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Compartments: State Diagram

RM S E I

M : maternal protection

S: susceptible

E: exposed

I: infected

R: removed
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A Simple Model of An Infectious Disease

Consider a closed population population of N individuals

There are two states:

• Susceptible

• Infected

Initially I0 are infected

N − I0 are therefore susceptible

We assume the population is well mixed

The probability that a susceptible and infectious individual meet is proportional to
their abundances, with effective transmission rate β
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Simple Epidemic Continued

Write s = S/N and i = I/N

di

dt
= βi(1− i). (1)

To calculate the number infected at time t, i(t), integrate this equation from time
zero to time t, yielding:

i(t) =
1

1 + 1−i0
i0

e−βt
(2)

This equation yields what is known as the epidemic curve
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epi.curve <- expression(1/(1+ (exp(-beta*t)*(1-a0)/a0)))
a0 <- .01
beta <- 0.1
t <- seq(0,100,1)
plot(t,eval(epi.curve),type="l",col="blue",

xlab="Time", ylab="Cumulative Fraction Infected")
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Interpreting the Epidemic Curve

This figure plots the cumulative prevalence of the infection

We might also want to know about the shape of the incidence of infection, that is,
the number of new cases per unit time

a <- eval(epi.curve)
b <- diff(a)
plot(1:100,b,type="l",col="blue",

xlab="Time", ylab="Incident Fraction Infected")
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More Interpretations of the Epidemic Curve

This is the classic epidemic curve

The epidemic curve is “bell-shaped”, but not completely symmetric

There is a greater force of infection early on

Note that in the limit t →∞, everyone in the population becomes infected
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Real Curves Are a Bit More Messy
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General Epidemic: The Basic SIR Model

A population is comprised of three compartments:

Susceptible Segment not yet infected, disease-free (S)
Infected Segment infected and infectious (I)
Removed Recovered (usually) with lifelong immunity (R)

Model Assumptions:

1. Constant (closed) population size
2. Constant rates (e.g., transmission, removal rates)
3. No demography (i.e., births and deaths)
4. Well-mixed population
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SIR Continued

Write s = S/N , i = I/N , r = R/N

ds

dt
= −βsi (3)

di

dt
= βsi− νi (4)

dr

dt
= νi (5)

where,

β effective contact rate
ν removal rate
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Numerical Solution of the SIR Model

Use R library odesolve

write a function that we will call sir

function takes three arguments y, t, and p, for the initial conditions, time scope,
and parameter values respectively

Create list of parameters pars, which contains the two parameters of the model β
and ν

library(odesolve)
pars <- c("beta"=0.05,"nu"=0.075)
times <- seq(0,10,0.1)
y0 <- c(100,1,0)

sir <- function(t,y,p) {
yd1 <- -p["beta"] * y[1]*y[2]
yd2 <- p["beta"] * y[1]* y[2] - p["nu"]*y[2]
yd3 <- p["nu"]*y[2]
list(c(yd1,yd2,yd3),c(N=sum(y)))

}
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sir.out <- lsoda(y0,times,sir,pars)

sir.out
time 1 2 3 N

[1,] 0.0 1.000000e+02 1.000000 0.000000000 101
[2,] 0.1 9.935633e+01 1.633984 0.009686266 101
[3,] 0.2 9.831563e+01 2.658889 0.025480797 101
[4,] 0.3 9.665093e+01 4.297969 0.051096592 101
[5,] 0.4 9.403313e+01 6.874588 0.092284864 101
[6,] 0.5 9.002495e+01 10.817430 0.157625403 101

...

plot the results of this solution

plot(sir.out[,1],sir.out[,2],type="l",col="blue",xlab="Time",
ylab="Compartment Size")

lines(sir.out[,1],sir.out[,3],col="green")
lines(sir.out[,1],sir.out[,4],col="red")
legend(8,90,c("S","I","R"),col=c("blue","green","red"),lty=c(1,1,1))
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Conditions for an Epidemic

An epidemic occurs if the number of infecteds increases, i.e., di/dt > 0

βsi− νi > 0

βsi

ν
> i

At the outset of an epidemic, s ≈ 1

β

ν
= R0 > 1
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Basic Reproduction Number

R0 is the basic reproduction number of the epidemic

. Basic Reproduction Number (R0): the expected number of secondary infections generated

by a single, typical infection in a completely susceptible population

Note that Hethcote (2000) refers to the quantity β/ν as σ, the “contact rate”

In general

R0 ≥ σ ≥ R

where R is the reproduction number at some time other than the outset of the
epidemic

When we model fractions of infected individuals in a closed population (i.e., i = I/N
instead of I) R0 = σ

When we model I, R0 = βN
ν
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Simplifying the System (a bit)

Anderson & May (1991) note that the above system of equations can be re-written
in terms of the force of infection

Since S + I + R = N , the equation 5 is again redundant

Anderson & May (1991) also note that it is frequently convenient to think about
epidemics in terms of proportions of the population susceptible, infected, etc.

Write x = S/N and y = I/N

Now, A&M show that we can re-write equations 4 and 5 as:

dx

dt
= µ− (µ + λ(t))x(t) (6)

dλ

dt
= (ν + µ) λ(t) (R0x(t)− 1) (7)
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where we write the combination of parameters

βN

ν + µ
= R0

This, of course, is the basic reproduction number again

and N = 1 in our system
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Deriving the Anderson & May Parameterization

We start out with the initial parameterization, just scaled to represent fractions of
the population susceptible and infectious (x = S/N and y = I/N)

dx

dt
= µ− βxy − µx (8)

dy

dt
= βxy − (ν + µ)y (9)

Now replace λ = βy, noting again that R0 = β/(µ + ν)

While it is important to note that x and the force of infection will definitely be
functions of time (i.e., x(t), λ(t)), we drop the the t’s for notational simplicity

dx

dt
= µ− x(λ− µ) (10)
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dy

dt
= λ(x− 1

R0
) (11)

Need to note that λ̇ = βẏ, so we need to multiply through by β

Therefore, multiply by R0(ν + µ) = β (since we are trying to get rid of β and put
all the equations in terms of λ, the force of infection)

After a little bit of algebra, we find that this recovers the equation 7
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Early Growth of the Epidemic

We’d like to know what happens to an epidemic following the introduction of a
pathogen

We assume that the innoculum for the epidemic was very small (usually a single
infected individual)

therefore, x(t) ≈ 1 for small t

In addition, it is almost always the case that ν � µ

for the early part of the epidemic, we can assume µ ≈ 0

Substitute these values into the dynamical equation for the force of infection, λ

dλ

dt
≈ ν(R0 − 1)λ
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This is (once again) an equation for exponential growth, the solution of which is:

λ(t) = λ(0)eΛt

where Λ = ν(R0− 1), and the λ(0) is the initial seed value of the force of infection
λ(0) = βI(0)
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Endemic Equilibria

Since we now care about longer time scales, we can consider things like equilibria of
the model

To find the equilibria, set our dynamical equations equal to zero

First, we’ll do x∗ (Note that to get x∗, we solve the equation for λ and
vice-versa)

dλ

dt
= (ν + µ) λ(t) (R0x(t)− 1) = 0

λ R0x− λ = 0

x∗ =
1
R0
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Solving for λ∗ is only slightly trickier

µ− (µ + λ(t))x(t) = 0

λ = µ(
1
x
− 1)

Since we already solved for the equilibrium value for x, we substitute this back in

λ∗ = µ(R0 − 1)
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Will the Epidemic Infect Everyone?

Re-write the SIR equations:

ds

dt
= −βsi (12)

di

dt
= βsi− νi

dr

dt
= νi

Divide equation 5 by equation 4

di

ds
= −1 +

ν

βs
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Final Size of the Epidemic

Multiply both sides by ds

di = (−1 +
ν

βs
)ds

Integrating this (and doing a little algebra) yields

log(s∞) = R0(s∞ − 1) (13)

This is the “final size” of the epidemic which is an implicit equation for s∞, the
number of susceptibles at the end of the epidemic

When R0 > 1, this equation has exactly two roots, only one of which lies in the
interval (0, 1)
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R0 > 1
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R0 ≤ 1
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Analyzing the Effective Contact Rate, β

Effective contact rate is the per capita rate of infection given contact

. This is like a rate constant in a thermodynamic equation

Mechanistically, this will involve

• The transmissibility of the pathogen (τ)

• The frequency of contact (c̄)

We assumed removal rate was constant ⇒ Exponentially distributed

Expected time to removal (δ) is therefore 1/ν

R0 = τ c̄δ (14)

R0 is simply the product of the transmissibility, mean contact rate, and the duration
of infection
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Interpretation: Expected number of secondary infections in a rarefied population
produced by a single typical infection

This is a very important result because it tells us how to control epidemics

Reduce Transmissibility, τ : Develop vaccines, get people to use barrier
contraceptives, use anti-retrovirals (e.g., acyclovir for HSV-2, or HAART for
HIV)

Decrease Mean Contact, c̄: Isolation/Quarantine, health education programs
Reduce Length of Infectious Period, δ: therapeutics, antibiotic treatment of

bacterial infections, care of ulcerations, boost innate immune response

This is essentially the entire theoretical basis of public health interventions for
infectious diseases!
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How Many People Should We Vaccinate?

Say that we can successfully immunize a fraction 0 < p ≤ 1 of the population

How big does p need to be?

Define R∗ to be the reproduction number of the immunized population

R∗ ≤ R0(1− p)

Since our threshold criterion is for R∗ < 1, we can easily solve this inequality for p

Denote the critical fraction successfully immunized as pc

pc = 1− (1/R0)

Not surprisingly, as R0 increases, so does the critical vaccination fraction
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Critical Values of p for Selected Infections

Infection R0 p Ref
Measles 18.8 0.95 (Anderson & May 1991)
Pertusis 3.8-5.6 0.74-0.82 (Anderson & May 1991)
Smallpox 4-10 0.75-0.90 (Anderson & May 1991)
Chancroid 1.1 0.10 (Anderson & May 1991)
Influenza (1918) 1.8 0.44 (Mills et al. 2004)
SARS 2.7-3.6 0.63-0.72 (Wallinga & Teunis 2005)
Malaria (Africa) 3.9-31.6† 0.74-0.97 (Smith et al. 2007)

† interquartile range for 121 populations
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Why Do We Care So Much About R0 Anyway?

R0 Provides five fundamental insights into the dynamics of an infectious disease:

1. R0 is the threshold parameter, determining whether or not there will be an
epidemic

2. R0 determines the initial rate of increase of an epidemic (i.e., during its
exponential growth phase)

3. R0 determines the final size of the epidemic (i.e., what fraction of susceptibles
will ultimately be infected over the course of the outbreak)

4. R0 determines the endemic equilibrium fraction of susceptibles in the population
(= 1/R0)

5. R0 determines the critical vaccination threshold (= 1/R0)
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An Example of an Endemic/Epidemic Model

Plot of a hypothetical (and unlikely!) disease’s dynamics reproduced from Anderson
& May (1991)

The parameters are µ = 1/70, ν = 1, and R0 = 5,

Here is some R code to reproduce Anderson & May’s plot

lambda.dyn <- function(t,y,p){
yd1 <- p["mu"] - (p["mu"]+y[2])*y[1]
yd2 <- (p["mu"] + p["nu"]) * y[2] * (p["R0"]*y[1] - 1)
list(c(yd1,yd2))
}

pars <- c("R0"=5,"nu"=1.0,"mu"=0.014)
times <- seq(0,100,.1)
y0 <- c(.999,1e-4)
lambda.out <- lsoda(y0,times,lambda.dyn,pars)
plot(lambda.out[,1],lambda.out[,2],type="l",col="blue",
xlab="Time",ylab="Fraction Susceptible, x(t)")
abline(h=.2,lty=2,col="red")
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Approach to Equilibrium
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Is the Equilibrium Stable?

How do we calculate the stability of a model that has more than one dimension?

For the one-dimensional models (e.g., the density-dependent population growth
models), the process was:

• Calculate the equilibria

• Linearize the model around the equilibrium using a Taylor series approximation

• If the solution to the linearized equilibrium was less than zero, the equilibrium was stable

There is a straightforward extension of this procedure to the multivariate case

A model with multiple variables is stable if and only if the real part of the eigenvalues
of the model’s Jacobian Matrix are less than zero

Great. What’s a Jacobian matrix?

write

Formal Demography Workshop: Epidemic Models 37



F (x, λ) =
dx

dt
= µ− (µ + λ(t))x(t),

and

G(x, λ) =
dλ

dt
= (ν + µ) λ(t) (R0x(t)− 1)

The Jacobian is:

J =
(

∂F/∂x ∂F/∂λ
∂G/∂x ∂G/∂λ

)

For the SIR model variant of equations 6 and 7, the Jacobian is:

J =
(

−λ− µ −x
R0 λ (µ + ν) (−1 + R0 x) (µ + ν)

)
(15)
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Using the equilibrium values of x and λ

x∗ = 1/R0,

and

λ∗ = µ(R0 − 1)

along with the parameter values given before (µ = 1/70, ν = 1, and R0 = 5)

The Jacobian is

J =
(
−0.07142857 −0.2
0.28979592 0

)

And the eigenvalues of this matrix are

{−0.0357143− 0.238083 i,−0.0357143 + 0.238083 i}
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The real parts of both eigenvalues are negative so the equilibrium {x∗, λ∗} is
asymptotically stable

plot(lambda.out[,3],lambda.out[,2],type="l",col="blue",
xlab="Force of Infection", ylab="Fraction Susceptible")

We can see this graphically by plotting the phase plane of the model
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Structured Epidemic Models

How do you define R0 when you have a structured epidemic model?

Consider malaria transmission:

Mosquito Human

Formal Demography Workshop: Epidemic Models 42



R0 for Multi-Host Epidemics

R0 is defined as the expected number of secondary cases generated by a single
typical index case in a completely susceptible population

What if you have different types of susceptible hosts? What is typical?

• Malaria: Mosquitoes and humans

• HIV: Women and Men

• Chagas: Bugs and Humans (& Dogs)

• Lyme: Ticks, Mice, Deer, Humans

R0 generalizes very easily to these cases
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Next Generation Matrix

Define a square matrix G where the ijth element is the expected number of type i
cases caused by infectious individuals of type j (again, in a completely susceptible
population)

Call the ijth element of G, gij

Essentially, each element of the matrix is a mini reproduction number that counts
just those infections to type i caused by type j

Call these the within- and between-type reproduction numbers

For a two-host model, we have

G =
[

g11 g12

g21 g22

]

For notational convenience replace these subscripted g’s with the letters a, b, c, d
(these have nothing to do with the a, b, c, d of a two-way epidemiological table)
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G =
[

a b
c d

]

where a is the number of type 1 cases caused by infectious individuals of type 1; b
is the type 1 caused by type 2; c is type 2 caused by type 1; and d is type 2 caused
by type 2

We assume that approximately every individual in each of the types is susceptible

R0 is the larger of the two roots of the so-called characteristic equation:

λ± =
a + d

2
±

√(
a + d

2

)2

− ad + bc

R0 can be easily calculated numerically for models with more types of
susceptibles/infecteds
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Example: A Sexually Transmitted Infection

Assume a population in which all transmission is heterosexual

Note that men are frequently far more efficient transmitters than women

Say that the typical infectious woman will, on average, infect half a man in a
completely susceptible male population and that a typical infectious man will infect
5 women in a completely susceptible female population

What is R0?

G =
[

0 0.5
5 0

]

R0 =
0 + 0

2
+

√(
0 + 0

2

)2

− (0 · 0) + (0.5 · 5) =
√

2.5 = 1.58
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Bad news...
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Calculating the Next Generation Matrix

Consider the next generation matrix G. It is comprised of two parts: F and V −1,
where

F =
[
∂Fi(x0)

∂xj

]
(16)

V =
[
∂Vi(x0)

∂xj

]
(17)

The Fi are the new infections

The Vi transfers of infections from one compartment to another

x0 is the disease-free equilibrium state

R0 is the dominant eigenvalue of the matrix G = FV −1.
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Example: SEIR Epidemic

Consider a Susceptible-Exposed-Infected-Removed (SEIR) Epidemic

This is an appropriate model for a disease where there is a considerable post-infection
incubation period in which the exposed person is not yet infectious

βI γ

µ µ µµ

k

λ

S E I R

Formal Demography Workshop: Epidemic Models 49



The SEIR Model Consists of Four Differential Equations

Ṡ = −βSI + λ− µS (18)

Ė = βSI − (µ + k)E (19)

İ = kE − (γ + µ)I (20)

Ṙ = γI − µR (21)

β is the effective contact rate

λ is the “birth” rate of susceptibles

µ is the mortality rate

k is the progression rate from exposed (latent) to infected

γ is the removal rate
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Next Generation Matrix for SEIR Model

There are two disease states but only one way to create new infections:

V =
( βλ

µ 0
0 0

)
(22)

In contrast, there are various ways to move between the states:

V =
(

0 k + µ
γ + µ −k

)
(23)

R0 is the leading eigenvalue of the matrix FV −1, which is

R0 =
kβλ

µ(k + µ)(γ + µ)
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What is a Generation?

In demography, R0 is the ratio of total population size from the start to the end of
a generation, (roughly) the mean age of childbearing R0 = erT

Generations in epidemic models are the waves of secondary infection that flow from
each previous infection

If Ri denotes the reproduction number of the ith generation, then R0 is simply the
number of infections generated by the index case, i.e., generation zero
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Generations

Generation 0

Generation 3
Generation 2
Generation 1

Index Case
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Virulence: Trade-Offs

Assume that virulence is proportional to parasitemia, the number of circulating
copies of the pathogen in the host

Sustained transmission of the pathogen requires that R0 > 1

We can easily imagine trade-offs between the components of R0

Higher virulence means that given contact between a susceptible and infectious
individual, transmission is more likely (more parasite copies means a greater chance
of successful colonization)

Higher virulence means that contact is less likely because infected hosts are sick (or
dead!)

We can build this reasoning into a model of R0
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Evolution of Optimal Virulence

Assume an infection with no recovery

Assume two forms of mortality: background (µ) and disease-induced (δ)

Denote virulence x

Assume that both transmissibility and disease-induced mortality are functions of x

Our value of R0 is the ratio of the rate of new infections to the rate of removal (in
this case, only by death)

R0 =
β(x)

µ + δ(x)

We find the optimal value of x by differentiating with respect to x and setting equal
to zero
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Use the quotient rule and do a little algebra to reveal that

dβ(x)
dδ(x)

=
β(x∗)

µ + δ(x∗)

where x∗ indicates the optimum value

This has a straightforward geometrical interpretation

The trade-off between transmissibility and disease-induced mortality is satisfied
where a line, rooted at the origin, is tangent to the curve that relates transmissibility
to total mortality

Consider an example in which an anscestral pathogen gives rise to a descendant
in which transmissibility is less efficient (a common case for emerging infectious
diseases)

What happens to virulence?
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Graphical Interpretation of Optimal Virulence

dδ

(x*)β
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µ

Transmission
Efficiency
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Graphical Interpretation of Optimal Virulence

Ancestral

δ
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