Mathematics Cheat Sheet for Population Biology

James Holland Jones, Department of Anthropological Sciences
Stanford University

January 9, 2007

1 Introduction

If you fake it long enough, there comes a point where you aren't faking it any more. Here are some tips to help you along the way...

2 Calculus

Derivative The definition of a derivative is as follows. For some function $f(x)$,

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

2.1 Differentiation Rules

It is useful to remember the following rules for differentiation. Let $f(x)$ and $g(x)$ be two functions

2.1.1 Linearity

$$
\frac{d}{d x}(a f(x)+b g(x))=a f^{\prime}(x)+b g^{\prime}(x)
$$

for constants a and b.

2.1.2 Product rule

$$
\frac{d}{d x}(f(x) g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

2.1.3 Chain rule

$$
\frac{d}{d x} g(f(x))=g^{\prime}(f(x)) f^{\prime}(x)
$$

2.1.4 Quotient Rule

$$
\frac{d}{d x} \frac{f(x)}{g(x)}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

2.1.5 Some Basic Derivatives

$$
\begin{gathered}
\frac{d}{d x} x^{a}=a x^{a-1} \\
\frac{d}{d x} \frac{1}{x^{a}}=-\frac{a}{x^{a+1}} \\
\frac{d}{d x} e^{x}=e^{x} \\
\frac{d}{d x} a^{x}=a^{x} \log a \\
\frac{d}{d x} \log |x|=\frac{1}{x}
\end{gathered}
$$

2.1.6 Convexity and Concavity

It is very easy to get confused about the convexity and concavity of a function. The technical mathematical definition is actually somewhat at odds with the colloquial usage. Let $f(x)$ be a twice differentiable function in an interval I. Then:

$$
\begin{align*}
& f^{\prime \prime}(x) \geq 0 \Rightarrow f(x) \text { convex } \tag{1}\\
& f^{\prime \prime}(x) \leq 0 \Rightarrow f(x) \text { concave }
\end{align*}
$$

If you think about a profit function as a function of time, a convex function would show increasing marginal returns, while a concave function would show decreasing marginal returns.

This leads into an important theorem (particularly for stochastic demography), known as Jensen's Inequality. For a convex function $f(x)$,

$$
\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])
$$

2.2 Taylor Series

$$
T(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

where $f^{(k)}(a)$ denotes the k th derivative of f evaluated at a, and $k!=k(k-1)(k-2) \ldots(1)$.
For example, we can approximate e^{r} at $a=0$:

Figure 1: Illustration of Jensen's Inequality.

$$
e^{r} \approx 1+r+\frac{r^{2}}{2}+\frac{r^{3}}{6} \ldots
$$

Expanding $\log (1+x)$ around $a=0$ yields:

$$
\log (1+x) \approx x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots
$$

2.3 Jacobian

For a system of equations, $F(x)$ and $G(\lambda)$, the Jacobian matrix is

$$
\mathbf{J}=\left(\begin{array}{ll}
\partial F / \partial x & \partial F / \partial \lambda \\
\partial G / \partial x & \partial G / \partial \lambda
\end{array}\right) .
$$

This is very important for the analysis of stability of interacting models such as those for epidemics and predator-prey systems. The equilibrium of a system is stable if and only if the real parts of all the eigenvalues of \mathbf{J} are negative.

2.4 Integration

Linearity

$$
\int[a f(x)+b g(x)] d x=a \int f(x) d x+b \int g(x) d x
$$

Integration by Parts

$$
\int u \cdot v^{\prime} d x=u \cdot v-\int v \cdot u^{\prime} d x
$$

Some Useful Facts About Integrals

$$
\begin{gathered}
\int \frac{f^{\prime}(x)}{f(x)} d x=\log |f(x)| \\
\int x^{a} d x=\frac{x^{a+1}}{a+1}, \quad a \neq-1 \\
\int e^{x} d x=e^{x} \\
\int \frac{d x}{x}=\log |x|
\end{gathered}
$$

2.5 Definite Integrals

$$
\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a)
$$

2.5.1 Expectation

For a continuous random variable X with probability density function $f(x)$, the expected value, or mean, is

$$
\mathbb{E}(X)=\int_{\Omega} x f(x) d x
$$

where the integral is taken over the set of all possible outcomes Ω.
For example, the average age of mothers of newborns in a stable population:

$$
A_{B}=\int_{\alpha}^{\beta} a e^{-r a} l(a) m(a) d a
$$

Since (from the Euler-Lotka equation) the probability that a mother will be a years old in a stable population is $f(a)=e^{-r a} l(a) m(a)$.

Some Properties of Expectation

$$
\mathbb{E}[a X]=a \mathbb{E}[X]
$$

For two discrete random variables, X and Y,

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

2.5.2 Variance

For a continuous random variable X with probability density function $f(x)$ and expected value μ, the variance is

$$
\mathbb{V}(X)=\int_{\Omega}(x-\mu)^{2} f(x) d x
$$

A useful formula for calculating variances:

$$
\mathbb{V}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}
$$

2.6 Exponents and Logarithms

Properties of Exponentials

$$
\begin{aligned}
& x^{a} x^{b}=x^{a+b} \\
& \frac{x^{a}}{x^{b}}=x^{a-b} \\
& x^{a}=e^{a \log x}
\end{aligned}
$$

Complex Case

$$
\begin{gathered}
e^{z}=e^{a+b i}=e^{a} e^{b i}=e^{a}(\cos b+i \sin b) \\
\left(x^{a}\right)^{b}=x^{a b} \\
x^{-a}=\frac{1}{x^{a}}
\end{gathered}
$$

The logarithm to the base e, where e is defined as

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Assume that $\log \equiv \log _{e}$. Logarithms to other bases will be marked as such. For example: $\log _{10}, \log _{2}$, etc.

This is an important for demography:

$$
\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n}=e^{r}
$$

Properties of Logarithms

$$
\begin{gathered}
\log x^{a}=a \log x \\
\log a b=\log a+\log b \\
\log \frac{a}{b}=\log a-\log b
\end{gathered}
$$

Figure 2: Argand diagram representing a complex number $z=a+b i$.

Complex Numbers We encounter complex numbers frequently when we calculate the eigenvalues of projection matrices, so it is useful to know something about them. Imaginary number: $i=\sqrt{-1}$. Complex number: $z=a+b i$, where a is the real part and b is a coefficient on the imaginary part.

It is useful to represent imaginary numbers in their polar form. Define axes where the abscissa represents the real part of a complex number and the ordinate represents the imaginary part (these axes are known as an Argand diagram). This vector, $a+b i$ can be represented by the angle θ and the radius of the vector rooted at the origin to point (a, b). Using trigonometric definitions, $a=r \sin \theta$ and $b=r \cos \theta$, we see that

$$
z=a+i b=r(\cos \theta+i \sin \theta)
$$

Believe it or not, this comes in handy when we interpret the transient dynamics of a population.

Let z be a complex number with real part a and imaginary part b,

$$
z=a+b i
$$

Then the complex conjugate of z is

$$
\bar{z}=a-b i
$$

Non-real eigenvalues of demographic projection matrices come in conjugate pairs.

3 Linear Algebra

A matrix is a rectangular array of numbers

$$
\mathbf{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

A vector is simply a list of numbers

$$
\mathbf{n}(t)=\left[\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right]
$$

A scalar is a single number: $\lambda=1.05$
We refer to individual matrix elements by indexing them by their row and column positions. A matrix is typically named by a capital (bold) letter (e.g., A). An element of matrix \mathbf{A} is given by a lowercase a subscripted with its indices. These indices are subscripted following the the lowercase letter, first by row, then by column. For example, a_{21} is the element of \mathbf{A} which is in the second row and first column.

Matrix Multiplication

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
n_{1} \\
n_{2}
\end{array}\right]=\left[\begin{array}{l}
a_{11} n_{1}+a_{12} n_{2} \\
a_{21} n_{1}+a_{22} n_{2}
\end{array}\right]
$$

Multiply each row element-wise by the column
For Example,

$$
\left[\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right]\left[\begin{array}{l}
6 \\
7
\end{array}\right]=\left[\begin{array}{c}
(2 \cdot 6)+(3 \cdot 7) \\
(4 \cdot 6)+(5 \cdot 7)
\end{array}\right]=\left[\begin{array}{c}
33 \\
59
\end{array}\right]
$$

Matrix Addition or Subtraction

$$
\begin{gathered}
{\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]+\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{array}\right]} \\
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]=\left[\begin{array}{cc}
6 & 8 \\
10 & 12
\end{array}\right]}
\end{gathered}
$$

Multiplying a Matrix by a Scalar

$$
\begin{aligned}
\lambda\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] & =\left[\begin{array}{ll}
\lambda a_{11} & \lambda a_{12} \\
\lambda a_{21} & \lambda a_{22}
\end{array}\right] \\
4\left[\begin{array}{cc}
2 & 3 \\
4 & 5
\end{array}\right] & =\left[\begin{array}{cc}
8 & 12 \\
16 & 20
\end{array}\right]
\end{aligned}
$$

Systems of Equations Matrix notation was invented to make solving simultaneous equations easier.

$$
\begin{aligned}
& y_{1}=a x_{1}+b x_{2} \\
& y_{2}=c x_{1}+d x_{2}
\end{aligned}
$$

In matrix notation:

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

3.1 Eigenvalues and Eigenvectors

A scalar λ is an eigenvalue of a square matrix \mathbf{A} and $\mathbf{w} \neq \mathbf{0}$ is its associated eigenvector if

$$
\mathbf{A} \mathbf{w}=\lambda \mathbf{w}
$$

Eigenvalues of \mathbf{A} are calculated as the roots of the characteristic equation,

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0,
$$

where \mathbf{I} is the identity matrix, a square matrix with ones along the diagonal and zeros elsewhere.
For example, we can calculate the eigenvalues for the matrix,

$$
\mathbf{A}=\left[\begin{array}{cc}
f_{1} & f_{2} \\
p_{1} & 0
\end{array}\right] .
$$

Solve the characteristic equation $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$:

$$
\begin{gathered}
(\mathbf{A}-\lambda \mathbf{I})=\left[\begin{array}{cc}
f_{1} & f_{2} \\
p_{1} & 0
\end{array}\right]-\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right]=\left[\begin{array}{cc}
f_{1}-\lambda & f_{2} \\
p_{1} & -\lambda
\end{array}\right] \\
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=-\left(f_{1}-\lambda\right) \lambda-f_{2} p_{1} \\
\lambda^{2}-f_{1} \lambda-f_{2} p_{1}=0
\end{gathered}
$$

Use the quadratic equation to solve for λ :

$$
\frac{-f_{1} \pm \sqrt{f_{1}^{2}-4 f_{2} p_{1}}}{2 f_{1}}
$$

Numerical Example Define:

$$
\begin{gather*}
\mathbf{A}=\left[\begin{array}{ll}
1.5 & 2 \\
0.5 & 0
\end{array}\right] \tag{2}\\
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\left[\begin{array}{cc}
1.5-\lambda & 2 \\
0.5 & -\lambda
\end{array}\right] \\
\lambda^{2}-1.5 \lambda-1=0 \\
(\lambda-2)(\lambda+0.5)=0
\end{gather*}
$$

The roots of this are $\lambda=2$ and $\lambda=-0.5$. A $k \times k$ matrix will have k eigenvalues. If a matrix is non-negative, irreducible, and primitive, one of these eigenvalues is guaranteed to be real, positive, and strictly greater than all the others.

Analytic Formula for Eigenvalues: The 2×2 Case

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

The eigenvalues are:

$$
\lambda_{ \pm}=\frac{T}{2} \pm \sqrt{(T / 2)^{2}-D}
$$

where $T=a+d$ is the trace and $D=a d-b c$ is the determinant of matrix \mathbf{A}.

