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Spectral Decomposition of the Projection Matrix

Suppose we are given an initial population vector, n(0)

We can write n(0) as a linear combination of of the right eigenvectors, wi of the
projection matrix A

n(0) = c1w1 + c2w2 + · · ·+ ckwk

where the ci are a set of coefficients

We can collect the eigenvectors into a matrix and the coefficients into a vector and
re-write this equation as:

n(0) = Wc
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From this it is clear that

c = W−1n(0)

Now, W−1 is just the matrix of left eigenvectors (or their complex conjugate
transpose), so:

ci = v∗i n(0)
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Spectral Decomposition II

Project the initial population vector n(0) forward by multiplying it by the projection
matrix A

n(1) = An(0)

=
∑

i

ciAwi

=
∑

i

ciλiwi

Multiply again!

n(2) = An(1)
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=
∑

i

ciλiAwi

=
∑

i

ciλ
2
iwi

We could keep going, but at this point it isn’t hard to believe that the following
holds:

n(t) =
∑

i

ciλ
t
iwi (1)

Equivalently:

n(t) =
∑

i

λt
iwiv∗i n(0) (2)

This is known as the Spectral Decomposition of the projection matrix A

It is instructive to compare this to the solution for population growth in an
unstructured (i.e., scalar) population, characterized by a geometric rate of increase
a:
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N(t + 1) = aN(t)

N(t) = N(0)at

For the scalar case, the solution is exponential

For a k-dimensional matrix, this solution means that the population size at time t
is a weighted sum of k exponentials

While both depend on the initial conditions, the k-dimensional case weights the
initial population vector by the reproductive values of the k classes
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Keyfitz (1971) Formulation for Population Momentum

The ratio of population size at the ultimate equilibrium and just before the fertility
transition

M =
b
◦
e0

rµ

(
R0 − 1

R0

)
(3)

where b is the gross birth rate:

b =
1∫ β

α
e−rxl(x)dx

◦
e0 is the life expectancy at birth
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µ is the mean age of childbearing in the stationary population:

µ =

∫ β

α
xl(x)m(x)dx∫ β

α
l(x)m(x)dx

R0 is the net reproduction ratio:

R0 =
∫ β

α

l(x)m(x)dx

Stanford Summer Short Course: Leslie Matrix II 10



Momentum in Terms of Matrix Formalism

First recall the spectral decomposition of the projection matrix A:

n(t) =
∑

i

ciλ
t
iwi

where the coefficients of the sum ci are

ci = v∗i n(0)

The (scalar) product of the initial population size and the reproductive value vector
corresponding to the ith eigenvalue
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Momentum is the Ratio of Eventual Size to the Size at
Fertility Drop

M = lim
t→∞

‖n(t)‖
‖n(0)‖

(4)

where ‖n‖ =
∑

i ni is the total population size

The population under the old and new rates will be characterized by eigenvalues,

λ
(old)
i and λ

(new)
i

lim
t→∞

n(t)

λ
(new)
1

= lim
t→∞

n(t) (5)

=
(
v(new)∗

1 n(0)
)
w(new)

1 (6)
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This follows directly from the spectral decomposition of the projection matrix

Substitute this into equation 4

M =
eT

(
v(new)∗

1 n(0)
)
w(new)∗

eTn(0)
(7)

where e is a vector of ones.

This much simpler computationally than the original Keyfitz (1971) formulation
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Transient Dynamics and Convergence

Re-write the spectral decomposition for the projection matrix A, expanding the sum
for expository purposes

n(t) = c1λ
t
1w+c2λ

t
2w2 + · · ·+ ckλ

t
kwk

If A is irreducible and primitive, then the Perron-Frobenius theorem insures that
one of the eigenvalues, λ1, of A will be:

• Strictly positive

• Real

• Greater than or equal to all other eigenvalues

Because of this, all the exponential terms in the spectral decomposition of A become
negligible compared to the one associated with λ1 when t gets large

To see this divide both sides of the spectral decomposition of A by the dominant
eigenvalue raised to the t power λt

1:
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n(t)
λt

1

= c1w1 + c2

(
λ2

λ1

)t

w2 + · · ·+ ck

(
λk

λ1

)t

wk (8)

Since λ1 > λi for i ≥ 2, each of the fractions involving the eigenvalues will approach
zero as t →∞

Taking this limit, we see that:

lim
n→∞

n(t)
λt

1

= c1w1 (9)

This is the Strong Ergodic Theorem

The long term dynamics of a population governed by primitive matrix A are
described by growth rate λ1 and population structure w1
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Yes, But How Soon to Convergence?

Clearly, a population will converge to its asymptotic behavior faster is λ1 is large
relative to the other eigenvalues

That’s because λi/λ1 (i > 1) will be smaller and approach zero more rapidly as it
is powered up

The classic measure of convergence is the ratio of the dominant to the absolute
value of the subdominant eigenvalue

ρ = λ1/|λ2|

The quantity ρ is known as the damping ratio

From equation 8, we can write

lim
t→∞

(
n(t)
λ1

− c1w1 + c2ρ
−tw2

)
= 0
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For large t and some constant k

∥∥∥∥n(t)
λ1

− c1w1

∥∥∥∥ ≤ kρt

= ke− log ρ

Convergence to stable structure (and therefore growth at rate λ1) is asymptotically
exponential at a rate at least as fast as log ρ

Note that convergence could be faster (e.g., if n(0) = w1)

The time tx it takes for the influence of λ1 to be x times larger than λ2 is

(
λ1

|λ2|

)tx

= x

or

Stanford Summer Short Course: Leslie Matrix II 17



tx = log(x)/ log(ρ)
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How Far is a Population from the Stable Age Distribution?

The classic measure of distance is attributable to Keyfitz (1968) and is a standard
measure of the distance between two probability vectors

∆(x,w) =
1
2

∑
i

|xi − wi|

Keyfitz’s ∆ takes a maximum value of ∆ = 1, clearly, ∆ = 0 when two vectors are
identical

Cohen developed two metrics that account not just for the population vector but for
the possible route through which a population structure can converge to stability

s(A,n(0), t) =
t∑

u=0

(
n(u)
λu

1

− c1w1

)
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r(A,n(0), t) =
t∑

u=0

∣∣∣∣n(u)
λu

1

− c1w1

∣∣∣∣
Cohen’s measures of distance between the observed population vector and the stable
vector is simply the sum of the absolute values of these vectors as t →∞

D1 =
∑

i

lim
t→∞

|si(A,n(0), t)|

D1 =
∑

i

lim
t→∞

|ri(A,n(0), t)|
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Matrix Perturbations

This derivation follows Caswell (2001)

We start from the general matrix population model:

Aw = λw (10)

Now we perturb the system

(A + dA)(w + dw) = (λ + dλ)(w + dw) (11)

Multiply all the products and discard the second-order terms such as (dA)(dw)

Aw + A(dw) + (dA)w = λw + λ(dw) + (dλ)w (12)

Simplify this to yield
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A(dw) + (dA)w = λ(dw) + (dλ)w (13)

Multiply both sides by v∗ to get

v∗A(dw) + v∗(dA)w = λv∗(dw) + v∗(dλ)w (14)

From the definition of a left eigenvector, we know that the first term on the left-hand
side is the same as the first term on the right-hand side. Similarly, because the right
and left eigenvectors are scaled so that 〈w,v〉 = 1, the last term simplifies to dλ.
We are left with

v∗dAw = dλ (15)

When we do a perturbation analysis, we typically only change a single element of
A. Thus the basic formula for the sensitivity of the dominant eigenvalue to a small
change in element aij is

∂λ

∂aij
= viwj (16)
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In other words, the sensitivity of fitness to a small change in projection matrix
element aij is simply the ith element of the left eigenvector weighted by the
proportion of the stable population in the jth class (assuming vectors have been
normed such that 〈vw〉 = 1)
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Eigenvalue Sensitivities are Linear Estimates of the Change in
λ1, Given a Perturbation

λ

ija
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Lande’s Theorem

Imagine a multivariate phenotype (e.g., a life history) z

Lande (1982) shows that when selection is weak, the change in the phenotype ∆z
is given by

∆z = λ−1 Gs

wher G is the additive genetic covariance matrix for the transitions in the life-cycle
and s is a column vector of all the life-cycle transition sensitivities

The sensitivities therefore represent the force of selection on the phenotype
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Some R Code for Calculating Sensitivities

A recipe!

> lambda <- eigen(A)
> W <- lambda$vectors
> w <- abs(Re(W[,1]))
> V <- solve(Conj(W))
> v <- abs(Re(V[1,]))
> s <- v%o%w
> s[A == 0] <- 0

Extract and plot them

> surv.sens <- s[row(s) == col(s)+1]
> fert.sens <- s[1,]
> age <- seq(0,45,by=5)
> plot(age,surv.sens,type="l",lwd=3,col="turquoise")
> lines(age[4:10], fs[4:10], lwd=3, col="magenta")
> legend(30,.17,c("survival","fertility"), lwd=3, col=c("turquoise","magenta"))
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Elasticities

Another measure of the change in a matrix given a small change in an underlying
element is the eigenvalue elasticity:

eij =
∂ log λ

∂ log aij

Elasticities are proportional sensitivities: they measure the linear change on a log
scale

An important property of elasticities is that they sum to one

∑
i,j

eij = 1
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The Universality of the Human Life Cycle

There is a great variety of human demographic experience

How does this variation translate into the force of selection on the human life cycle?

Sampling the full variety of human demographic variation is hopeless

Adopt a strategy (following Livi-Bacci) of filling out a demographic space and
exploring the boundaries of the region
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The Human Demographic Space
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Mortality
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Fertility
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Survival Elasticities
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Fertility Elasticities
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Eigenvalue Second Derivatives

We can measure the curvature of the fitness surface

∂2λ(1)

∂aij∂akl
= s

(1)
il

∑
m6=1

s
(m)
kj

λ(1) − λ(m)
+ s

(1)
kj

∑
m6=1

s
(m)
il

λ(1) − λ(m)
, (17)

where m is the rank of the projection matrix,

s
(m)
ij = ∂λ(m)/∂aij,

and λ(m) is the mth eigenvalue of the projection matrix
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Sensitivity of Elasticities

One application of the eigenvalue second derivatives is calculating how elasticities
will change when vital rates are perturbed

i.e.., the sensitivities of the elasticities:

∂eij

∂akl
=

aij

λ

∂2λ

∂aij∂akl
− aij

λ2

∂λ

∂aij

∂λ

∂akl
+

δikδjl

λ

∂λ

∂aij
(18)

where δik and δjl indicate the Kronecker delta function where δik = 1 if i = k,
otherwise δik = 0
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More Uses for Sensitivities: Stochastic Population Growth

Assume a population living in an i.i.d. random environment

The population is characterized by a mean projection matrix Ā, with its associated
eigenvalue λ̄

Tuljapurkar’s small noise approximation for the stochastic growth rate is:

log λs = log λ̄− σ2

2

where

σ2 = sT Cs

where C is the covariance matrix for life-cycle transitions across time
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