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Spectral Decomposition of the Projection Matrix

Suppose we are given an initial population vector, n(0)

We can write n(0) as a linear combination of of the right eigenvectors, wi

of the projection matrix A

n(0) = c1w1 + c2w2 + · · ·+ ckwk

where the ci are a set of coefficients

We can collect the eigenvectors into a matrix and the coefficients into a
vector and re-write this equation as:
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n(0) = Wc

From this it is clear that

c = W−1n(0)

Now, W−1 is just the matrix of left eigenvectors (or their complex conjugate
transpose), so:

ci = v∗i n(0)
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Spectral Decomposition II

Project the initial population vector n(0) forward by multiplying it by the
projection matrix A

n(1) = An(0)

=
∑

i

ciAwi

=
∑

i

ciλiwi

Multiply again!
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n(2) = An(1)

=
∑

i

ciλiAwi

=
∑

i

ciλ
2
iwi

We could keep going, but at this point it isn’t hard to believe that the
following holds:

n(t) =
∑

i

ciλ
t
iwi (1)

Equivalently:
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n(t) =
∑

i

λt
iwiv∗i n(0) (2)

This is known as the Spectral Decomposition of the projection matrix A

It is instructive to compare this to the solution for population growth in an
unstructured (i.e., scalar) population, characterized by a geometric rate of
increase a:

N(t + 1) = aN(t)

N(t) = N(0)at

For the scalar case, the solution is exponential
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For a k-dimensional matrix, this solution means that the population size at
time t is a weighted sum of k exponentials

While both depend on the initial conditions, the k-dimensional case weights
the initial population vector by the reproductive values of the k classes
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Population Momentum
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Keyfitz (1971) Formulation for Population Momentum

The ratio of population size at the ultimate equilibrium and just before the
fertility transition

M =
b
◦
e0

rµ

(
R0 − 1

R0

)
(3)

where b is the gross birth rate:

b =
1∫ β

α
e−rxl(x)dx
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◦
e0 is the life expectancy at birth

µ is the mean age of childbearing in the stationary population:

µ =

∫ β

α
xl(x)m(x)dx∫ β

α
l(x)m(x)dx

R0 is the net reproduction ratio:

R0 =
∫ β

α

l(x)m(x)dx
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Momentum in Terms of Matrix Formalism

First recall the spectral decomposition of the projection matrix A:

n(t) =
∑

i

ciλ
t
iwi

where the coefficients of the sum ci are

ci = v∗i n(0)

The (scalar) product of the initial population size and the reproductive value
vector corresponding to the ith eigenvalue
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Momentum is the Ratio of Eventual Size to the Size at
Fertility Drop

M = lim
t→∞

‖n(t)‖
‖n(0)‖

(4)

where ‖n‖ =
∑

i ni is the total population size

The population under the old and new rates will be characterized by

eigenvalues, λ
(old)
i and λ

(new)
i
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lim
t→∞

n(t)

λ
(new)
1

= lim
t→∞

n(t) (5)

=
(
v(new)∗

1 n(0)
)
w(new)

1 (6)

This follows directly from the spectral decomposition of the projection
matrix

Substitute this into equation 4

M =
eT

(
v(new)∗

1 n(0)
)
w(new)∗

i

eTn(0)
(7)

where e is a vector of ones.
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This much simpler computationally than the original Keyfitz (1971)
formulation
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Transient Dynamics and Convergence

Re-write the spectral decomposition for the projection matrix A, expanding
the sum for expository purposes

n(t) = c1λ
t
1w+c2λ

t
2w2 + · · ·+ ckλ

t
kwk

If A is irreducible and primitive, then the Perron-Frobenius theorem insures
that one of the eigenvalues, λ1, of A will be:

• Strictly positive

• Real

• Greater than or equal to all other eigenvalues
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Because of this, all the exponential terms in the spectral decomposition of
A become negligible compared to the one associated with λ1 when t gets
large

To see this divide both sides of the spectral decomposition of A by the
dominant eigenvalue λ1:

n(t)
λ1

= c1w1 + c2

(
λ2

λ1

)t

w2 + · · ·+ ck

(
λk

λ1

)t

wk (8)

Since λ1 > λi for i ≥ 2, each of the fractions involving the eigenvalues will
approach zero as t →∞

Taking this limit, we see that:

lim
n→∞

n(t)
λt

1

= c1w1 (9)
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This is the Strong Ergodic Theorem

The long term dynamics of a population governed by primitive matrix A
are described by growth rate λ1 and population structure w1
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Yes, But How Soon to Convergence?

Clearly, a population will converge to its asymptotic behavior faster is λ1 is
large relative to the other eigenvalues

That’s because λi/λ1 (i > 1) will be smaller and approach zero more rapidly
as it is powered up

The classic measure of convergence is the ratio of the dominant to the
absolute value of the subdominant eigenvalue

ρ = λ1/|λ2|

The quantity ρ is known as the damping ratio
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From equation 8, we can write

lim
t→∞

(
n(t)
λ1

− c1w1 + c2ρ
−tw2

)
= 0

For large t and some constant k

∥∥∥∥n(t)
λ1

− c1w1

∥∥∥∥ ≤ kρt

= ke− log ρ

Convergence to stable structure (and therefore growth at rate λ1) is
asymptotically exponential at a rate at least as fast as log ρ
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Note that convergence could be faster (e.g., if n(0) = w1)

The time tx it takes for the influence of λ1 to be x times larger than λ2 is

(
λ1

|λ2|

)tx

= x

or

tx = log(x)/ log(ρ)
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How Far is a Population from the Stable Age
Distribution?

The classic measure of distance is attributable to Keyfitz (1968) and is a
standard measure of the distance between two probability vectors

∆(x,w) =
1
2

∑
i

|xi − wi|

Keyfitz’s ∆ takes a maximum value of ∆ = 1, clearly, is ∆ = 0 when two
vectors are identical

Cohen developed two metrics that account not just for the population
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vector byt for the possible route through which a population structure can
converge to stability

s(A,n(0), t) =
t∑

u=0

(
n(u)
λu

1

− c1w1

)

r(A,n(0), t) =
t∑

u=0

∣∣∣∣n(u)
λu

1

− c1w1

∣∣∣∣
Cohen’s measures of distance between the observed population vector and
the stable vector is simply the sum of the absolute values of these vectors
as t →∞
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D1 =
∑

i

lim
t→∞

|si(A,n(0), t)|

D1 =
∑

i

lim
t→∞

|ri(A,n(0), t)|
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Matrix Perturbations

This derivation follows Caswell (2001)

We start from the general matrix population model:

Aw = λw (10)

Now we perturb the system

(A + dA)(w + dw) = (λ + dλ)(w + dw) (11)

Multiply all the products and discard the second-order terms such as
(dA)(dw)
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Aw + A(dw) + (dA)w = λw + λ(dw) + (dλ)w (12)

Simplify this to yield

A(dw) + (dA)w = λ(dw) + (dλ)w (13)

Multiply both sides by v∗ to get

v∗A(dw) + v∗(dA)w = λv∗(dw) + v∗(dλ)w (14)

From the definition of a left eigenvector, we know that the first term on the
left-hand side is the same as the first term on the right-hand side. Similarly,
because the right and left eigenvectors are scaled so that 〈w,v〉 = 1, the
last term simplifies to dλ. We are left with
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v∗dAw = dλ (15)

When we do a perturbation analysis, we typically only change a single
element of A. Thus the basic formula for the sensitivity of the dominant
eigenvalue to a small change in element aij is

∂λ

∂aij
= viwj (16)

In other words, the sensitivity of fitness to a small change in projection
matrix element aij is simply the ith element of the left eigenvector weighted
by the proportion of the stable population in the jth class (assuming vectors
have been normed such that 〈vw〉 = 1)
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Eigenvalue Sensitivities are Linear Estimates of the
Change in λ1, Given a Perturbation
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aij

λ
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Some R Code for Calculating Sensitivities

A recipe!

> lambda <- eigen(A)
> W <- lambda$vectors
> w <- abs(Re(W[,1]))
> V <- solve(Conj(W))
> v <- abs(Re(V[1,]))
> s <- v%o%w
> s[A == 0] <- 0

Extract and plot them

> surv.sens <- s[row(s) == col(s)+1]
> fert.sens <- s[1,]
> age <- seq(0,45,by=5)
> plot(age[-10],surv.sens,type="l",col="blue")
> lines(age[4:10],fert.sens[4:10],col="red")
> legend(30,.27,c("survival","fertility"),col=c("blue","red"),lty=c(1,1))
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Elasticities

Another measure of the change in a matrix given a small change in an
underlying element is the eigenvalue elasticity:

eij =
∂ log λ

∂ log aij

Elasticities are proportional sensitivities: they measure the linear change on
a log scale

An important property of elasticities is that they sum to one
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∑
i,j

eij = 1
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Eigenvalue Second Derivatives

We can measure the curvature of the fitness surface

∂2λ(1)

∂aij∂akl
= s

(1)
il

∑
m6=1

s
(m)
kj

λ(1) − λ(m)
+ s

(1)
kj

∑
m6=1

s
(m)
il

λ(1) − λ(m)
, (17)

where m is the rank of the projection matrix,

s
(m)
ij = ∂λ(m)/∂aij,

and λ(m) is the mth eigenvalue of the projection matrix
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Sensitivity of Elasticities

One application of the eigenvalue second derivatives is calculating how
elasticities will change when vital rates are perturbed

i.e.., the sensitivities of the elasticities:

∂eij

∂akl
=

aij

λ

∂2λ

∂aij∂akl
− aij

λ2

∂λ

∂aij

∂λ

∂akl
+

δikδjl

λ

∂λ

∂aij
(18)

where δik and δjl indicate the Kronecker delta function where δik = 1 if
i = k, otherwise δik = 0
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