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1 The Evolutionarily Stable Strategy (ESS)

An evolutionarily stable strategy (ESS) is a strategy that, if adopted by nearly all members of
a population, can not be invaded by a rare mutant strategy. Consider a game in which D is an
ESS. If a rare mutant H with very low frequency (p � 1) were to enter the population, would
it invade? We can write the fitness of the two strategies as follows:

W (D) = C + (1− p)IE(D,D, ) + pIE(D,H)

W (H) = C + (1− p)IE(H,D) + pIE(H,H)

where C is the fitness of an individual before the encounter. If D is an ESS, this means that
W (D) > W (H) Solving the inequality W (D) > W (H), we get:

IE(D,D)− IE(H,D)
IE(H,H)− IE(D,H)

>
p

1− p

We assumed that p� 1 so the fraction on the right-hand side of the inequality is essentially
equal to zero. Thus for the left-hand side to be greater than zero means that the numerator on
the right-hand side must be positive. This yields the condition:

IE(D,D) > IE(H,D).

This is the Nash Equilibrium solution. However, an ESS can arise even when this condition
is not met. If IE(D,D) = IE(H,D) and IE(D,H) > IE(H,D), then D is still an ESS. That is,
while H mutants are not at a disadvantage when playing D’s, D nonetheless shares an advantage
in the population because it does better against H than H does against itself.

The Hawk-Dove game was originally developed by Maynard Smith and Price to describe
animal conflict. Animals playing the Dove strategy (i.e., “Doves”) avoid conflict. When faced
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with competition over a resource, two doves will split the benefit of the resource v. In contrast,
Hawks always escalate conflicts and fight over resources. When a Hawk plays a dove, it always
takes the full value of the resource, however, when a Hawk plays another Hawk, there is a 50%
chance either will win. These fights between Hawks are costly, incurring a cost c on Hawks
during each encounter. Figure 1 presents the payoff matrix for the Hawk-Dove game. Each cell
of the matrix contains to entries. The first is the payoff to the row player. The second is the
payoff to the column player. Frequently, payoff matrices will simply list the payoff to the row
player, since if the game is symmetric, the payoffs to the row players and column players will
be identical when facing the same type of opponent.

Player 1

Player 2
H D

H (v − c)/2, (v − c)/2 v, 0
D 0, v v/2, v/2

Figure 1: Maynard Smith and Price’s Hawk-Dove game. Row player’s payoffs given first in each
cell.

2 Evolutionary Game Theory

Evolutionary game theory (EGT) focuses on evolutionary dynamics that are frequency depen-
dent. The fitness payoff for a particular phenotype depends on the population composition.

Classical game theory focuses largely on the properties of the equilibria of games. One of the
central defining features of EGT is the focus on the dynamics of strategies and their composition
in a population rather than on the properties of equilibria.

The approach is to study replicator equations. The attractors of these dynamical equations
are the evolutionary stable strategies (ESSs) – or the Nash Equilibria of the game.

Consider the Prisoner’s Dilemma game. This game is defined by two strategies: Cooperate
and Defect. The prisoner’s dilemma game is defined such that the payoff to a defector playing
against a cooperator is greatest; the payoff of mutual cooperation is next greatest; the payoff
for mutual defection is next greatest; and the payoff to cooperating when the opponent defects
is least. These features can be economically summarized in a payoff matrix that lists the payoff
to the row strategy when playing the column strategy (figure 2). We can name the payoffs in
game 2 T > R > P > S, where T is the temptation, R is the reward for mutual cooperation, P
is the punishment for mutual defection, and S is the sucker’s payoff. It is conventional to also
assume that R > (T + P )/2. Without this, then alternating rounds between cooperation and
defection leads to a greater payoff than pure cooperation.

Player 1

Player 2
C D

C R S
D T P

Figure 2: Prisoner’s Dilemma. T > R > P > S and R > (T + P )/2.
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We assume a large population (effectively infinite) so that we can reasonably model the
proportions of the two strategies, xc and xd. If the population were sufficiently small, we would
need to worry about things like the random extinction of strategies at low frequency (this is the
so-called “finite” population model). Let wc and wd be the fitnesses of cooperators and defectors
respectively. Further, let ∆w(s1, s2) denote the change in fitness for an s1 individual against an
s2 opponent. Fitness is a function of the proportions of strategies d and c:

wc = Wc,0 + xc∆w(C,C) + xd∆w(C,D) (1)
wd = Wd,0 + xc∆w(D,C) + xd∆w(D,D)
w̄ = xcwc + xdwd

where Wi,0 is the initial fitness of strategy i and w̄ is mean fitness. The change in frequencies
from one generation to the next will be a function of the current proportions and the relative
fitnesses. For example, the proportion of strategy c in the next generation will be x′

c = xcwc/w̄,
the proportion of strategy d will be x′

d = xdwd/w̄. The change from one generation to the next
for the c strategy will be:

∆xc = x′
c − xc =

xc(wc − w̄)
w̄

For small change, and where reproduction is continuous, we can approximate this equation
with the differential equation,

ẋc =
xc(wc − w̄)

w̄
.

Since by definition of the Prisoner’s Dilemma (wc − w̄)/w̄ < 0, it is clear that the c strategy
will decay exponentially at a rate equal to (wc − w̄)/w̄.

The general replicator dynamic equation for n strategies is

ẋi = xi [wi(x)− w̄] (2)

where ẋi is the time derivative of the proportion playing the ith strategy, wi(x) is the fitness
of strategy i when played against the current state vector x = (x1, x2, . . . , xn). This fitness
of strategy i comes from the payoff matrix W = [wij ]. Fitness for the i strategy is wi(x) =∑

j xiwi,j . Note that this is just the expected fitness for strategy i: multiply the frequency of
strategy i times the fitnesses of i against itself and all other strategies in the population. This
sum is its expected fitness.

The system of differential equations in 2 is generally much easier to analyze than the corre-
sponding system of difference equations. For continuously breeding, age-structured populations,
the assumption of continuous change is not that bad as long as the change per unit time is not
too great.

Assuming that the population size is very large means that we don’t have to worry about
stochastic variation in strategies due to drift.
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2.1 An Example: Hawk-Dove-Retaliator

Hawk-Dove-Retaliator is another game described by Maynard Smith and Price. Like Hawk-
Dove, Hawks always fight and Doves always concede to a fight. The game introduces a third
strategy, Retaliator, which escalate only if its adversary escalates. That is, Retaliator normally
plays Dove but plays Hawk against other Hawks. The payoff to Retaliator is thus equal to that
of a Hawk when playing a Hawk and a Dove when playing Doves or itself. These payoffs are
summarized in figure 3.

Player 1

Player 2
H D R

H (v − c)/2 v (v − c)/2
D 0 v/2 v/2
R (v − c)/2 v/2 v/2

Figure 3: Maynard Smith and Price’s Hawk-Dove-Retaliator game. Row player’s payoffs given
first in each cell. v is the payoff for victory in a conflict. c is the cost of fighting (e.g., wounding).

The trajectories of the dynamics of this game are plotted in the three-sided simplex of
figure 4. In this plot, each vertex of the triangle represents the pure strategy. A point in the
interior represents a mixture of strategies. The sum of the distances from each vertex is always
one.
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Dove Hawk

Retaliator

Figure 4: Evolutionary trajectories for the Hawk-Dove-Retaliator game with different starting
values. The initial values are x

(1)
0 = (1/3, 1/3, 1/3) and x

(2)
0 = (1/3, 1/2, 1/6). Initial values

x
(1)
0 leads to a mixed equilibrium that is 2/3 Doves and 1/3 Hawks, while x

(2)
0 leads to a mixed

equilibrium that is 69% Retaliator and 31% Dove.
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