the various preprocessing methods. The standardized bias
measures the difference in means between the treatment and control group (scaled by the standard deviation). Zero bias indicates identical
means, dots to the right (left) of zero indicate a higher mean among the treatment (control) group.
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Figure 6: Covariate Balance in Fox News Data - Using only the Raw Covariates (p-values)

p−value: difference of means test

Fraction Urban 2000−1990

Median Income 2000−1990

Fraction Married 2000−1990

Unemployment Rate 2000−1990

Fraction Employed 2000−1990

Fraction Hispanic 2000−1990

Fraction Black 2000−1990

Fraction Male 2000−1990

Fraction w. College Degree 2000−1990

Fraction w. Some College 2000−1990

Fraction w. HS Degree 2000−1990

Population 2000−1990

Fraction Urban 2000

Median Income 2000

Fraction Married 2000

Unemployment Rate 2000

Fraction Employed 2000

Fraction Hispanic 2000

Fraction Black 2000

Fraction Male 2000

Fraction w. College Degree 2000

Fraction w. Some College 2000

Fraction w. HS Degree 2000

No. of Potential Cable Subscribers 2000

Population 2000

No. of Cable Channels 2000

0 .1 .2 .5 1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Unadjusted
MahaDist Matching
Genetic Matching
PS Matching
PS Weighting
Entropy Balancing

●

●

Note: p-values for a covariate-by-covariate t-test for the differences in means in the unadjusted data and after the various preprocessing methods.
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Figure 7: Covariates Balance in British MPs Data (Standardized Bias)

standardized difference in means
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Note: Covariate-by-covariate standardized bias in the unadjusted data and after the various preprocessing methods. The standardized bias
measures the difference in means between the treatment and control group (scaled by the standard deviation). Zero bias indicates identical
means, dots to the right (left) of zero indicate a higher mean among the treatment (control) group.
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Figure 8: Covariates Balance in British MPs Data (p-values)

p−value: difference of means test
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Note: p-values for a covariate-by-covariate t-test for the differences in means after the unadjusted data and after the various preprocessing
methods.
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