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Annual Population Growth

Population compounded annually

We want a relationship for the current year’s population
size and next year’s

Call the size of the population at time t Pt

P1 = P0(1 + r)

We can continue this process

P1 = P0(1 + r)

P2 = P1(1 + r) = P0(1 + r)(1 + r) = P0(1 + r)
2

.

.

.

Pt = P0(1 + r)
t
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Population Compounded j Times
Annually

New members added to the population j times per
year

Pt+1 = Pt(1 +
r

j
)j

for Pt = 100, r = 0.02, and j = 1:

Pt+1 = 100(1 + 0.02)1 = 102

Now, say that the population is compounded twice
annually

Pt+1 = Pt(1 +
r

2
)2
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for Pt = 100, r = 0.02, and j = 2:

Pt+1 = 100(1 +
0.02
2

)2 = 102.01

compound <- expression(pt*(1+(r/j))^j)
pt <- 100
r <- 0.02
j <- 1
eval(compound)
[1] 102
j <- 2
eval(compound)
[1] 102.01
j <- 3
eval(compound)
[1] 102.0134
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Now for a fun fact of calculus

lim
j→∞

(1 +
r

j
)j = er

This is, in fact, one definition of the number e, the
base of the natural logarithm

Continuously compounded population grow in one year
by

Pt = Pt−1e
r (1)

Just checking . . .

pt <- 1
r <- 1
j <- 100000
eval(compound)
[1] 2.718268
exp(1)
[1] 2.718282
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Continuous Growth Equation

Assume constant growth rate for t years:

Pt = P0(er)t = P0e
rt

Note that this means that the ratio between the
population size separated by t years is simply ert

One offspring born now constitutes 1/P (0) of the
population

One offspring born t years from now constitutes
1/P (0)ert of the population

In terms of proportional representation an offspring
born t years in the future must be discounted by a
factor e−rt
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Per Capita Birth and Death Rates

Some Definitions

Nt The total number of individuals in the population
at time t

B Number of births per animal per year
D Probability that an animal dies in a year (1 - D is

the probability that an animal survives the interval)

Nt+1 = BNt + (1−D)Nt

Rearrange

Nt+1 = RNt

where R = (1 + B −D)
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Geometric Growth

Project the population forward t years

N1 = RN0

N2 = RN1 = R(RN0) = R2N0

It’s not difficult to see that

Nt = RtN0

Take logarithms of both sides of this relationship

log(Nt) = log(R)t + log(N0)

Why should we care about this?
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Plotting Geometric Growth

R.calc <- expression(1 + (B - D))
B <- 0.05
D <- 0.03
no <- 1
t <- seq(0,100,1)
R <- eval(R.calc)
geo.grow <- expression(R^t*no)
pop.dyn <- eval(geo.grow)
plot(t,pop.dyn,pch=20,col="blue",xlab="Time",ylab="Population Size")
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Another Plot

plot(t,pop.dyn,log="y",pch=20,col="blue",xlab="Time",ylab="Population Size")
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Population Growth in Continuous Time

Some Updated Definitions

N Population Size

b Average per capita birth rate per unit time

d Death rate per unit time

Note the shift to rates that accompanies a continuous model

dN

dt
= bN − dN

Combine the birth and death rates into a summary parameter,

r, customarily called the “intrinsic rate of increase” or, more

stodgily, “the Malthusian parameter.”

r = b− d

The equation for population growth in continuous time

dN

dt
= rN (2)
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Solving the Continuous-Time Growth
Equation

1. Rearrange Equation 2 so like items are on the same side of

the equals sign:

dN

N
= rdt

2. Integrate both sides from t = 0 to t = T∫ t=T

t=0

dN

N
=

∫ t=T

t=0

rdt

3. Compute the integrals

log(N(T ))− log(N(0)) = rT

4. Remember that
∫

1
N dN = log(N)

5. Take the exponential of both sides

e
log(N(T ))

e
− log(N(0))

= e
rT

6. Note that elog a = a and e− log a = 1
a.
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7. Solve for N(T )

N(T )

N(0)
= e

rT

N(T ) = N(0)e
rT

(3)
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What Happens for Various Values of r?
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This is very important.

1. Populations can grow exponentially, but “common sense” tells us they can only do so for
relatively short periods of time.

2. An equilibrium only occurs when r = 0.
3. This result has many applications in applied mathematics.
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The Relationship between r and R

If r is small,

R ≈ 1 + r

Why is that?

This derives from a Taylor Series Approximation

We use a Taylor polynomial to approximate a function
f(x) around some point a

For a continuous function with n + 1 derivatives, this
polynomial is:

Pn(x) = f(a) + f
′
(a)(x− a) +

f ′′(a)

2!
(x− a)

2
+ . . . +

fn(a)

n!
(x− a)

n

Most of the time, we only worry about the first couple
terms
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For the problem of the relationship between r and R
we know that

R = er

But the Taylor series about 0 of er is:

er ≈ 1 + r +
r2

2
+

r3

6
. . .

If r is small, then the square terms and beyond will be
negligible relative to r itself
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More on Taylor Polynomials

Taylor series approximations are a very important
technique in formal demography

You will see them again and again...

exp(r)
[1] 1.020201
1
[1] 1
1+r
[1] 1.02
1 + r + r^2/2
[1] 1.0202
1 + r + r^2/2 + r^3/6
[1] 1.020201
1 + r + r^2/2 + r^3/6 + r^4/24
[1] 1.020201

Stanford Summer Short Course: Dynamics 18



Doubling Time of a Population

How long until a population growing at rate r will
double?

The relationship for a continuously growing population
is

N(t) = N(0)ert

We want to know about the doubling from the current
population, so

N(t) = 2N(0)

Substitute and solve for t

2 = ert

Stanford Summer Short Course: Dynamics 19



t =
log(2)

r
≈ 0.693

r

How long will it take for a population growing at 2%
annually to double?

t =
0.693
0.02

= 34.7 years
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Growth Rate of a Mixture of Populations

A population size Q, with growth rate r, increases in
numbers by Qert over the interval t

The intrinsic rate of increase, r, is the per capita rate
of increase of the population

Thus, by definition, we can write it as:

1
N(t)

· dN(t)
dt

Aside: it is worth noting the following:

1
N(t)

· dN(t)
dt

≡ d log N(t)
dt

For a mixture of n subpopulations, each with its own
rate of increase ri, the increase in interval t will simply
be

Stanford Summer Short Course: Dynamics 21



N(t) =
n∑
i

Qie
rit

The derivative of N(t) is

dN(t)
dt

=
n∑
i

Qirie
rit

Substituting these, the overall rate of increase, r̃ is
thus

r̃ =
1

N(t)
· dN(t)

dt
=

∑n
i Qirie

rit∑n
i Qierit

(4)

This is just a weighted mean of the subpopulation
growth rates, with weights the initial population size
of the subpopulations

Stanford Summer Short Course: Dynamics 22



Change in the Mean Rate of Change

Differentiate r̃ with respect to t

dr̃

dt
=

∑n
i Qir

2
i e

rit∑n
i Qierit

−
(∑n

i Qirie
rit∑n

i Qierit

)2

.

This messy looking equation, has the form of

IE(X2)− IE(X)2

which is the definition of variance of x

Thus,

dr̃

dt
= σ2(t)
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What does this mean?

1. r̃ increases. Can it increase without bound?
2. Since r̃ is the average of an ensemble of constituent

ri, it can never be greater than the largest of its
constituents

3. This represents one derivation of Fisher’s
Fundamental Theorem of Natural Selection

4. It also means that the sum of a mixture of
population projections with different growth rates
will grow faster than the the population projected
by the mean growth rate

This last fun fact is a demonstration of Jensen’s
Inequality, which states for a convex function:

IE[f(x)] ≥ f(IE[x])

(the inequality is reversed for concave function)
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Graphical Interpretation of Jensen’s
Inequality

f(x)

E[f(x)]

f(E[x])

xE[x]
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Stalled Demographic Transition

Notestein, the father of demographic transition theory,
famously wrote in 1945 of a phenomenon in which
“the stage of transitional growth...in which the decline
of both fertility and mortality is well established but in
which the decline of mortality precedes that of fertility
and produces rapid growth.”

If mortality decline precedes fertility growth, how much
bigger will the population be when fertility finally drops
to replacement?

Define two functions of time b(t) and d(t)

These describe the change in birth and death rates,
respectively, with time
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More Stalling...

Time

b(
t)

 o
r 

d(
t)

d(t) b(t)

If b(t) and d(t) start and end at the same points (i.e., equal,

implying a stationary population), then the ratio of the population
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size at the end of the transition period T and the beginning time

will be ∫ T

0

[b(t)− d(t)] dt =

∫ T

0

r(t)dt = A

where A is just the area (hence “A”) between the two curves

The ratio of the population size at the end of T to that at the

beginning of the period (i.e., t = 0) is then simply

exp

[∫ T

0

r(t)dt

]
= e

A

Now, if d(t) and b(t) also have the same shape, we can simplify

even further

Say that the lag between d(t) and b(t) is L years and define K

as the absolute drop in d(t) and b(t)

In this special case A = KL
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Darwin’s Elephants

There is no exception to the rule that every organic being

naturally increases at so high a rate, that if not destroyed,

the earth would soon be covered by the progeny of a single

pair. Even slow-breeding man has doubled in twenty-five

years, and at this rate, in a few thousand years, there would

literally not be standing room for his progeny. Linnaeus

has calculated that if an annual plant produced only two

seeds and there is no plant so unproductive as this and

their seedlings next year produced two, and so on, then in

twenty years there would be a million plants. The elephant

is reckoned to be the slowest breeder of all known animals,

and I have taken some pains to estimate its probable

minimum rate of natural increase: it will be under the

mark to assume that it breeds when thirty years old, and

goes on breeding till ninety years old, bringing forth three

pairs of young in this interval; if this be so, at the end

of the fifth century there would be alive fifteen million

elephants, descended from the first pair.

Darwin, The Origin of Species
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It’s Usually a Good Idea to Respect
Darwin’s Observations
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Darwin’s ciphering amounts to 3.28% annual growth
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Feedback

We want a model such that as the population size gets
large, the growth rate decreases

dN

dt
= Nf(N)

The simplest form is linear

f(N) = r(1−N/K)

where K is known as the carrying capacity of the
population

logistic.fn <- expression(r*(1-X/K))
X <- 1:100
plot(X,eval(logistic.fn),type="l",col="blue",xlab="Population Size",ylab="f(N)")
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which is clearly an equation for a straight line
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Another Way to Look at the Logistic
Function

For a given population size, how many recruits are
there?

To visualize this, we plot the Recruitment Curve

This is just the recruitment function (r(1 − N/K))
multiplied by the population size N (this is the number
of recruits), plotted against N

Dn <- expression(r * (1 - N/K) * N)
r <- 1
K <- 1000
N <- seq(0,1000,by=10)
plot(X,eval(Dn),type="l",col="blue",xlab="Population Size",
+ ylab="Recruitment")
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If you were a hunter/forester, etc., at what population
size would you want to harvest your population?

The Maximum Sustainable Yield is the peak (i.e., the
point of inflection) of the recruitment curve
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Solving the Logistic Equation

The logistic model is one that can be solved analytically

dN

dt
= rN(1−N/K)

Separate variables and integrate∫ N(T )

N(0)

dN

N(1−N/K)
=

∫ T

0

rdt

To do the integration on the lefthand side, we need to do

integration by partial fractions

1

N(1−N/K)
=

1

N
+

1/K

1−N/K

∫ N(T )

N(0)

1

N
+

1/K

1−N/K
dN = [log(N)− log(1−N/K)]

N(T )

N(0)

= log(N(T ))−log(1−N(T )/K)−log(N(0))+log(1−N(0)/K)
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The solution of the righthand side is

∫ T

0

rdt = rT

Put these together, and take exponentials of both sides

N(T )(1−N(0)/K)

(1−N(T )/K)N(0)
= e

rt

Now, we solve for N(T)

N(T ) =
N(0)erT

1 + N(0)(erT − 1)/K

logistic.int <- expression(n0*exp(r*t)/((1+n0*(exp(r*t)-1)/K)))
n0 <- 1
r <- 0.1
K <- 100
t <- 0:100
plot(t,eval(logistic.int),type="l",col="blue",xlab="Time",ylab="Population Size")
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Equilibria and Equilibrium Analysis

Solve for equilibria

dN

dt
= rN(1−N/K) = 0

There are two equilibria:

• N = 0

• N = K
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Types of Equilibria

• stable

• unstable

• neutral

Locally Stable

Globally Stable
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Unstable

Neutrally Stable
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Stability of Continuous-Time Models

The idea: Tweak a population that is at equilibrium.
What happens?

• Continue to move in the direction of the tweak?

• Move back to the equilibrium value?
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Stability of Continuous-Time Models II:
A Recipe

Write the production function in generic form

dN

dt
= F (N) (5)

Assuming the logistic model F (N) is

F (N) = rN(1−N/K)

Determine equilibria: Solve for N in

F (N) = 0

Again, for the logistic model

N̂ = 0, N̂ = K
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Define a deviation from an equilibrium point N̂

n = N − N̂

Rearrange, putting N on the left-hand side N = N̂+n,
and substitute back into the generic equation.

d(N̂ + n)
dt

= F (N̂ + n)

Now, N̂ is a fixed number (i.e., it’s the equilibrium),
so it won’t change. All the change in this differential
will therefore come from n which is free to vary (its
change is, in fact, what we care about here)

dn

dt
= F (N̂ + n)

We don’t (necessarily) know what F (N̂ + n) will be.
For many interesting models, there is no closed-form
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solution to this differential equation. Our strategy is
therefore to approximate it with a Taylor Series

By using a Taylor series approximation, we assume that
n is small and we content ourselves to investigate the
behavior of our model near the equilibrium

F (N̂ + n) ≈ F (N̂) + F ′(N̂)n

F ′(N̂) is the derivative of F with respect to N
evaluated at N̂

The equation for the dynamics of our perturbation
becomes

dn

dt
= F (N̂) + F ′(N̂)n

But, we are evaluating at an equilibrium where, by
definition, F (N̂) = 0, so we are left with

dn

dt
= F ′(N̂)n
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For grins, rename as follows

F ′(N̂) = λ

This gives us our final step

dn

dt
= λn

Which we recognize as the exponential growth model,
the solution of which is

n(t) = n(0)eλt

. λ > 0, the equilibrium is unstable

. λ < 0, the equilibrium is stable

This process is known as linearizing around the
equilibrium or local linearization

Stanford Summer Short Course: Dynamics 45



Stability Analysis of the Logistic Model

The generic model for the production function

dN

dt
= F (N)

The logistic production function

F (N) = rN(1−N/K)

The logistic model has two equilibria: N = 0 and
N = K

Calculate λ = F ′(N̂)

For N̂ = 0, λ = r and

For N̂ = K, λ = −r
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• For small deviations near the equilibrium of N = 0, the

population will increase exponentially at rate r

• For small deviations near the equilibrium of N = K, the

population will decay back to the equilibrium exponentially

at rate −r
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Deriving F ′(N) for the Logistic

Where do the values F ′(N) = r and F ′(N) = −r for
the two equilibria of the logistic model come from?

Use the Product Rule for Differentiation

Define

h(x) = f(x)g(x)

The Product Rule Specifies:

h′(x) = f ′(x)g(x) + f(x)g′(x)

For the logistic model

f(x) = rN
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g(x) = (1−N/K)

f ′(x) = r

g′(x) = − 1
K

h′(x) = r(1−N/K)− rN

K

Substitute back in the values for the equilibria (N = 0
and N = K)

N → 0, h′(x) = r

N → K, h′(x) = −r
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Fitting the Logistic Model to Data

Is the Logistic model a good one for human
populations?

Pearl et al. (1940) thought so

The Data: Total Population Size of the United States,
as estimated in the decennial census

The Method: Least-squares minimization

The Tool in R: optim(), R’s tool for minimizing a
function

logistic.int <- expression(n0 * exp(p[1] * t)/(1 + n0 * (exp(p[1] * t) - 1)/p[2]))
fit.logistic <- function(p,y){
n0 <- y[1]
t <- seq(0,140,10)
sumsq <- sum((y - eval(logistic.int))^2)
}

year <- seq(1790,1990,10) # decennial census
r.guess <- (log(usa[15])-log(usa[1]))/140
k.guess <- usa[15] #1930 US population
par <- c(r.guess,k.guess)
usa1930 <- usa[1:15] # Just want the data up to when Pearl had them
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usa1930.fit <- optim(par,fit.logistic,y=usa1930)
usa1930.fit
$par
[1] 0.03126604 198.55566623

$value
[1] 4.830206

$counts
function gradient

115 NA

$convergence
[1] 0

$message
NULL

p <- usa1930.fit$par
plot(year[1:15],usa1930,col="red",type="p",xlab="Year",ylab="Population Size of USA")
t <- year - 1790 # convert calendar year to 0:200
lines(year,eval(logistic.int),col="blue")
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Doh! (Famously)

Not so well-behaved after 1930 . . .
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Discrete-Time Logistic Model

Take the logistic model in continuous time:

dN

dt
= r0N(1−N/k)

Now, we want a discrete-time equivalent of this. One
possibility is simply to write down the continuous-time
logistic model as a discrete-time model, assuming time
increments, ∆t = 1.

∆N

∆t
≈ dN

dt
= r0N(1−N/K)

Now ∆N = Nt+1 −Nt. We can do a little algebra:

Nt+1 −Nt = r0Nt(1−Nt/K)
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Rearrange a bit, solving for Nt+1

Nt+1 = Ntr0 + N2
t r0/K + Nt (6)

= Nt(r0 + 1)−N2
t r0/K (7)

We can write a = 1 + r0 and b = r0/K, giving us the
following form for the discrete-time logistic model:

Nt+1 = aNt − bN2
t (8)

What is wrong with this procedure?

Write down the inequality

0 > aNt − bN2
t

and solve

Nt >
K(1 + r0)

r0
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In other words, if the population size at time t exceeds
K(1 + r0)/r0, the population size at time t + 1 is
negative! That’s no good.

An alternative discretization of the logistic model
suggested by Turchin (2003) is as follows. Take
the continuous-time logistic model, write r(t) =
r0(1 − N/K), and solve for a one year interval,
assuming that r(t) remains constant over that interval.

N(t + 1) = N(t) exp[r(t)] (9)

Now substitute the expression for r(t) and re-write
using subscripts to emphasize that the model is now in
discrete time.

Nt+1 = Nt exp[r0(1−Nt/K)] (10)

Notice that the feedback term r0(1 − N/K) is now
safely inside the exponential, meaning that as Nt

exceeds K, the population will be multiplied by a
term that will lie between zero and one.

This model is known as the Ricker model (Ricker 1954)
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Note that similar problems beset discretizing the SIR
epidemic model.
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Crazy Dynamics

The Ricker model is subject to some extremely funky
dynamics, including chaos

This is a common feature of nonlinear difference
equations, particularly those with overcompensatory
recruitment function (like Ricker)

NN <- rep(0,101)
K <- 100
r <- 3.1
NN[1] <- 2
for(i in 2:101) NN[i] <- NN[i-1]*exp(r*(1-(NN[i-1]/K)))
plot(0:100,NN,xlab="Time",ylab="Population Size")
plot(0:100,NN,type="l",xlab="Time",ylab="Population Size")
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Yikes!
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Maybe A Line Plot Will Help
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Or not...
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