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1 Introduction

If you fake it long enough, there comes a point where you aren’t faking it any more. Here are
some tips to help you along the way...

2 Calculus
Derivative The definition of a derivative is as follows. For some function f(x),
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2.1 Differentiation Rules

It is useful to remember the following rules for differentiation. Let f(z) and g(z) be two functions

2.1.1 Linearity

L (af (@) + bo() = af' () + by’ ()

for constants a and b.

2.1.2 Product rule

2.1.3 Chain rule



2.1.4 Quotient Rule
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2.1.5 Some Basic Derivatives
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2.1.6 Convexity and Concavity

It is very easy to get confused about the convexity and concavity of a function. The technical
mathematical definition is actually somewhat at odds with the colloquial usage. Let f(z) be a
twice differentiable function in an interval I. Then:

f(x) convex (1)

f(x) concave

If you think about a profit function as a function of time, a convex function would show
increasing marginal returns, while a concave function would show decreasing marginal returns.

This leads into an important theorem (particularly for stochastic demography), known as
Jensen’s Inequality. For a convex function f(z),

E[f(X)] > f(IE[X]).

2.2 Taylor Series
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where f(*)(a) denotes the kth derivative of f evaluated at a, and k! = k(k — 1)(k —2)...(1).
For example, we can approximate e” at a = O:
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) E[f(x)]:[f(A)+f(B)]/2///,,,

f(E[x])=f([A+B]/2)

A E[x]=(A+B)/2 B

X

Figure 1: Illustration of Jensen’s Inequality.

2.3 Jacobian

For a system of equations, F(z) and G()), the Jacobian matrix is

[ 0F/ox OF/OA
J= ( 9G/0x 9GO ) :

This is very important for the analysis of stability of interacting models such as those for
epidemics and predator-prey systems. The equilibrium of a system is stable if and only if the
real parts of all the eigenvalues of J are negative.

2.4 Integration

Linearity

/[af(ﬂ:)+bg(:z:)] dfc:a/f(x)dx+b/g(x)d:v

/u-v'dmzu-v—/v-u’dw

Some Useful Facts About Integrals
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Integration by Parts
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2.5 Definite Integrals
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2.5.1 Expectation

For a continuous random variable X with probability density function f(x), the expected value
is

IE(X):/Q$f(m)dz

where the integral is taken over the set of all possible outcomes §2.
For example, the average age of mothers of newborns in a stable population:

B
AB:/ ae” "*l(a)m(a)da

Since (from the Euler-Lotka equation) the probability that a mother will be a years old in a
stable population is f(a) = e "*(a)m(a).

Some Properties of Expectation
ElaX] = olE[X]
For two discrete random variables, X and Y,
E[X +Y]=E[X]+E[Y]

2.5.2 Variance

For a continuous random variable X with probability density function f(z) and expected value
u, the variance is

V(X) = /Q (& — 1) f(2)de

A useful formula for calculating variances:



2.6 Exponents and Logarithms

Properties of Exponentials
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Complex Case
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The logarithm to the base e, where e is defined as
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Assume that log = log,. Logarithms to other bases will be marked as such. For example:
log,g, log,, etc.
This is an important for demography:

lim (1 + f>n =e"

n—oo

Properties of Logarithms
log 2% = alog x

log ab = loga + logb

log% =loga —logb



Imaginary

(a,b)=a+bi

A

a Real

Figure 2: Argand diagram representing a complex number z = a + bi.

Complex Numbers We encounter complex numbers frequently when we calculate the eigen-
values of projection matrices, so it is useful to know something about them. Imaginary number:
i = v/—1. Complex number: z = a + bi, where a is the real part and b is a coefficient on the
imaginary part.

It is useful to represent imaginary numbers in their polar form. Define axes where the
abscissa represents the real part of a complex number and the ordinate represents the imaginary
part (these axes are known as an Argand diagram). This vector, a + bi can be represented by
the angle 6 and the radius of the vector rooted at the origin to point (a,b). Using trigonometric
definitions, a = rsin 6 and b = r cos f, we see that

z=a+1ib=r(cosf +isinf).

Believe it or not, this comes in handy when we interpret the transient dynamics of a popu-
lation.
Let z be a complex number with real part a and imaginary part b,

z=a+W
Then the complex conjugate of z is
zZ=a—b

Non-real eigenvalues of demographic projection matrices come in conjugate pairs.

3 Linear Algebra

A matrix is a rectangular array of numbers

a a
A — 11 12
a1 a2

A vector is simply a list of numbers



n(t) = ng
ng
A scalar is a single number: A = 1.05
We refer to individual matrix elements by indexing them by their row and column positions.
A matrix is typically named by a capital (bold) letter (e.g., A). An element of matrix A is
given by a lowercase a subscripted with its indices. These indices are subscripted following the
the lowercase letter, first by row, then by column. For example, ao; is the element of A which
is in the second row and first column.

Matrix Multiplication
[ ail  a12 ] [ ni ] _ [ ai11n1 + aigng }
a1 a2 2 a21n1 + a2n2
Multiply each row element-wise by the column
For Example,
2 3 6| [(2-6)+@B-7)] |33
4 5 7 | 4-6)+(B-7) | |59
Matrix Addition or Subtraction

an @i | b b2 | _ [ ann+bu a2+ b
a1 G2 ba1  bao a1 + ba1  aga + bao

RN R

Multiplying a Matrix by a Scalar
A\ [ ail a2 } _ { a1l Aajo ]

az1 a2 Aag1  Aago
23] (s 1
4 5| |16 20

Systems of Equations Matrix notation was invented to make solving simultaneous equations
easier.

y1 = axy+bxo

Yo = cr1+dxo

HEEM

In matrix notation:



3.1 Eigenvalues and Eigenvectors

A scalar )\ is an eigenvalue of a square matrix A and w # 0 is its associated eigenvector if

Aw = \w.
Eigenvalues of A are calculated as the roots of the characteristic equation,
det(A — A\I) =0,

where I is the identity matrix, a square matrix with ones along the diagonal and zeros elsewhere.
For example, we can calculate the eigenvalues for the matrix,

A S
A_[pl 0].

Solve the characteristic equation det(A — AI) = 0:

ao- (2 8][4 815 4]

det(A —AI) = —(f1 — M) — fapr

2N — X — fop1 =0

Use the quadratic equation to solve for A:

—fiE N fE—4fopr

2f1
Numerical Example Define:
1.5 2
A= [ 0.5 0 } (2)
1.5—X 2
det(A — AI) = { 05— ]

A2 150 —-1=0

(A=2)(A+0.5) =0

The roots of this are A = 2 and A = —0.5. A k x k& matrix will have k eigenvalues. If a
matrix is non-negative, irreducible, and primitive, one of these eigenvalues is guaranteed to be
real, positive, and strictly greater than all the others.



Analytic Formula for Eigenvalues: The 2 x 2 Case
a b
A=l ]
The eigenvalues are:

Ay =T/2+/(T/2)2—D

where T' = a + d is the trace and D = ad — bc is the determinant of matrix A.



