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A Simple Example

Assume 2 Age-Classes

The population is now described by the following model:

n1(t + 1) = f1n1(t) + f2n2(t) (1)

n2(t+1) = p1n1 (2)

n1 is the number in stage 1. n2 is the number in stage 2, f1

is the fertility of stage 1 individuals, f2 is the fertility of stage 2

individuals, and p1 is the survivals of 1’s to age class 2

The question we wish to answer: Is there a unique exponential

growth rate for such a population analogous to the unstructured

case?
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Figuring Out Age Structure

Imagine you start with a total population size (N(0) = n1(0)+

n2(0)) of 10. What will the population look like in one time

step?

If there are 10 ones and zero twos

n1(1) = 10f1 (3)

n2(1) = 10p1 (4)

If there are zero ones and 10 twos

n1(1) = 10f2 (5)

n2(1) = 0 (6)

Hmmmm. . .

A structured population will grow exponentially only when the

ratios between the different classes of the population remain

constant

In the age-structured case, we call this the stable age distribution

In the state-structured case, we call it the stable stage distribution
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Matrices Provide a Compact Notation

Manipulation of Matrices

1. A matrix is a rectangular array of numbers

A =

»
a11 a12

a21 a22

–
2. A vector is simply a list of numbers

n(t) =

24 n1

n2

n3

35
3. A scalar is a single number: λ = 1.05
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Index Conventions

We refer to individual matrix elements by indexing them by their

row and column positions

A matrix is typically named by a capital (bold) letter (e.g., A)

An element of matrix A is given by a lowercase a subscripted

with its indices

These indices are subscripted following the the lowercase letter,

first by row, then by column

For example, a21 is the element of A which is in the second row

and first column
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The Leslie Matrix

This matrix is a special matrix used in demography and population

biology

It is referred to as a Leslie Matrix after its inventor Sir Paul Leslie

(Leslie 1945, 1948)

A Leslie Matrix contains:
• age-specific fertilities along the first row

• age-specific survival probabilities along the subdiagonal

• Zeros everywhere else

Here is a 5× 5 Leslie matrix:

A =

2666664
0 F2 F3 F4 F5

S1 0 0 0 0

0 S2 0 0 0

0 0 S3 0 0

0 0 0 S4 0

3777775 (7)

The Leslie matrix is a special case of a projection matrix for an

age-classified population

With age-structure, the only transitions that can happen are from

one age to the next and from adult ages back to the first age

class

Can you imagine a projection matrix structured by something

other than age?
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The Life Cycle Diagram

It is useful to think of the matrix entries in a life-cycle manner:

The entry aij is the transition probability of going from (st)age j

to (st)age i

aij = ai←j (8)

Note (Especially for Sociologists): The column-to-row

convention of the Leslie Matirx is transposed from the convention

commonly found in sociological applications (e.g., social mobility

matrices)
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Life Cycle Diagram

We formalize this life-cycle approach by noting the linkages

between the projection matrix and the life-cycle graph

A life-cycle graph is a digraph (or directed graph) composed two

things:

• Nodes, which represent the states (ages, stages, subgroups, localities,
etc.)

• Edges, which represent transitions between states

Here is a simple age-structured life cycle with five ages and

reproduction in age classes 2-5

51 2 3 4
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Desirable Properties of Matrices

Every demographic matrix is non-negative (all its entries are

greater than or equal to zero)

In general, we are only interested in non-negative matrices

We have seen that it is important for the elements of a structured

population model to come to some sort of stable distribution

Not all population models do this

To evaluate the conditions for convergence, we use the life cycle

graph

Irreducible Matrices: A matrix is irreducible if and only if there is

a path between every node and every other node in the life cycle

graph

Irreducibility is necessary but not sufficient for stability

Primitivity: An irreducible non-negative matrix is primitive if all its

elements become positive when raised to sufficiently high powers

A matrix is primitive if the greatest common divisor of all loops

in the corresponding life-cycle graph is 1
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A Reducible Life Cycle

51 2 3 4
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Another (Wierd) Reducible Life Cycle

41 2 3
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An Imprimitive Life Cycle

41 2 3
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Life Cycles with Self-Loops Are Primitive
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Compact Notation

Having redefined the population model in matrix form, we can

write it in a more compact notation of matrix algebra:

n(t + 1) = An(t) (9)

(Matrices contain much, much more than a just pretty face of

notation)
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Let’s now assume that there is a solution to the exponential

growth model in a structured population

Write the population model as:

An = λn (10)

Now solve for λ . . .
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The rules of linear algebra make this a little trickier than just

dividing both sides by n

An− λn = 0 (11)

An− λIn = 0 (12)

(A− λI)n = 0 (13)

I is an identity matrix of the same rank as A (ones along the

diagonal, zeros elsewhere)
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It’s a fact of linear algebra, that the solution to equation 10 exists

only if the determinant of the matrix (An− λI) is zero

For the 2× 2 case of equation 10, the determinant is simple

For any 2× 2 matrix the determinant is given by:

det

»
a b

c d

–
= ad− bc

Determinants of matrices of larger rank are, necessarily, more

complex
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the calculation

(A−λI) =

»
f1 f2

p1 0

–
−

»
λ 0

0 λ

–
=

»
f1 − λ f2

p1 −λ

–

det(A− λI) = −(f1 − λ)λ− f2p1

λ
2 − f1λ− f2p1 = 0

Use the quadratic equation to solve for λ:

−f1 ±
q

f2
1 − 4f2p1

2f1
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Numerical Example

Perhaps it makes more sense to use numbers . . .

Define:

A =

»
1.5 2

0.5 0

–
(14)

det(A− λI) =

»
1.5− λ 2

0.5 −λ

–

λ
2 − 1.5λ− 1 = 0

(λ− 2)(λ + 0.5) = 0
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Eigenvectors

Remember when we started this, we found that for a population

to grow exponentially, it must maintain constant ratios between

its age classes?

There is a special vector that goes hand-in-hand with the

eigenvalue called, strangely enough, an eigenvector

Let’s keep up with our example. Remember that the eigenvalues

of this model are λ = 2 and λ = −0.5

That means that we can write our model as:

A =

»
1.5 2

0.5 0

– »
n1

n2

–
=

»
2n1

2n2

–
(15)

Solve this system to two equations and find that n1 = 4n2 is a

solution

If there are four times the number of stage ones as there are stage

twos, the population will grow exponentially

> no <- matrix(c(4,1),nrow=2)
> N <- NULL
> N <- cbind(N,no)
> pop <- no
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> for (i in 1:10)
+ pop <- A%*%pop
+ N <- cbind(N,pop)
> plot(0:10,log(apply(N,2,sum)),type="l", col="blue", xlab="Time",
> ylab="Population Size")
> N[1,]/N[2,]
[1] 4 4 4 4 4 4 4 4 4 4 4

0 2 4 6 8 10

2
3

4
5

6
7

8

Time

lo
g(

P
op

ul
at

io
n 

S
iz

e)

Stanford Summer Short Course: Leslie Matrix I 22



Projection (The Simplest Form of Analysis)
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Here is a projection of a population that didn’t start at its stable

age distribution
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Note that if we let it run long enough, the oscillations dampen

and we see the straight line on semilog axes, indicating geometric

increase
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Some Plotting Notes...

Just for Grins, Here’s how I did the plots:

First, I made a 7× 7 Leslie matrix using the following commands

(which you will see again repeatedly)

> px <- c(.92,.95,.95,.95,.95,.95) # some arbitrary survival probs.
> mx <- c(0,0,.05,.1,.25,.5,1) # some arbitrary fertilities
> lx <- c(1,px) # a quick way to get lx from px
> lx <- cumprod(lx)
> lx
[1] 1.0000000 0.9200000 0.8740000 0.8303000 0.7887850 0.7493457 0.7118785
> sum(lx*mx) # the net reproduction number
[1] 1.410478

> k <- length(px)+1 # i.e., 7
> A <- matrix(0, nrow=k, ncol=k) # make a 7x7 matrix of zeros
> A[row(A) == col(A)+1] <- px # put px on the subdiag
> A[1,] <- mx # put mx on first row

I then typed the following into a text editor and saved it in my

working directory

oscillate.plot <- function(tmax, A=A){
no <- matrix(c(0,0,0,0,0,1,1),nrow=7)
pop <- no
N <- NULL
N <- cbind(N,pop)
for (i in 1:tmax){
pop <- A%*%pop
N <- cbind(N,pop)
}

N
}
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I then do the rest at the R command line

> source("oscillate.plot.r")
> N <- oscillate.plot(tmax=20)
> plot(0:20,log(apply(N,2,sum)),type="l",col="blue",xlab="Time",
+ ylab="log(Population Size)")
> N1 <- oscillate.plot(tmax=100)
> plot(0:100,log(apply(N1,2,sum)),type="l",col="blue",xlab="Time",
+ ylab="log(Population Size)")
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Fun facts about Eigenvalues

1. A theorem from linear algebra (The Perron-Frobenius

Theorem) guarantees that one eigenvalue will be positive and

absolutely greater than all others. This is called the dominant

eigenvalue of the projection matrix

2. The dominant eigenvalue of the projection matrix is the

asymptotic growth rate of the population described by that

matrix

3. The dominant eigenvalue of the projection matrix is the fitness

measure of choice for age-structured populations

4. log(λ) = r. That is, the logarithm of the dominant

eigenvalue gives the annual rate of increase of the population

5. By calculating the eigenvalues of a projection matrix, you get

lots of other important information
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Left Eigenvectors of the Projection Matrix

In matrix algebra, multiplication is not commutative

AB 6= BA

Thus, the left eigenvector of a matrix is distinct from the right eigenvector

v∗A = λv∗ (16)

where the asterisk denotes the complex-conjugate transpose

If Λ is a matrix with the eigenvalues of the projection matrix along the diagonal
and zeros elsewhere, we have

AW = WΛ (17)

Λ = W−1AW (18)

W−1A = ΛW−1
(19)

Equation 19 is the matrix formula for an eigensystem (Equation 16), suggesting
that the rows of W−1 must be the left eigenvectors of A.

In R, we calculate the matrix of reproductive value vectors, V, by using the
the function solve, which inverts the matrix of right eigenvectors. While we
need the complex parts for the calculations, the first left eigenvector will be
made up only of real numbers. We therefore use the function Re() to extract
only these real parts (the imaginary parts have a coefficient of 0).

W <- ev$vectors
V <- solve(Conj(W))
v <- abs(Re(V[1,]))
plot(age,v/v[1],pch=16,col="red",type="b", xlab="Age",

ylab="Reproductive Value")
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Leslie Matrix Example: The Ache
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A =

2666666666666664

0.00 0.01 0.16 0.45 0.60 0.66 0.62 0.54 0.31 0.03
0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.00

3777777777777775
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Making a Leslie Matrix from Life Table Data

make.leslie <- function(lx,mx, peryear=1)
# assumes lx and mx same length

# peryear=1 means that age-specific fertilities have been
# appropriately cumulated for the interval, if peryear=5, mx values
# will be multiplied by 5, etc.

# rank of the Leslie matrix

k <- length(mx)

# calculate px
px <- exp(diff(log(lx)))

# make the first-row entries for the Leslie matrix
Fx <- NULL

for(i in 1:k-1)
Fx[i] <- sqrt(lx[2]) * peryear*(mx[i] + px[i]*mx[i+1])/2

Fx <- c(Fx,mx[k])

# one-sex population
Fx <- Fx/2

A <- matrix(0, nrow=k, ncol=k)
A[row(A) == col(A)+1] <- px
A[1,] <- Fx

A
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Conditions

Every demographic matrix is non-negative (all its entries are

greater than or equal to zero)
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