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A Simple Model of An Infectious Disease

Consider a closed population population of N individuals

There are two states:

• Susceptible

• Infected

Initially I0 are infected

N − I0 are therefore susceptible

We assume the population is well mixed

The probability that a susceptible and infectious individual meet is proportional to
their abundances, with effective transmission rate β
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Simple Epidemic Continued

Write s = S/N and i = I/N

di

dt
= βi(1− i). (1)

To calculate the number infected at time t, i(t), integrate this equation from time
zero to time t, yielding:

i(t) =
1

1 + 1−i0
i0

e−βt
(2)

This equation yields what is known as the epidemic curve
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epi.curve <- expression(1/(1+ (exp(-beta*t)*(1-a0)/a0)))
a0 <- .01
beta <- 0.1
t <- seq(0,100,1)
plot(t,eval(epi.curve),type="l",col="blue",

xlab="Time", ylab="Cumulative Fraction Infected")
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Interpreting the Epidemic Curve

This figure plots the cumulative prevalence of the infection

We might also want to know about the shape of the incidence of infection, that is,
the number of new cases per unit time

a <- eval(epi.curve)
b <- diff(a)
plot(1:100,b,type="l",col="blue",

xlab="Time", ylab="Incident Fraction Infected")
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More Interpretations of the Epidemic Curve

This is the classic epidemic curve

The epidemic curve is “bell-shaped”, but not completely symmetric

There is a greater force of infection early on

Note that in the limit t→∞, everyone in the population becomes infected
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Real Curves Are a Bit More Messy
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General Epidemic: The Basic SIR Model

A population is comprised of three compartments:

Susceptible Segment not yet infected, disease-free (S)
Infected Segment infected and infectious (I)
Removed Recovered (usually) with lifelong immunity (R)

Model Assumptions:

1. Constant (closed) population size
2. Constant rates (e.g., transmission, removal rates)
3. No demography (i.e., births and deaths)
4. Well-mixed population
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SIR Continued

Write s = S/N , i = I/N , r = R/N

ds

dt
= −βsi (3)

di

dt
= βsi− νi (4)

dr

dt
= νi (5)

where,

β effective contact rate
ν removal rate
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Conditions for an Epidemic

An epidemic occurs if the number of infecteds increases, i.e., di/dt > 0

βsi− νi > 0

βsi

ν
> i

At the outset of an epidemic, s ≈ 1

β

ν
= R0 > 1
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Basic Reproduction Number

R0 is the basic reproduction number of the epidemic

. Basic Reproduction Number (R0): the expected number of secondary infections generated

by a single, typical infection in a completely susceptible population

Note that Hethcote (2000) refers to the quantity β/ν as σ, the “contact rate”

In general

R0 ≥ σ ≥ R

where R is the reproduction number at some time other than the outset of the
epidemic

When we model fractions of infected individuals in a closed population (i.e., i = I/N
instead of I) R0 = σ

When we model I, R0 = βN
ν
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Numerical Solution of the SIR Model

Use R library odesolve

write a function that we will call sir

function takes three arguments y, t, and p, for the initial conditions, time scope,
and parameter values respectively

Create list of parameters pars, which contains the two parameters of the model β
and ν

library(odesolve)
pars <- c("beta"=0.05,"nu"=0.075)
times <- seq(0,10,0.1)
y0 <- c(100,1,0)

sir <- function(t,y,p) {
yd1 <- -p["beta"] * y[1]*y[2]
yd2 <- p["beta"] * y[1]* y[2] - p["nu"]*y[2]
yd3 <- p["nu"]*y[2]
list(c(yd1,yd2,yd3),c(N=sum(y)))

}
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sir.out <- lsoda(y0,times,sir,pars)

sir.out
time 1 2 3 N

[1,] 0.0 1.000000e+02 1.000000 0.000000000 101
[2,] 0.1 9.935633e+01 1.633984 0.009686266 101
[3,] 0.2 9.831563e+01 2.658889 0.025480797 101
[4,] 0.3 9.665093e+01 4.297969 0.051096592 101
[5,] 0.4 9.403313e+01 6.874588 0.092284864 101
[6,] 0.5 9.002495e+01 10.817430 0.157625403 101

...

plot the results of this solution

plot(sir.out[,1],sir.out[,2],type="l",col="blue",xlab="Time",
ylab="Compartment Size")

lines(sir.out[,1],sir.out[,3],col="green")
lines(sir.out[,1],sir.out[,4],col="red")
legend(8,90,c("S","I","R"),col=c("blue","green","red"),lty=c(1,1,1))
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Simplifying the System (a bit)

Anderson & May (1991) note that the above system of equations can be re-written
in terms of the force of infection

Since S + I + R = N , the equation 5 is again redundant

Anderson & May (1991) also note that it is frequently convenient to think about
epidemics in terms of proportions of the population susceptible, infected, etc.

Write x = S/N and y = I/N

Now, A&M show that we can re-write equations 4 and 5 as:

dx

dt
= µ− (µ + λ(t))x(t) (6)

dλ

dt
= (ν + µ) λ(t) (R0x(t)− 1) (7)
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where we write the combination of parameters

βN

ν + µ
= R0

This, of course, is the basic reproduction number again
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Early Growth of the Epidemic

We’d like to know what happens to an epidemic following the introduction of a
pathogen

We assume that the innoculum for the epidemic was very small (usually a single
infected individual)

therefore, x(t) ≈ 1 for small t

In addition, it is almost always the case that ν � µ

for the early part of the epidemic, we can assume µ ≈ 0

Substitute these values into the dynamical equation for the force of infection, λ

dλ

dt
≈ ν(R0 − 1)λ
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This is (once again) an equation for exponential growth, the solution of which is:

λ(t) = λ(0)eΛt

where Λ = ν(R0− 1), and the λ(0) is the initial seed value of the force of infection
λ(0) = βI(0)
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Endemic Equilibria

Since we now care about longer time scales, we can consider things like equilibria of
the model

To find the equilibria, set our dynamical equations equal to zero

First, we’ll do x∗ (Note that to get x∗, we solve the equation for λ and
vice-versa)

dλ

dt
= (ν + µ) λ(t) (R0x(t)− 1) = 0

λ R0x− λ = 0

x∗ =
1
R0
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Solving for λ∗ is only slightly trickier

µ− (µ + λ(t))x(t) = 0

λ = µ(
1
x
− 1)

Since we already solved for the equilibrium value for x, we substitute this back in

λ∗ = µ(R0 − 1)
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Will the Epidemic Infect Everyone?

Re-write the SIR equations:

ds

dt
= −βsi (8)

di

dt
= βsi− νi

dr

dt
= νi

Divide equation 5 by equation 4

di

ds
= −1 +

ν

βs
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Final Size of the Epidemic

Multiply both sides by ds

di = (−1 +
ν

βs
)ds

Integrating this (and doing a little algebra) yields

log(s∞) = R0(s∞ − 1)

which is an implicit equation for s∞, the number of susceptibles at the end of the
epidemic

When R0 > 1, this equation has exactly two roots, only one of which lies in the
interval (0, 1)
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R0 > 1
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R0 ≤ 1
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Analyzing the Effective Contact Rate, β

Effective contact rate is the per capita rate of infection given contact

. This is like a rate constant in a thermodynamic equation

Mechanistically, this will involve

• The transmissibility of the pathogen (τ)

• The frequency of contact (c̄)

We assumed removal rate was constant ⇒ Exponentially distributed

Expected time to removal (δ) is therefore 1/ν

R0 = τ c̄δ (9)

R0 is simply the product of the transmissibility, mean contact rate, and the duration
of infection
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Interpretation: Expected number of secondary infections in a rarefied population
produced by a single typical infection

This is a very important result because it tells us how to control epidemics

Reduce Transmissibility, τ Develop vaccines, get people to use barrier
contraceptives, use anti-retrovirals (e.g., acyclovir for HSV-2, or HAART for
HIV)

Decrease Mean Contact,c̄ Isolation/Quarantine, health education programs
Reduce Length of Infectious Period, δ therapeutics, antibiotic treatment of

bacterial infections, care of ulcerations, boost innate immune response

This is essentially the entire theoretical basis of public health interventions for
infectious diseases!
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How Many People Should We Vaccinate?

Say that we can successfully immunize a fraction 0 < p ≤ 1 of the population

How big does p need to be?

Define R∗ to be the reproduction number of the immunized population

R∗ ≤ R0(1− p)

Since our threshold criterion is for R∗ < 1, we can easily solve this inequality for p

Denote the critical fraction successfully immunized as pc

pc = 1− (1/R0)

Not surprisingly, as R0 increases, so does the critical vaccination fraction
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Critical Values of p for Selected Infections

Infection R0 p
Measles 18.8 0.95
Pertusis 3.8-5.6 0.74-0.82
Smallpox 4-10 0.75-0.90
Chancroid 1.1 0.10
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Why Do We Care So Much About R0 Anyway?

R0 Provides five fundamental insights into the dynamics of an infectious disease:

1. R0 is the threshold parameter, determining whether or not there will be an
epidemic

2. R0 determines the initial rate of increase of an epidemic (i.e., during its
exponential growth phase)

3. R0 determines the final size of the epidemic (i.e., what fraction of susceptibles
will ultimately be infected over the course of the outbreak)

4. R0 determines the endemic equilibrium fraction of susceptibles in the population
(= 1/R0)

5. R0 determines the critical vaccination threshold (= 1/R0)
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An Example of an Endemic/Epidemic Model

Plot of a hypothetical (and unlikely!) disease’s dynamics reproduced from Anderson
& May (1991)

The parameters are µ = 1/70, ν = 1, and R0 = 5,

lambda.dyn <- function(t,y,p){
yd1 <- p["mu"] - (p["mu"]+y[2])*y[1]
yd2 <- (p["mu"] + p["nu"]) * y[2] * (p["R0"]*y[1] - 1)
list(c(yd1,yd2))
}

pars <- c("R0"=5,"nu"=1.0,"mu"=0.014)
times <- seq(0,100,.1)
y0 <- c(.999,1e-4)
lambda.out <- lsoda(y0,times,lambda.dyn,pars)
plot(lambda.out[,1],lambda.out[,2],type="l",col="blue",
xlab="Time",ylab="Fraction Susceptible, x(t)")
abline(h=.2,lty=2,col="red")
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Is the Equilibrium Stable?

How do we calculate the stability of a model that has more than one dimension?

For the one-dimensional models (e.g., the density-dependent population growth
models), the process was:

• Calculate the equilibria

• Linearize the model around the equilibrium using a Taylor series approximation

• If the solution to the linearized equilibrium was less than zero, the equilibrium was stable

There is a straightforward extension of this procedure to the multivariate case

A model with multiple variables is stable if and only if the real part of the eigenvalues
of the model’s Jacobian Matrix are less than zero

Great. What’s a Jacobian matrix?

write
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F (x, λ) =
dx

dt
= µ− (µ + λ(t))x(t),

and

G(x, λ) =
dλ

dt
= (ν + µ) λ(t) (R0x(t)− 1)

The Jacobian is:

J =
(

∂F/∂x ∂F/∂λ
∂G/∂x ∂G/∂λ

)

. While this material is not in Hastings under the SIR model, it is discussed in chapter

8 (especially pp. 151-160) on predator-prey dynamics (of which infectious diseases are

essentially a special case)

. In this section, he also discusses quite lucidly why complex eigenvalues lead to oscillations
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For the SIR model variant of equations 6 and 7, the Jacobian is:

J =
(

−λ− µ −x
R0 λ (µ + ν) (−1 + R0 x) (µ + ν)

)
(10)

Using the equilibrium values of x and λ

x∗ = 1/R0,

and

λ∗ = µ(R0 − 1)

along with the parameter values given before (µ = 1/70, ν = 1, and R0 = 5)

The Jacobian is

J =
(
−0.07142857 −0.2
0.28979592 0

)
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And the eigenvalues of this matrix are

{−0.0357143− 0.238083 i,−0.0357143 + 0.238083 i}

The real parts of both eigenvalues are negative so the equilibrium {x∗, λ∗} is
asymptotically stable

plot(lambda.out[,3],lambda.out[,2],type="l",col="blue",
xlab="Force of Infection", ylab="Fraction Susceptible")

We can see this graphically by plotting the phase plane of the model
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Structured Epidemic Models

How do you define R0 when you have a structured epidemic model?

Consider malaria transmission:

Mosquito Human
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R0 Generalizes Easily to Structured Epidemic Models

Define a next generation matrix, Θ

The elements of this matrix θij represent the expected number of type i infections
generated by type j infections...

... At the disease-free equilibrium: That is, everyone (everymosquito?) is susceptible

R0 is the dominant eigenvalue of the next-generation matrix, Θ

For the simple malaria model

Θ =

[
0 β12N1

ν2
β21N2

ν1
0

]

R0 = ρ(Θ)
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A Concrete Example

What is the average number of cases produced by a single case of malaria when an
infected person infects 10 mosquitos and each mosquito infects 100 people?

Θ =
[

0 10
100 0

]

R0 = ρ(Θ) =
√

1000 = 31.6
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