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Abstract

A coherent states field theory (CST) framework for reversible gelation of end-
functional f-arm stars is presented, which implicitly enumerates all cross-linking pat-
terns and generates the correct statistical weight for each type of cluster. At the
mean-field level, the CST produces only tree-like clusters, and recovers all essential
predictions of the Flory-Stockmayer (FS) theory. In particular, the saddle-point (mean-
field) condition reproduces the FS condition for gelation. When applied to solutions
of associative polymer stars in an implicit solvent, this mean-field theory predicts a
two-phase region where sol and gel phases of different composition coexist. Beyond
the mean-field level, where both tree and loop-like clusters are present, we develop
a loop density operator by considering the spatial translation of finite clusters. The
field theory is then fully developed and analyzed at the Gaussian level of fluctuations.
Phantom stars, dilute solutions, and dense melts are studied to better understand the
predictions of the Gaussian theory, including those for the loop density and fluctuation
corrections to the cluster number density. It is shown that the contributions from the
excluded volume interaction do not affect the density of loops at the Gaussian level,

although they do affect the bonding probability.

1. Introduction

Polymer networks are a fundamental platform for many important modern materials, in-
cluding rubber tires, artificial tissues, structural and dental composites, and adsorbents.
In recent years, polymer networks that are formed from reversible bonds have become a
topic of interest. This is in part due to novel materials properties, such as self-healing!
and stimuli-responsive behaviors, as well as biologically-motivated observations of such phe-
nomena.? Much of our understanding of polymer networks is due to theories by Flory? and
Stockmayer,* who performed pioneering work based on combinatorial counting of molecular

clusters, which were later simplified by using iterative arguments.®® They were able to show



that at a particular extent of reaction, the average size of a polymer cluster diverges, indicat-
ing the onset of gelation and the formation of a macroscopic sized molecule. Notably, there
are a number of deficiencies with Flory-Stockmayer (FS) theory, mainly that it neglects the
formation of cyclic (loop and ring) structures, and does not account for excluded volume
or other interactions between polymer segments. Finally, it is fundamentally a mean-field
theory for homogeneous systems that neglects the role of fluctuations or spatial gradients of
density or composition. These can be important both in solvated and dry networks.

There have been a number of efforts to correct the FS theory for excluded volume, fluc-
tuations, or inhomogeneities in both permanent and reversible networks, which often invoke
field-based methods. One example is work by Lubensky and Isaacson who used an n-vector
model and applied the n — 0 formalism of de Gennes™® to the problem of reversible gela-
tion. They utilized analytical approximations to study dilute gels and compute correlation
lengths, but did not analyze phase separation behavior or the concentrated regime. Be-
cause of reliance on a zero-component field theory, the approach does not enable numerical
representation or investigation.

Other examples include work by Panyukov and Rabin that used replica field theory to
predict structure factors and elastic properties of permanent gels with quenched disorder.?
Goldbart and Goldenfeld focused on the qualitative feature of how rigidity emerges at the
transition point, due to both crosslinking and entanglement.!'%!! They adapted the replica
trick for spin glass to randomly crosslinked polymers, and constructed a mean-field theory
that yields the same gel point as the F'S theory. These works were also limited to approximate
analytical techniques, however, and did not analyze phase separation behavior. A related
study by Erukhimovich considered the possibility of loop formation, but is based on an
approximate Hamiltonian that splits the contributions from short-ranged interaction and
polymer connectivity, and that relies on the explicit enumeration of crosslinking topology. %13
Lang and co-authors have conducted a series of studies using both mean-field population

balance models and spatially-resolved bond-fluctuation model Monte Carlo simulations to



interrogate the effect of loop formation on network properties, however these studies have
also neglected the effects of phase behavior. 14718

Mohan, Mester, and Fredrickson!%?° extended the FS theory to treat inhomogeneous
reversible gels and networks, preserving the tree approximation (no cyclic reaction prod-
ucts), but allowing for arbitrary density or composition gradients. Within the mean-field
approximation, this framework enabled a detailed study of phase behavior, including rich
multicritical phenomena with competing tendencies for microphase and macrophase sepa-
ration behavior in heterogeneous networks. However, numerical work with this approach is
inefficient due to the need to solve nonlinear integral equations at each field update. Fur-
thermore, the method cannot be easily extended beyond the tree approximation.

The “coherent states” (CS) framework enables a field-theoretic representation of re-
versible gels and networks with more favorable characteristics, namely that it exactly enumer-
ates all clusters irrespective of topology, can address inhomogeneities, and enables efficient
numerical investigation. This framework was originally introduced by Edwards and Freed for
studying vulcanization.?! The coherent states name derives from path integral descriptions
of quantum many-body systems with a similar mathematical structure.?? The CS represen-
tation of classical polymers has largely gone unnoticed for many years, especially compared
to auxiliary field theory representations popularized by Edwards.?® As described in recent
publications from the Fredrickson group,?#2® the CS framework is especially well suited
for tackling systems of reversibly bonding polymers that exhibit complex self-assembly and
phase behavior coupled to the reaction equilibria.

In this work we apply the CS formalism to study reversible polymer networks in solution

and melt conditions and examine both gelation and phase separation. These two phenomena

29,30 31,32

often occur simultaneously in polymer and colloid solutions and are often associated
with long relaxation times and hysteresis, leading to confusion on their relationship. With
the models considered here we are able to interrogate the equilibrium behavior without

kinetic limitations, and also examine effects of excluded volume, rings, and fluctuations.



Figure 1: Examples of clusters formed by association of star polymers. (a) An example
of f-arm star with f = 4. Arm contour is parametrized by s, with 0 < s < N. (b) Dimer
tree-like cluster. (c¢) Trimer tree-like cluster. (d) An intra-star loop by self-association. (e)
An inter-star loop formed by linking two stars. (f) A loop formed from three stars. (g) A
cluster formed from 10 stars that contains one intra-star loop, one inter-star loop formed

from two stars, and one inter-star loop formed from four stars. (h) Two loops formed between
two stars sharing fractions of borders or edges.

We start at the mean-field level and show that a reduced set of parameters can be defined
from the fundamental parameters of reaction equilibrium constant, polymer concentration,
and solvent quality to yield a universal phase diagram. We then examine the fluctuation
corrections. First, an operator counting loop number density is introduced by considering
cluster translational degrees of freedom. Next, the Gaussian level fluctuation about the
mean-field solution is worked out, and is applied to analyze the behavior of phantom stars,
dilute stars, and stars in dense melts. The contributions from loops and bonds are considered

separately.



2. Model

We consider solutions of f-arm stars with equal length arms and functional groups at the
terminus of each arm capable of pairwise, reversible binding. The solvent is treated implicitly
and the arms are modeled as continuous Gaussian chains. The contour variable s along the
arms initiates at the star center at s = 0 and terminates at the arm end at s = N (Fig. 1a).
The field theory model can be formulated in either the canonical (CE) or grand canonical
ensemble (GCE). The GCE proves slightly more convenient for our purposes, so is used
as the starting point, but the transition to the CE involves changing only one term in the
Hamiltonian functional, and will be described when necessary in the following.

The field-theoretic representation that we employ is not a pure CS representation, but
is an example of a “hybrid” auxiliary field-coherent states field theory (AF-CS) where a
real auxiliary field w(r) is used to decouple the pairwise excluded volume interactions and
two complex-conjugate CS fields ¢*(r,s) and ¢(r,s) are used to build the star polymers
and all possible clustered reaction products. Such hybrid representations have been derived
and discussed for both continuous and discrete chain models in the recent monograph by
Fredrickson and Delaney.?” The GCE partition function = for the star polymer model of

interest has the form

D 'D
=0 A,V / /M exp (—H[p, ", u]) 1)
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where [ Dlw] and [ D[¢, ¢*] denote functional integrals over the AF and CS fields, re-

spectively, and H is the effective Hamiltonian functional. Here, A, and A; are activities
of reversible bonds and stars, and V' is the system volume. Throughout this work, we

set kgT' = 1 and suppress the reference to temperature T'. The domain of integration for the



spatial coordinate r is the system volume, and that of the contour variable s is from s = 0
to N.

The effective Hamiltonian in eq. (2) has three contributions. The first term depending
on w? represents the segmental interactions, which has the pseudo-potential form uod(r)
for two segments separated by displacement r, where §(r) is the Dirac delta function. The
excluded volume strength ug (here assumed positive) depends on the solvent quality and
can be inferred from the potential of mean force between a pair of star polymer segments.
Introducing the auxiliary field w allows for decoupling the non-bonded interactions among
segments, at the cost of introducing the new functional integral over w(r).

The second term in H represents an “ideal arm” modeled as a continuous Gaussian
chain with each segment experiencing a pure imaginary effective potential iw(r). The op-
erator £ = % — %VQ propagates chain conformation, where b is the statistical segmental
length. The operator L is the only place where molecular conformation statistics enter the
theory and provides the only nonlocal contribution. Proper treatment of the non-Hermitian
operator % ensures that, when second moments of the coherent fields are evaluated, only
pair correlation terms of the form (¢(r, s)¢*(r', s)) with s > s’ survive due to causality. All
other pairwise averages that violate this condition or involve the products ¢¢ or ¢*¢* vanish.
The coupling with field iw can also be written in terms of the segmental density operator
p(r) = [ds¢*(r,s)d(r, s) as [driw(r)p(r). In the absence of the term iw, the second term of
eq. (2) represents the contributions of non-interacting or “phantom” arms. It is worth noting
that the w integral in the partition function is Gaussian and could be explicitly performed,
simplifying the hybrid AF-CS field theory to a “pure” CS form. However, we resist this step
as it serves to facilitate the Gaussian fluctuation analysis of Section V.

The third “source” term of H defines the structure and the association reactions for the
stars. The activity-dependent term % *(r,0)7 generates the cores (centers) of the f-arm

stars. The normalizing factor of % accounts for the indistinguishability of the f identical

arms emanating from each star center. Each arm is terminated either as a free end, via the



term ¢(r, N), or is bonded to another arm end via % (r, N)2. The number of reversible
bonds is controlled by the bond activity A,. These bonds can be either intra-molecular or
inter-molecular allowing the creation of both networks and isolated polymer molecules or
clusters with cyclic structures (loops). By means of a perturbation expansion in the source
term, it can be shown that this model correctly generates all possible reaction products with
proper classical statistical mechanical weighting. The products generated follow an “equal
reactivity” scheme whereby the equilibrium constant for each possible association reaction
is identical and proportional to Ay.

To obtain the partition function of the CE, we Taylor-expand the GCE partition function
in powers of activity % The n-th order coefficient is the CE partition function for n stars

contained in the volume V. The net result amounts to replacing only the As-dependent term

in the GCE Hamiltonian with

—nln (%/dr o*(r, 0)f> (3)

where the factor of 1/V has been inserted to extract the ideal gas contribution of n non-
interacting star polymers from the CE partition function. Strictly speaking, this CE repre-
sentation is a semi-grand canonical ensemble where the total number of stars is fixed at n,
but the relative activity of each possible product is specified to ensure reaction equilibrium.
A true canonical ensemble would specify the number of each possible product and have a
quenched product distribution.

Finally, the normalizing factors in the partition function ensure the existence of the

partition function in the continuum limit of functional integrals and are defined as follows

w_/p exp(—%/drw()) (4)
D¢—/D¢¢ eXp( /dr/ds¢ r,5) £ o(, s)> (5)



It can be verified that the expression for the Hamiltonian is compatible with the following

unit convention that we adopt for physical properties: [w] = [¢*] = 1, [ug] = [\p] = volume,
and [¢] = [Af] = Vohllme’ which ensures that the density p ~ ¢*¢ has the dimension of

inverse volume.
Finally, we note that this model is exactly equivalent to a traditional auxiliary field (AF)

model that can be expressed as

=0 A V) = - [ Dl] exp (- Haelu) (6)

Harlo) = 51 [dru? = 3 5vQfiu (")

where the second term in eq. (7) represents a sum over all possible reaction products in the
system. Each product is associated with an activity z; and single chain partition function
Q;. For the reactive stars considered here with f > 2, this is an infinite sum, which limits
the utility of the AF model. Nevertheless, it can be shown analytically that the path integral

over [¢, ¢*] in eq. (1) generates the infinite sum in eq. (7).

2.1 Equations of state

The partition function in the GCE is directly related to the osmotic pressure II, via

1

I= =
Vv

[1]

In

(8)

When all non-bonded interactions and reactions are turned off, no w dependent terms are
needed and the bond activity A, becomes zero. The GCE partition function can then be

calculated analytically, giving = = exp <%V> and I1 = & = 2

= with n the average number

of polymers, i.e., the ideal gas law. In the general case, the model is specified by two



equations of state, derived from the dependence on Ay and A, respectively:

A

by = ﬂ;/@w% >—Mm (9)
A ol

o= gry [ Lo N =g (10)

Here and hereafter, the thermal averages are defined as usual, and evaluated over the field
variable integrals weighted by the Boltzmann factor. Equation (9) gives the volume average
for the number density of stars p; and, effectively, that for the segmental number density p
by the stoichiometric relation p = fNps. Equation (10) gives the corresponding density
for the number of bonds p,,. From these two densitites, the number density of free ends is

deduced as p. = fpy — 2pp, which can also be obtained from a field average

po= 1 [drtote. ) (1)

The conversion of end groups used in the literature, or bonding probability, can be defined

as
= 2 _ 2 (12)
~ for p/N
In an inhomogeneous system, the local segmental densities can be expressed using the
CST field average as p(r) = [ds(¢ )o(r,s)). The volume average of this segment

density will generate an identical result as deduced from p;. We will demonstrate this
explicitly in the section on the mean-field solution, and merely note that p; and py, are the
two fundamental state variables. In practice, we found it convenient to parametrize the state
using the segmental density p and the reaction conversion p, which should become clear in
the results section.

In the CE formulation with partition function Z(\y,n,V),%*" the equation of state for
bond number density has the same form as eq. (10). Differentiating the Helmholtz free

energy F' = —1In Z with respect to the number of stars n, gives the following form of the

10



chemical potential

= g—: = In(psv) — <ln (% /dr ¢*(r,0)f)> (13)

The first term is the ideal gas contribution, in which v is a normalization factor analogous
to the cube of the thermal de Broglie wavelength and does not affect the thermodynamic
properties. The second term is an excess contribution representing the contributions of
reaction and non-bonded interactions. At the mean-field level, where the field ¢*(r,0) is
replaced by a stationary (non-fluctuating) value at the saddle point, the argument of the

logarithmic term in eq. (13) can be related to ps by eq. (9). The explicit dependence on py in

Ar
o

and eq. (9) will facilitate the conversion of thermodynamic potentials between the GCE and

the ideal gas and excess contributions cancel out, giving rise to u = In ( v). This relation

CE ensembles.

3. Mean field theory

The mean-field theory of the CS model is worked out in this section, which reveals trans-
parently the connection with the F'S theory and forms the basis for the fluctuation theory
developed in the following sections. Following the standard approach,?” we seek a solution

to the saddle point conditions for all the field variables

O0H _0
5¢*(r, s) d0.66 10
0H
=0 14
5¢(r75) $0,6% w0 ( )
o0H _0
0w () | g g5 a0

Throughout this work, we focus on a spatially homogeneous solution represented by ¢g(s),

¢5(s), and wp, and use a subscript “0” to indicate properties evaluated at the mean-field

11



level, in particular the segmental density pg and the bonding probability p,. Without spatial
variation, the conditions eq. (14) simplify to first order ODEs for the CST fields and an

algebraic condition for wg: %

A
Dspo(s) = —wo do(s) + Fﬁ)@o(oﬂ 3(s)

Ostp(s) = wo p(s) — [1+ Auo(N)] 6(N — s) (15)

Wo = UpPo (16)

The segmental density po in the last line is calculated from py = [ds do¢f. The source terms
in the pair of conditions for the CST fields are derived from the causality requirements:
®(s) = 0 for s < 0 since no arm can be terminated before initiated, and ¢*(s) = 0 for s > N
since no arm initiation is permitted after termination.

The solutions to egs. (15) is readily found, and can be expressed in terms of segmental

density po and bonding probability py as follows

B Do e uopos
¢0(8) - T)\b(l _pO) @(S)
U0 PO S
G3ls) = T O = 9) (7)

where O(s) is the unit step function. The step functions restrict the chain contour variable to
the physical interval 0 < s < N and provide no contributions to physical quantities outside
this range. The auxiliary parameter 7 is the Boltzmann weight for the excluded volume
interaction, 7 = e "N The bonding probability p, relates to the mean-field solution via

eq 12
. 7'2)\]3)\]0
T

It is clear from eqgs. (17) that the product ¢g(s)dy(s) is independent of s, as expected for a

96(0)7 (18)
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homogeneous solution. Thus, the segmental density po = [ds ¢o(s)¢*(s) evaluates to

Po Po
L - 19
N )\b(l —p0)2 ( )

Equivalently, the density can be written using eq. (9) as & = ﬁgﬁé(())f . It can be verified

that this expression and eq. (19) are compatible by substitution of eq. (18) and ¢5(0) = =,

the latter derived from eq. (17).
To understand why the expression eq. (18) can be assigned to the bonding probability,

we notice that eq. (10) for bond density evaluates to 22¢g(N)? = % at the mean-field

(i
level. Taking the ratio of bond density and £ by following eq. (12) yields precisely po.
Therefore, eq. (18) gives the mean-field expression for the probability of an end group being
bonded. Noticing further that £ is the density of end groups, the equation of state eq. (19)
can be interpreted as the law of mass action (LMA): the products py% and (1 — py)% are
the concentrations of reacted and open groups, respectively.

Equations (18) and (19) play the same role as the equations of states, eqgs. (9) and (10),
but are more convenient to use. In practice, we obtain py by keeping the physical solution

to the quadratic eq. (19) for the prescribed value of density p, and reactivity A, then

substitute pg into eq. (17) to get a unique solution for the CST fields at the saddle point.

3.1 Thermodynamics of star-polymer solution

Using the mean-field solution eq. (17), it is straightforward to evaluate eq. (2) to obtain the
value of the Hamiltonian at the saddle point, which then leads to the mean-field expression

for the osmotic pressure,

IIy=—=In=Z = + —p; (20)

Here N, = #2\9/2 is the number average molecular weight of the clusters formed due to end-

association, i.e., the Carothers equation.? The ratio ]’\’[—f} is the number density of crosslinked

13



clusters, so the first term in eq. (20) is an ideal gas contribution. The second term is
the correction due to binary segmental interactions. Equation (20) reduces to the osmotic
pressure of non-associating stars?® by setting py = 0. At the mean-field level, the difference
between non-associating and associative systems is solely contained in the term N,. Notice
that IV, apparently diverges at py = 2/f, which is an artifact of the mean-field statistics.
Strictly speaking, this expression for N, holds only below the gel point, while the predicted
divergence in N, occurs above the gel point.

To obtain the density-explicit equation of state, we begin with the expression for chemical

potential derived from eq. (13) and the discussion therein, g = In (%v) The activity Ay can

be expressed in terms of density via eq. (9), in which ¢§(0) is given by eq. (17) as ¢§(0) =

1=po~

1—po
-

By substitution, we obtain % = py ( )f and subsequently

p=1In[vps(1— pg)f] + ugpoN f (21)

Since ps(1—pp)? is the density of un-associated stars, the above expression can be understood
as the sum of ideal gas and interaction contributions to chemical potential.
By invoking a Legendre transform to the GCE potential, we obtain the following expres-
sion for the Helmholtz free energy at the mean-field level,
Fy
0 I

I U
= prln [vps(1 —po)’] — ﬁo + 5003 (22)

The density of stars is related to segmental density through p; = Jf—]({,. In the limit of non-
associating stars, eq. (22) reduces to a familiar mean-field expression py In(vpy/e) 4 % P2, the
sum of an ideal gas contribution and a binary interaction term. Equation (22) agrees with
the mean-field free energy derived for a solution of associative linear polymers?® when the
densities of reacting groups, ; for linear chains®” and £ for our star polymers, are set equal.

It is worth noting that the Helmholtz free energy is fully specified by the density pg, while

14



the probability pg is constrained by the LMA. Equation (19) implies that,

dpo po(l - po)
— 23
dpo  po(l+po) (23)

which can be used to handle the implicit dependence of py on p, while Ay is fixed. For

oFy _ 9(fu/V) )

instance, it allows us to verify that eq. (21) can also be derived from p = X TR

More importantly, by differentiation, we obtain the following expression for the inverse of

the osmotic compressibility,
dp
de IOONW

in which Ny = fN =75y

=y is the weight-average molecular weight of associated stars pre-

dicted by the FS theory.?* In fact, the Helmholtz free energy is the generating function for
the moments of associated clusters. The next order of differentiation with respect to pg gives
the z-average molecular weight, depending on N, /N2, etc.

The weight average N, diverges at po = (f — 1)7!, the gel point predicted by the FS
theory.?3%36 Tt shows the consistency between our thermodynamic theory and the FS ar-
gument based on percolation structure. For non-vanishing ug, setting the inverse osmotic
compressibility to vanish gives the following expression for the stability limit of a homoge-

neous mixture, i.e., the spinodal condition,

L= (f = Dpo+ uo(Nf)*ps(1+po) = 0 (25)

The dependence on ug (> 0) shows the contribution from the excluded volume interaction;
consequently the value of py at the spinodal is always above the gel point (f —1)_1. The

competition between gelation and phase separation will be discussed below.
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3.2 Order parameter for gelation

We show in this section how the fraction of the star polymers that reside in the gel or sol, Py
or P, emerges from the saddle point condition for the CST fields. Polymers belonging to
infinite (percolating) clusters constitute the gel fraction, while the sol fraction is comprised of
isolated stars and clusters of finite molecular weight. The two fractions are complementary,
so we can focus on, e.g., Py, alone and denote it the order parameter of gelation. Below the
gel point py = ﬁ, Ps1 = 1; above the gel point, P,, decreases monotonically with p, and
reaches zero at pg = 1 according to the F'S theory. This trend is exhibited in Fig. 2 for f = 3
and 5.

Next, we show how this characteristic P, behavior is obtained from the mean-field CST
equations, eqs. (17-19). For any prescribed segmental density £ and bond fugacity Ay,
a solution for py can be found from the LMA, eq. (19). The conversion py can then be
substituted to eq. (17) to find the CST fields, and to eq. (18) to further find A;. The
solution is unique: for given £ and Ay, only one set of py, ¢o(s), ¢5(s), and Ay can be found.

To reveal the piecewise expression for Py, spanning the gel point, we examine the saddle

point condition more closely. Equations (17) and (18) can be combined to yield the condition

for ¢§(0),

T (f—=1)! T
Substitution of ¢5(0) = = into eq. (18) leads to /\(I}Aff), = po(1 — po)? 2. Then noticing

that T = e7“0roN is a constant, we denote x = ¢(0)/7 for convenience and write eq. (26) as
v — 1= ca/7!, where ¢ = py(1 — po)/~2. This equation has a unique solution for x in the
cases of f =1 and 2. For f > 3, we show in section S1.1 that eq. (26) has two, one, and zero
positive roots for ¢ < ¢4, ¢ = ¢, and ¢ > ¢, respectively, where ¢, = E; f; +— is a threshold
value representing the gel point.

The pattern of solution can be summarized as follows. For fixed density pg, increasing A,

amounts to increasing py. Below the gel point py = the value of ¢ also increases. For

fl’
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Figure 2: Left: Fraction of sol chains versus the mean-field reaction conversion for f =
3 and 5. Right: bonding probabilities for gel chains (solid) and sol chains (dashed) at

different f. The diagonal line is the limiting behavior for f = oo. The dots indicate the

mean-field gel point ﬁ

each value, two solutions of eq. (26) can be found and the smaller one is the physical solution,
which we denote zy. At the gel point, ¢ = ¢; and z = 2, = % Above the gel point, the
value of coefficient ¢ decreases with py and, again, two solutions are found, with the physical
one xy now being the greater (xy > ). This physical solution contains contributions from
both the sol and gel chains.

The smaller solution above the gel point, which decreases monotonically as py increases,
corresponds to the finite clusters belonging to the sol phase. Denoting this solution by g,

the density of sol chains is given by [ds ¢Z(s)¢s(s). In section S1.1, we show that the ratio

of this density and the total segmental density, i.e. the order parameter, can be written
* -17f
Pyo1 = [(1 - pO)qbs (O)T 1} (27)

in which ¢?(0) is obtained from zs. The curves in Fig. 2 are generated using the above

pUi

sol

expression. Substituting zy = (1 —po)~! into eq. (26), we obtain

Pl/f — (1 _ pO) +p0P(f_1)/f (28)

sol sol

When expressed in terms of Py, = 1 — P, the above equation is known as the equation of

the gel curve.?! The factor pi gives the probability that the end of a randomly selected arm

sol

17



is not connected to the gel network, which is decomposed into two contributions. The first is
the probability that the selected end is not bonded, 1 —py. The second is the probability that
the selected end is bonded, but is not further connected with gel network via the other f—1
arms on the same star, poPs(g;_l)/f. Equation (28) is identical to eq. (6.51) of Rubinstein
and Colby’s text.?* In essence, what we have demonstrated is that the iterative argument
adopted in the FS theory coincides with the saddle point condition for the field theory. The
order parameter P, is the generating function for the number of finite clusters. When Py,
is Taylor-expanded in powers of py using eq. (28), the coefficient of p§ is the fraction of stars
in tree-like clusters containing s stars. This property can be used to evaluate N,, Ny, and
higher order of moments.

Over the full range of py, the chemical potential of stars is given by eq. (21), which
decreases progressively with py for constant overall segmental density pg and interaction
strength ug. Section S1.1 shows that the clusters formed from the sol chains above the gel
point have the same chemical potential, which justifies the assignment of the solution xg to the
sol chains and equilibrium between finite clusters and gel-strands. The sol chains exhibits on
average a bonding probability ps, which is related to x4 through z, = 1+ps' This probability
is less than the bond conversion pg for the whole system. Therefore, the bonding probability

for the gel chains must be above pg, which can be calculated using the conservation of total

Po—Ps Psol
Pgel

bond number as . The variation of p; and bonding probability of the gel chains are

shown in Fig. 2b. As the gel point is approached, the bonding probability pge has the limiting
value % and Py drops to zero. The limiting value pge = % corresponds to the minimum
bonding probability at which tree-like products can become infinite clusters as each chain
in the cluster will on average propagate the cluster. Above the gel point, the system can
be considered topologically heterogeneous, even while remaining spatially homogeneous. The
gel network that percolates the system volume is impregnated with finite clusters that have

a broad size distribution and smaller bond conversion ps. Next, we turn to see under what

conditions gelation can be accompanied by phase separation.
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Figure 3: Universal mean-field phase diagram for end-linking star polymers with f = 3 arms.
The binodal is indicated with the grey curve whereas the spinodal region is indicated with
white. The black line is the gel transition. The background of the plot is colored according
to the conversion of end groups pg. Parameters: C' = pouoN f; K = M\, /(ugN?f).

3.3 Phase separation vs. gelation

Using the mean-field expressions for the osmotic pressure and the chemical potential, we
can identify the condition of phase separation and the equilibrium concentrations of the
coexisting dilute and concentrated phases. For fixed molecular parameters N and f, the
thermodynamic state can be parameterized by the dimensionless concentration pyuy and
dimensionless reactivity Ap/ug. In fact, it is evident from eqgs. (20) and (21), that the
scaled osmotic pressure uglly and the shifted chemical potential p + In(ug/v) depend on the
dimensionless combinations, poug and pg, whereas the bonding probability py depends on
PoAb, which can be factored into the product (poug)(Ap/uo)-

In Fig. 3 we present the phase diagram for f = 3 in the coordinates of the reduced
concentration C' = pougN f and reduced reactivity K = A, /(ugN?f). The grey curve denotes
the binodal in the system, whereas the white region is the interior of the spinodal determined
using eq. (25). The dotted black line indicates the Flory gel point which is computed
according to py = ﬁ Plugging this condition into eq. (19), it is straightforward to see

f=1

that the mean-field gelation line is given by CK = (=R This is an underestimate of
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the true gel point since the formation of loops is not accounted for at the mean-field level.
Fig. 3 can be compared with the analogous mean-field theory prediction for linear associative
polymers.??

The figure shows that at small values of A, /ug, i.e., weak bonding or good solvent quality,
the system does not undergo phase separation for any concentration of polymer. It can still
undergo gelation for sufficiently concentrated solutions, however. For large \,/ug, a two
phase region occurs. Notably, the spinodal for this region lies entirely in the gel regime.
This has important implications for experimental studies depending on how the system
is prepared, since the system could first percolate to form a network before undergoing
phase separation. This would significantly hinder the kinetics of phase separation. Because
the bonds are reversible, at sufficiently long times the system will be able to fully phase
separate, but large scale separation could be suppressed for a considerable amount of time
if Ap/ug is large. The physical interpretation of the phase coexistence region is that the
equilibrium constant is sufficiently large such that the system wants to form a gel, however,
the concentration is low enough that the polymers would have to stretch excessively to reach
one another to maintain a homogeneous solution. Instead, the system phase separates into
a concentrated polymer phase that can easily form a gel and a sol phase where polymers are
sufficiently dilute that they do not form a network. This phenomenon is often referred to as
syneresis. It should be noted that Fig. 3 is constructed using the mean-field theory, which
neglects loop formation. In sec. 5.3 below, we will discuss the possibility that loop formation
delays or eliminates the gel point in the dilute region.

In addition to the equilibrium constant A\, and concentration pg, the excluded volume pa-
rameter ug is a measure of the solvent quality and is non-negative for theta and good solvents.
As the the solvent quality increases (larger ug), polymer chains undergo coil expansion and
the arms of the star will stretch out. This increases the pervaded volume of each molecule
and the number of molecules that each polymer can interact with will increase. The grouping

potp thus represents this effective concentration that is increased by solvent quality. On the
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Figure 4: Mean-field phase diagram for end-linking star polymers for a variety of number of
arms f. Binodals are indicated with solid lines while dotted lines indicate the gel transition.
Parameters: C' = pougN f; K = A\ /(ugN?f).

other hand, when the solvent quality is high, polymer would rather be surrounded by solvent
molecules than other polymer segments. This means that forming a supramolecular bond
will be energetically disadvantageous for large ug. As such, the effective bond strength Ay, /ug
is reduced and bond formation is suppressed.

The effect of the arm number f on the phase behavior is illustrated in Fig. 4. As the
number of arms is increased, the binodal shifts to lower values of K as do the gel transition
curves. For larger number of arms it is easier to undergo gelation as a smaller conversion
is required to percolate the system, so smaller values of A, (or pg) are required for gelation.
Similarly, increased f expands the regime in which gelation is favorable, but not possible
due to insufficient polymer concentration, so the binodal regions shift to lower A, as well.
Although not shown in Fig. 4, the spinodal for each value of f lies completely in the gel
region.

For each f value, a critical point can be identified at the minimum value of K on the
spinodal curve, the latter depending on K implicitly via py. By setting % = 0 for solution

of the spinodal condition eq. (25) and applying eq. (23) to carry out the chain rule, we show
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in section S1.2 that the value of pg at the critical point satisfies

3
fo (14 po)

= Gt (29)

which agrees to the expression obtained by Semenov and Rubinstein for associative linear
polymers.?? Equation (29) has a unique positive root between 0 and 1 for f > 2 and decreases
monotonically from pg = 1 at f = 2 to 0 at large f. For the example of f = 3, we

have py = 0.63. By plugging eq. (29) into eq. (25) to eliminate f, the value of C' at the critical

1—po
po(3+po)

point is found to be Correspondingly, the value of K is calculated from eq. (19).

By eliminating pg from expressions for C' and K, a quadratic equation in K is obtained in

1+6C
16C3

1

302 for

section S1.2, whose solution approaches K = for small C' and approaches K =

large C'. As f is increased from f = 2, the critical point moves from C' = 0 and K = oo
towards the lower right corner of Fig. 4. In the limit of large f, the solution for py approaches
ﬁ, and correspondingly, C' approaches \/g and K approaches %

The mean-field analysis provides a comprehensive and thermodynamically consistent pic-
ture of phase separation and gelation, but a few inherent problems should be noted. Firstly, it
neglects the presence of any rings or loops in the system and assumes that only tree-like prod-
ucts are possible.?” Such a picture of gelation is unphysical, especially at low concentrations
where intramolecular bonds (producing only loops) are more probable than intermolecular
bonds. Additionally, the mean field predictions neglect all concentration fluctuations in the
system which will simultaneously influence the reaction equilibria, the gelation behavior, and
phase separation. A preliminary analyses of these issues at the Gaussian fluctuation level

will be presented in the following sections.

4. Loop density in fluctuation theory

A major deficiency of the mean-field theory is the omission of cyclic polymer structures,

which focuses on the tree-like clusters, e.g., Fig. 1b,c. Although our primary concern in this
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work is the presentation of the Gaussian fluctuation theory, it will be important to assess to
what degree it restores cyclic structures relevant to gelation and phase separation behavior.
For this reason, it is essential that we have tools for exactly counting the number of loops
present in a reacting system. In this section, we first summarize a well-known topological
result that relates the loop density to the densities of polymers, bonds, and stars, then cast
it in the form of fluctuation corrected quantities. Next, we introduce a loop density operator
that permits direct enumeration of loops. Both sets of results are valid generally, and will be
specifically applied with the added approximation of Gaussian fluctuations in the subsequent

section. Examples of loop-containing clusters are provided in Fig. 1d-h.

4.1 Topological constraint

The densities of loops p, arm ends pe, polymers (or clusters) p,, and f-arm stars py, in an
arbitrary ensemble of associated species are related by a topological constraint. This is the

Euler relation adapted to the problem of polymer gelation by Lubensky and Isaacson:”®

1
pp=m+§pe+(1—f/2)pf

=t g (L=p) + (1= f/2) 45 (30)

In the second line, the end density p. is expressed using the arm number density & and the
fraction of non-reacted ends 1 — p. The star number density p; has also been expressed in
terms of the monomer density pg. At the mean-field level, p; = 0, the above relation reduces

to the Carothers equation®® for the number average molecular weight, NV, = £ = 17’2}[ 7- To
P

discuss the fluctuation correction, it is convenient to hold the monomer number density pg

fixed, and focus on the variational form of the Euler relation,

Po
0pp = p1 = 370D = p1 = Opb (31)
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Here the variation is defined in reference to the mean-field solution where p = 0. In the
variational expression above we use p; rather than dp; due to the zero reference value. The
combination £%-dp is recognized as the variation of the bond density dp,. It is seen that
forming loops increases the number of polymers, whose effect is opposite to that of bond
formation. In the analysis below, we can focus on the two independent variables p; and d py,.

The variation in bond number density is derived by differentiating the fluctuation free
energy or minus the fluctuation correction to the osmotic pressure AIl with respect to the

bond chemical potential p, = In A, (see eq. (10)):

~ Opo OAIL  po(1 — po) OATL
Oy, Opo 1+po Opo

9po _ po(1=po)

o = a(itpy Was inserted, which is derived from eq. (19) for

In the last step, the relation

the law of mass action, (1_”;0)2 = B Ap.

Our approach to calculating the loop number density p; is indirect. We first develop an
operator for the total polymer density p, and then use the Euler relation eq. (30) to solve
for p; given that we already have exact operator expressions for p, and ps. Here we sketch
the approach and provide the main result, leaving the detailed derivation to the subsequent
section.

To count the number of polymers, we note that each polymer is a connected cluster
and, if the clusters are non-interacting, each is subject to free translation and contributes a
factor V' to the partition function. A configuration containing n, non-interacting polymers
therefore contributes a factor V™ to the partition function. Differentiating the logarithm of
the partition function with respect to the logarithm of volume V' therefore gives the average
number of polymers (n,). Real polymers are of course interacting, but in the CST partition
function it is the w integral that installs the pairwise interactions. Thus if the V' derivative
is taken before the w average is performed, we can derive an operator for the average number

of polymers. The next subsection shows that this procedure leads to the polymer number
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(np)

|4

density p, = decomposed into the same form as eq. (30):

b=+ 5pet (1= £/2) s (33)

Here the respective densities are given by

p= _gb_v ds/dr (¢*(r,s)V¢(r,s)) (34)

po=1 [ (ol ) (3)
A *

pr = [ar (o)) (36)

The expressions for p; and p. are identical to egs. (9) and (11), with p. being simply related
to pp. The operator for the loop number density pj, eq. (34), is a new result. Because of
the Laplacian operator, it is clear that the mean-field solution with homogeneous CST field
values does not contribute to the average in eq. (34). Spatial variation or fluctuation in the

CST fields is needed to describe loops.

4.2 Loop density operator

Next we provide a more detailed sketch of the derivation of this result for the loop density
operator. The partition function in eq. (1) contains two field integrals, the outer one over the
auxiliary field w and the inner one over the CST fields ¢ and ¢*. The inner CST integral has
two important properties. First, for fixed w(r) field, all bonding patterns are enumerated by
the integral over the ¢ and ¢* fields. Second, the stars and the resulting polymers are non-
interacting until the outer w integral is performed. When the Boltzmann factor e~ #[¢:¢"u]

- Jdrw?, is Taylor-expanded and integrated over the CST fields,

excluding the term H,, = %

the surviving terms are a mix of connected clusters. Each cluster represents one polymer
with certain crosslinking structure and contributes a value proportion to V', due to the spatial

translation. A configuration with n, clusters or polymers contributes a factor V"™ to the
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partition function.

Therefore, the average polymer number can be obtained from

Dlw] oM Jln=,

w olnV
(9 In Efi)
B < OlnV >w (37)
where the partition function for the CST fields subject to the fixed AF field w is defined as

The notation (-), indicates an average weighted by exp(—H,,). Introducing the analogous
notation (-) ¢ for an average weighted by a Boltzmann factor with the CST Hamiltonian

Hl¢, ¢*, w] — H,, the polymer number density p, = (n,) /V can be written as

po= 22l = <<—%>¢> 39

where we have assumed that the normalizing denominator Dy has no volume dependence.
This can be achieved by rescaling the spatial coordinates and fields as follows: r = xV/3,
P(x,5) = V1/2¢(r,s) and ¢*(x,s) = V¥/2¢*(r,s). Then we find that H, can be written as

the sum of

_%VW / iy / GV v f/z;{ / dx §+(x,0)/ — V12 / dxp(x,N)  (40)

in addition to two terms that are independent of V: one from the reaction term ¢(x, N)?
and one from the coupling with the auxiliary potential w. Differentiation of H,, followed by

restoring the r coordinate and fields gives

aH A
¢ /ds/drng v%s- f{‘//z) f/dr¢*(r,0) 21/ dr ¢(r, N) (41)
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Substituting the above back to eq. (39) leads to

po =i+ (L= F/2)ps + 50 (12)

which coincides with the topological relation, eq. (30) with the three densities taking the
forms given in eqs. (34-36). In particular, applying eq. (34) to diagrams in Fig. la—g results
in loop counts 0,0,0,1,1, 1,3, and 2 respectively.

It is natural to ask how the particular form of the loop density operator counts loops.
To see this, we need to examine the effects of the operator —¢*(r, s)V2¢(r,s) applied to
individual polymers. In section A2, we show that applying the loop operator to a polymer
generates a result equal to the sum of the compression factors of all the arms in the polymer,

divided by the volume V. The compression factor is defined as the average
2
r
=1-) (43)

where 12

is the end-to-end vector of the arm under consideration, and R? = Nb? is the
unperturbed Gaussian value. The average () is evaluated for the non-interacting stars
under the fixed potential w.

The compression factor is non-vanishing only if the arm is part of a loop. If it belongs to
a dangling end or a part of a tree diagram, the average (r?) = R? because the conformational
statistics of the arm is not constrained. However, if the arm is part of, say, a simple loop
consisting of n arms, the distribution of the end-to-end vector r is constrained by the arm
itself, which is Gaussian with variance Nb?/3, and by the complementing (n — 1) arms,
which is Gaussian with variance (n — 1)Nb*/3. The constraint of two Gaussian strands
producing r vectors simultaneously, reduces the average to (r?) = (1 —1/n)Nb%. As a result,
the compression factor of one arm in the simple loop is 1/n. The sum over the n arms

involved gives the correct counting of one loop which, when normalized by the volume V,

gives the loop number density. Physically, what we observe is the natural expectation that
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each arm belonging to a loop is slightly compressed, and the sum of compression factors

counts the loops.

5. Gaussian fluctuation theory

Our approach to assessing fluctuations in the CST assumes that the system fluctuates
around the homogeneous saddle point and that the magnitude of these fluctuations are small.
This allows expansion of the Hamiltonian around the saddle point state and truncation at
quadratic order, yielding a set of Gaussian functional integrals that can be performed analyt-
ically. Throughout this section, such fluctuation analysis is carried out below the mean-field

gel point, in close vicinity of the saddle point for the sol phase.

5.1 RPA free energy

The FS theory addresses the statistics of tree-like clusters formed by arm association. To
incorporate the effects of loops as well as excluded volume correlations, we examine the
nature of Gaussian fluctuations in both the CST fields and the auxiliary field. Around the

spatially homogeneous saddle point, the small fluctuations are parameterized as follows,?

¢"(r,5) = dp(s)(1 +¢*(r, 5))
¢(r,5) = ¢o(s)(1 + ¢(r, 5)) (44)

iw(r) = wp + w(r)

To simplify the notation, we have absorbed the imaginary unit i into wy and w(r). The
perturbations ¢ (r, s), ¥*(r, s) and w(r) are understood to be small and of similar amplitude.
The minimal order of fluctuation correction is obtained by substituting these expressions
into the Hamiltonian and expanding it to quadratic order in the fluctuation fields, which

can be conveniently done in Fourier space. Our convention for forward and inverse Fourier
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transforms, using w(r) as example, is Wk = [dre *7w(r) and w(r) = fdk e T

The coefficients for the other field variables, in particular ¢y (s) and ’(/}k<8) are similarly de-
fined. The transform of the delta function d(r) is & = 1. So we can use [dke** = (27)35(r)
and [dre** = (27)34(k) to facilitate the forward and inverse transforms. For instance, this
enables us to write [dr¢(r, s)w(r) = [ OOk U ()@ x, as an example of Parseval’s theorem. 8
A further simplification we shall use below is W_, = @y because of the inversion symmetry
around the homogeneous solution. The units of the relevant amplitudes for field variable
fluctuations are: [w(r)] = [¥(r,s)] = [¥*(r,s)] = 1 and [@n] = [¢i(s)] = [¢;(s)] = volume.
For consistency, the accent "is reserved for Fourier mode amplitudes.

In section S3, we show that the quadratic contributions to the Hamiltonian from a given k

mode equals the product of the arm number density py/N and the following,

-1 - N
L0y = B - i (a5)

/ ds 92 (s) £ du(s) + / ds [ (s) + 0 ()] dn — 2pote

In k space, the ideal chain evolution operator is £ = a% + %kz. The above quadratic form is
amenable to standard Gaussian analysis, which yields the Gaussian or RPA grand potential

and the corresponding Gaussian fluctuation correction to the osmotic pressure,

1. _ 1 dk A A
HG = Vhl g = —5 /(27T)3 In (A(l + ,00U0NG))

= HG,I —+ HG,V (46)

The total osmotic pressure is given by the sum of Il and the mean-field contribution,
IT = IIy + I[I¢. Equation (46) includes contributions from different Fourier modes. The term
A(x) =1 —po(f — 1)e 2%, with & = k> Nb?/6, will be seen to be derived from clusters that

contain a single loop. The term G is the RPA structure factor for a mixture of tree-like

29



clusters resulting from star association,

N - 2 (f=1) +po + 2po(f—1)e™®
G = g(z) + h(z) 1— po(f—1)e 2

(47)

where §(z) = %(z — 1+ e™) is the Debye function, and h(z) = 11—e).

The definition in the last line of eq. (46) assigns the terms derived from In A and In(1 +
pogN é) to Il and Ilg , that represents contributions due to loop formation and excluded
volume correlations respectively. The advantage of this decomposition will be justified by
noticing that Il provides the only RPA contribution to the loop density, and Ilg , depends
on the excluded volume interaction. Notably, in the case of no reactions, py = 0, so no
loops are possible and Il recovers the RPA fluctuation contribution to the free energy for
a solution of interacting homopolymer stars.

The above free energy expression is our main result. The underlying algebraic details
are provided in section S3, and the physical implications will be our main concern in the
sections below. Here we note that the types of fluctuations considered are those around the
fixed homogeneous mean-field saddle point, which does not shift the total segmental number
density. So a treatment in the GCE or CE yields identical results and the parameterization
using po and py is both intuitive and convenient.

The RPA free energy can be independently derived by a diagrammatic expansion. In
section S4, we show explicitly that the RPA free energy can be constructed by two groups
of diagrams (Fig. S3, SI). The first group captures excluded volume correlations among
tree clusters. The second group contains single loops, which belongs to the category of the
diagrams on the right side of Fig. S2 (SI). Therefore, applying the loop density operator,
eq. (34), to each diagram in this group results in a count of one. The sum of statistical

weights of the diagrams in group 2 normalized by volume V' gives the loop density, which is
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precisely Ilg;. At the Gaussian level, we can write

1 [ dk . . 3 \*? Lisa(2)
—Mg =——- [ —— A=) 2222 4
p=ral =Ty / 2m) (47r) 2R3 (48)

in which Lis/»(2) with 2z = po(f—1) is the poly-log function defined by the sum Li,(2) =
Yooy 2_: The types of loops sketched in Fig. 1d—g, which are isolated simple ones, are
included by eq. (48), but the loops of the type Fig. 1h or more complicated ones are not
included at the Gaussian level. We stress that this expression gives the correct loop density
at the Gaussian level regardless of the concentration and the interaction strength. The

difference among the examples discussed below arises solely from the variation in bond

density dpy,.

5.2 Structure factor

To understand the physical meaning of the RPA structure factor G, we recall that each
tree diagram is just a connected portion of the infinite Bethe lattice.?® From each lattice
site grows f arms outwards. The crosslinking is represented by connecting the ends of two
arms, with probability py. To generate the ensemble of clusters, one starts from an arbitrary
arm on any star (the choice of star does not matter since all stars on the Bethe lattice are
equivalent statistically), and walks to the end of this arm, or to the end of the remaining
f—1 arms. At any of these f ends, the star connects with probability py to some other
star. Below the percolation threshold ﬁ, all finite tree clusters are produced by iteration.
Because all arms are statistically equivalent on the Bethe lattice, instead of enumerating all
stars, we may calculate the structure function on the Bethe lattice itself, by noticing that
the structure factor is a measure of the correlation between two randomly selected arms on
the Bethe lattice. Our iterative derivation of the structure factor is similar to those adopted
40,41

in the literature.

We therefore proceed as follows. First, label a randomly selected arm on a Bethe lattice 1

31



=
«{

Figure 5: Illustration of the recursive nature for RPA structure factor. The numerals indicate
the “distance” on the Bethe lattice from a randomly selected initial arm labeled 1.

(Fig. 5), to which f—1 arms living on the same star are linked and labeled 2. Another arm
labeled 3 may be linked to 1 with probability py, with which f—1 arms labeled 5 belong to
the same star. Similarly, with probability pg, each of the arms labeled 2 may be crosslinked
to one of the f—1 arms labeled 4. This whole cascading process propagates indefinitely. For
ease of tracking, we call arm 1 generation 1, arms 2, 3,4, 5 generation 2, etc. The generation
is defined by either encountering a new crosslinking site that demands a probability py to
advance further (e.g., ends of arms 5), or by encountering a new branching point (e.g., ends of
arms 4 that meets the star centers). Therefore, every generation grows two bonds outwards.

To calculate the pair correlation, our strategy is to consider the correlation between arm 1
and all the generations produced via the iterative procedure. The self-correlation (1—1) is

the Debye function g(x). The contributions from generation 2 are given by

[(f = 1)+ po + 2po(f — 1)e "] h(z)? (49)

These correlations have the common factor iL(ZB)2 The coefficients in the brackets correspond
to correlations (1—2), (1—3), and equal contributions from correlations (1—4) and (1-5).
The contributions from generation 3 equals po(f — 1)e™2* times that of generation 2, and
those from each higher order generations acquires the same additional multiplying factor.

Overall, the results from generations 2 onward form a geometrical series, which combined
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with the self-correlation gives

G = o) + iz —11 + L (;fzio)if;l)e—w

(50)

The second term is recognized as eq. (49) divided by A, which captures the correlations
between distinct arms on the same cluster averaged over the cluster population.

The above result for GG can be interpreted as the structure factor for an ensemble of tree-
like clusters following the F'S statistical weight. In the absence of cross-linking, with py = 0,
it reduces to the structure factor of a single star, §(z)+(f—1)h(z)%, in which (f—1) obviously

counts the neighboring arms on the same star. For non-zero pg, the expression is simplified

—24+(f—1)+po '

in the limit of large N. We can drop all the exponential terms and obtain 92? + =

The leading term is the Edwards approximation to the intra-arm correlation. The secondary
term contains a variety of end correlations: those from ends on the same arm (—2), that
from arm center connected to remaining arms on the same star (f—1), and that from the

T o e—2m

bonded arm at the arm end (py). For finite arm length N, the exponential factors e~
represent the weights needed by the chemical distance between arms.

In the long wavelength limit, the structure factor can be expanded to linear order in z as
F -k ) (1)

The prefactor equals Ny /N, the ratio between weight average molecular weight and the arm
length, which quantifies the density-density correlation and can be related to the osmotic
compressibility, as noted earlier. In the second factor, the correlation length £ is found to
scale as & o< R |e|1/2, where € = po(f—1) — 1 is the degree of gelation introduced by Flory.3*
The divergence of the correlation length is governed by the exponent v = 1/2; consistent
with the prediction of mean-field theory for the gelation problem.

The structure factor G was calculated for clusters formed from non-interacting stars.

When the excluded volume interaction is turned on, following the standard self-consistent
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t,25

treatmen it can be shown that the density response to an external perturbation J (k) in

the linear regime is given by py(k) = —S(k)J(k), with S(k)™' = [poNG] ™" + uo. It can be
expanded to S(k)~! = po;Nw (1 + k2% + - -+ )4up, whose value at k = 0 is identical to eq. (24).

The low-k behavior of the RPA structure factor can in principle be used to obtain NV, and &

from scattering measurements on density fluctuations conducted in the small angle regime.

5.3 Phantom stars

In the subsequent subsections, we examine the consequence of the Gaussian fluctuation by
considering the densities of loops and bonds in three limiting cases. The simplest case
corresponds to associative phantom stars, attained by setting ug = 0. In this limit, we
have Ilg = Ilg; = pi, where the loop density is given by eq. (48). Thus, the variation in
bond number is entirely derived from the loop density. Substituting eq. (48) into eq. (32)
yields

Opb

_ po(l—po) Opr _ ( 3 )3/2 1 —po Liza(2) (52)

1+po Opy \Ar 14+py 2R3
The polylog functions have the asymptotic behavior Li,(z) ~ z = po(f—1) near the origin
irrespective of the value of n. Therefore, in the limit of low reaction conversion, we have
dpp o< pr < po(f —1), which implies that the variation of bond formation in the low pg regime
is due to the formation of intra-star bonds which always produces a loop. The bond and loop
densities for phantom stars, normalized by 2R?(47/3)3/2, are plotted in Fig. 6 for f = 3,5, 15.
In the case of f = 3, increasing p, causes the loop density p; to grow faster than the variation
of bond density dpy,, which implies that inter-star bonds are suppressed in favor of intra-star
bonds that form loops. For f = 15, the reverse is true and the variation of bond density
0pp, grows faster than the loop density, which implies the promotion of inter-star bonds. In
particular, near the gel point, most bonds associated with loop structures are inter-molecular
for f > 15.

The loop density evaluated at the Gaussian level is independent of the excluded vol-
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Figure 6: Variation of bond and loop densities for phantom stars with f = 3, 5 and 15,
which are normalized by the factor 2R*(47/3)%2. The reaction conversion is terminated at
the mean-field gel point py = (f—1)"".

ume interaction. It can be shown that our expression for the total loop density, eq. (48),
generates the distribution of single loops formed via both inter- and intra-molecular bonds,
which was previously considered by Jacobson and Stockmayer for linear condensation®? and

subsequently by Hoeve for f-arm stars.”® In fact, eq. (48) can be expanded as pj = > o | L

n=1 "1

in which

_ D" [ e _ L (3 o)
L= T [ e :E(E) TR (53)

The term L,, is the number density of single loops constructed from n stars. The factor n=!

is the symmetry number of the loop, while the product [po(f—1)]" gives the probability

of generating n bonds. The factor (f—1) is included to account for the (f—1) arms that

—2nx

may participate in loop formation. Finally, the integral over the weight e gives the

loop closure probability for 2n arms adopting Gaussian statistics, which results in additional

-3/2. —5/2

factors of R~3 and n The most salient feature is the n dependence on the loop

number density, initially obtained by Jacobson and Stockmayer.?

44-46

The simulation and experimental®” literature have also considered the number of

loop-participating stars, which is proportional to nL, and exhibits an n~=3/2

dependence.
Specifically, the “primary” and “secondary” loops used,*6*” are proportional to L; and L.
Most of these studies considered the crosslinking formed between, for instance, Aj stars

and By junctions. In these systems, two separate conversions conversions p, and pg are
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needed, which are fixed by the law of mass action and mass conservation. Our expression
for loop densities, eq. (53), is still applicable once po(f—1) is replaced with p,ps(f—1)(g—1).
The predicted scaling n=%/? as well as the dependence on f and g is fully consistent with
the simulation results,*® which is perhaps a bit surprising. The simulations*® use the bond
fluctuation model, which contains the excluded volume interaction, while the calculation
leading to eq. (53) does not address the effects of excluded volume.

In addition to fixing the necessary prefactor, equation (53) contains explicit dependence
on the arm size, scaling like R~3. The fraction of arms in the n-loops is given by the ratio
between nL,, and the arm number density po/N. Thus the parametric combination N/(poR?)
plays an important role determining the loop density, which is consistent with the analysis
of Erukhimovich,!? the observation of Wang and Olsen et al.*® obtained on grounds of
dimensional analysis, as well as the work by Lang and Kumar.!” Furthermore, when R =

N'/2p is substituted, the fraction of arms forming loops scales as N~1/2

, which again is
consistent with the earlier simulation data?® and, moreover, with the expectation of the
mean-field theory becoming asymptotically exact in the limit of large N.

The formation of loops delays the gel point and may, for sufficiently dilute concentration,
eliminate gelation completely.!"184849 The earlier treatment of Jacobson and Stockmayer on
linear polycondensation*? shows that the reaction of telechelic chains, with f = 2, may result
in the system containing only loops when reactivity is high. With the explicit expression for

loop density L,,, we can now recapitulate their analysis for general f as follows. Since each

loop of order n contains n arms, the number density of all loop-forming arms is

> 3 3/2 L13/2(Z)
Pol = ZnLn = (E) R
n=1

where z = (f — 1)po has been substituted. It is clear that py) increases with z. For fixed
concentration py, the density py,; reaches maximum if Ay, is on the mean-field gelation curve,

giving z = 1. At this point, we have Liz/»(1) = ((3/2) = 2.61. The Jacobson-Stockmayer
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condition demands that pp,; equals the number density of arms py/N. Therefore, a threshold

value of segment density is identified as

N

Pc :Cﬁa

%)3/2 $B/2) — 0.15. The above expression for p, is

where the numerical coefficient ¢ = ( 5

consistent with those reported in the literature. %848

For py < p., below the threshold density, the formation of loops exhausts all arms present
in the solution before the gel point is reached, making it impossible to form a gel. Apart
from the numerical prefactor ¢, the threshold value p. is comparable to the self-concentration
of a single arm N/R3, i.e., the crossover point between dilute and semidilute regimes. This is
expected since sufficient inter-arm overlap is necessary for effective inter-molecular crosslink-
ing. Therefore, the mean-field gelation curve identified in Section 3.3 is applicable only in
the semi-dilute regime. To thoroughly discuss the impacts of loop formation, the shift to

the mean-field gel point and the fluctuation effects on the bionodal diagram both need to be

studied, which is beyond the scope of the current work.

5.4 Dilute solution

A second limiting case is a dilute solution of f-arm stars. The loop density can be calculated
from eq. (48). The bond density variation in the dilute limit contains two contributions. The
first contribution is positive, due to the formation of loops and equal to the loop density.

This is verified by keeping only the linear term in Lis/y(2) or Liz/e(z). We have

po(f—l)/(dk 2

dpp1 = p1 = 5 2)3 e
. 3 3/2)\
_ ;_]ov f<f2 1) [(@ a (54)
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In the second line, we have inserted p, = %, which is valid in the dilute regime. The
density of a single star is %, the combinatorial factor @ is the total number of arm-to-
arm pairs per star, and the remaining term in the bracket is the probability of linking two
arm ends from Gaussian chain statistics.

The second contribution to the variation in bond density, due to excluded volume in-
teraction, is negligible compared to the self-loop contribution. This is seen by noting that

the Gaussian free energy contribution that contains the excluded volume interaction can be

expanded up to linear order in the dilute limit as

1 dk .
Mey = —= potgN | ——
G 5 Polo /(2%)3 G (55)

which is always of the linear order in py. Further substitution into eq. (32) leads to

po(l—po)/ dk 0G
(

2 L+ po 27)% Opo
Abtlo / dk 9G
2 Po (27’(’)3 apo (56>

In the dilute limit, py and pg are in proportion, p, = %, as demanded by the LMA,
eq. (19). So the correction dpy,, is of order p3, which can be neglected when compared
to dpp1. Therefore, it is clear that, in the dilute regime, the extra bonds contribute only to

the formation of intra-star loops.

5.5 Dense melt

As a final illustration of the Gaussian fluctuation analysis, we consider the limit of a molten,
solvent free system. The melt limit with finite py is obtained by taking wug very large to
suppress density variations. When this is done, the parameter ug is viewed as a compres-
sional modulus of the melt. Its value can be determined from the density of state for pg

when needed. However, in practice, it is more convenient to suppress ug and focus on the
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density po. The fluctuation effects captured by the Gaussian analysis are caused by variation
in compositions and spatial arrangement of clusters, while maintaining a spatially uniform
density. Keeping the leading term of the integrand for 11, while dropping an inconsequential

factor In(pougN) in the integrand, we have

Lfdk | gaoy 1 fdk ooy
Mo = - / o (A¢) = -3 / o (94 + h2A) (57)

Here A = f=14po+2po(f—1)e~". While every term in the integrand depends on x = k2R§,

only A and A depend on py. The dependence on density pg is implicit, via the equation of
state for po, eq. (19).
Since the loop density has an identical form as for phantom stars at the Gaussian level,

we focus on the variation in bond density. Substituting eq. (57) in eq. (32) gives

N po(1 — po) dk
i = S | 1) o
Hz) = YD f“ﬁg—A [iEQZA(f—De‘x]h (59)

The integrand approaches —(1+py)~* as k — 0, causing no difficulty in numerical evaluation.
However, eq. (58) is divergent in the high k£ or ultraviolet (UV) regime. The exponential
terms e~2% and e~® are negligible in this regime, so that A= 1, A= (f=1)+po, § = Goo =

— %, and h — he = % The integrand therefore behaves asymptotically as

8 [n

h _ O(x~2 60
Tt Ui 2w O (90)

Except the leading term —1/(2z), all the higher order terms are UV convergent. Based on
our analysis of the RPA structure factor, the term Bgo is due to the bonding between arms
on two neighboring stars. The term g, captures the self-correlation of a single arm. The
term [(f—1) + po]ﬁgo gives the correlation between a randomly selected arm and the (f—1)

arms belonging to the same star, as well as one bonded arm from a neighboring star. The
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diverging factor —1/(2z) originates from the leading term in —hZ2 /ge..

The physical reason for the divergence in high-k regime is the break-down of random walk
statistics at small scale. To proceed, we observe that setting N — oo gives the same integrand
as the divergent contribution, —1/(2x). Therefore, the integral can be renormalized by
choosing a melt of stars with NV — oo as reference. Since the mean-field theory is expected
to be exact in this limit, the value of dpy, o, obtained using the structure factor with the
correct liquid-state packing will vanish. Choosing this N — oo system as reference amounts
to subtracting the factor —1/(2x) from the integrand. We therefore have the following

renormalized form of dp; = dpy, — 0pb.co

* po(1 — po) dk 1
i =B ey (104 55) (1)

This scheme effectively renormalizes the value of the bonding activity Ay, which now should

be understood as the value attained in a melt with N = oo. In practice, this bonding activity
can be calibrated by (1) first measuring the conversion p, for star polymers with large N
values, so that the fluctuation correction is small, (2) then using eq. (19) to calculate A,
from py and the known value of py. Such renormalization is necessary only because we
adopted the random walk as a coarse-grained description to the structural correlation of real
polymers, and the apparent divergence should not be present for a structural model with
proper liquid-state details.

Equations (61) and (48) can be combined with eq. (31) to obtain the change in poly-
mer number density. Before presenting the numerical results, the scaling with the system
parameters is analyzed. First, the loop and bond densities can be normalized by the arm
number density po/N. Second, since R, = 6~'/2R is the only length scale in the k integral of
eq. (58), the wavenumber can be scaled by setting ¢ = kR,. By completing the integration

63/2

over the azimuthal and polar angles, this brings out a factor 5 533, leaving only the radial
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Figure 7: Variation of bond, loop, and polymer densities under melt conditions (f = 3). The
dependence of dpy, and dp, on N ~1/2 and the convergence with increasing f are governed
mainly by the product po(f—1).

integration over 0 < ¢ < co. Therefore, we have (z = po(f—1))
N N

_ 3 )" Ligja(2) (62)
Po polt® | \ 47 2

N N [po(l —py) 63?2 /°° ) 1
o0 = { e an? ), 44 (@) + 5 (63)

where H(z) is defined in eq. (59) and = = ¢*. The asterisk on the renormalized bond density
has been dropped for simplicity of notation going forward. The factor outside the bracket is
recognized as N~V/2, with N = (poR?/N)? being the invariant degree of polymerization.
The parameter N counts the degree of inter-chain overlap, and therefore controls the strength
of the fluctuation contributions. The behaviors of both p; and dpy, are fully analogous to the

51,52

scaling for fluctuation effects in block polymers and several other examples surveyed.®

Therefore, we are led to the following scaling

L po

~NEN (64)

p1~ 0py ~ 0pp

for the Gaussian fluctuation theory. Such dependence naturally reflects the fact that the
ability of an arm to bond with another one in the neighborhood depends on the degree of
inter-chain overlap. The convergence towards the mean-field behavior is controlled by N~1/2.

Numerical results for the normalized p;, dp, and dp, are shown in Fig. 7. We focus

on dpy, and dp, because p is the same as the case of phantom stars. The variation dpy, includes
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contributions from loop formation and excluded volume interaction, the latter resulting from
the constraint of constant melt density. The number of extra bonds associated with loop
formation is the same as for phantom stars, which is comparable to p; and may exceeds p
for large f values (Fig. 6).

Our result in Fig. 7a shows that dpy, is always less than p;, causing dp, to increase
monotonically. This implies that the excluded volume has reduced bond formation resulting
in more polymers. Such reduction is anticipated for finite NV values, and can be attributed
to the effects of a correlation hole. For finite N values, the fraction of non-reacting middle
segments in the arms increases, which dilutes the concentration of reacting end groups. As
a result, the number of inter-molecular bonds is suppressed, compared to formation of intra-
molecular bonds resulting in loops. The net result is the increment of dp,,, the delayed growth
of large clusters, and a delayed gel point.

The competition of p; and dp, depends only weakly on the value of f, when the conversion
is represented as z = po(f—1), which measures the distance to the mean-field gel point
(Fig. 7). The normalized results converge for large f, which suggests a convenient way to

analyze data from systems with variable N and f values.

5. Conclusions

We have constructed a coherent states model of f-arm star polymers with reversibly reacting
ends in solution or molten conditions and applied approximate analytical techniques to
interrogate phase behavior and gelation. At the mean-field level, this model reproduces the
Flory-Stockmayer threshold for gelation, includes only tree-like clusters and no loops, and
the mean-field condition is found to coincide with the equation of the gel fraction. In this
particular bonding scheme, the system can phase separate into a polymer-lean supernatant
sol, coexisting with a polymer rich gel, and spinodal decomposition can only occur after

crossing the gelation threshold. This suggests strong kinetic limitations and path dependence
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in experimental investigations.

In analyzing fluctuation corrections to the mean-field analysis, we discovered that only
two independent densities, for loops and bonds, are needed. An expression for the bond
density can be derived from a thermodynamic derivative involving the bonding activity (or
equilibrium constant) for the reversible reaction. To obtain the loop number density, a loop
density operator was developed by analyzing the spatial translation of crosslinked clusters.
We argue that the loop density operator counts loops by summing up the compression factors
of all arms belonging to a cluster.

At the Gaussian level of fluctuations, we analyzed the variation of loop number and
bond number due to fluctuations in crosslinking pattern and excluded volume interactions.
In the dilute limit, we show that the bonds are formed to create intra-star loops. In the
limit of a dense melt, the Gaussian theory is UV divergent, but can be renormalized by
choosing a fictitious melt of stars with infinitely long arms as a reference. The renormalized
theory shows that the fluctuation correction to densities of bonds, loops, and clusters, when

172 where N is the invariant degree

normalized by the star density po/N, all scale as N~
of polymerization, which places a bound on the rate of convergence towards the mean-field
theory. The fluctuation correction for all three densities are positive. The fluctuation in loop
number has to be positive since it is strictly zero in the mean-field approximation. The rate
of increment of bond density is lower than that of the loop number density because the finite
fraction of middle star segments depletes free ends slightly; a consequence of the correlation
hole. The difference of the two gives the net change in the number density of polymers or
clusters. The variation of these densities, when plotted against the product po(f—1), with
po the fractional conversion in the mean-field reference, saturate when the number of arms
f is high. The product po(f—1) equals 1 + ¢, where € is the degree of gelation parameter
suggested by Flory.

One intriguing result of our work is that the excluded volume interaction does not in-

fluence the counting of loops at the Gaussian level. This allows one to split the fluctuation
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contribution to the osmotic pressure according to Il = p; + gy, with p; the loop density
and where the excluded volume interaction term Il , only alters the bond number density. A
more complete diagrammatic analysis shows that at least cubic order couplings are required
in the theory for excluded volume effects to be manifest in the loop density. The effects of
such higher-order couplings will be examined in the future. Other important questions, such
as the impact of loop density on the shift of the gel point and network elasticity, will be
studied after an adequate treatment of excluded volume effects is in hand.

The current work provide the foundation for systematically incorporating fluctuation
effects. Several future developments based on this can be envisioned. First, we have briefly
discussed the possibility that the formation of loops may exhaust all reacting arms and
suppress gelation in the dilute regime (Sec. 5.3). This clearly will affect the competition
between gelation and phase separation, and can be examined after the fluctuation effects on
phase separation is treated. Second, formation of loops delays the gel point. Our explicit
expressions for the variations in bond number density and loop number density can be

3642 of heterogeneous reacting species to find out

combined with the Stockmayer analysis
how the invariant arm length N influences the shift in the gel point. Third, extending our
analysis to the post-gel regime and analyzing the network elasticity will be of great practical
value. In this regime, the saddle point condition has two solutions, one related to the
percolating gel component and another related to the finite clusters (Sec. 3.2). It is possible
to relate the value of the CST field ¢*(0) to the exiting probability P(FR") introduced by
Macosko-Miller in their analysis of network polymers.?% A useful extension would be to

combine our Gaussian fluctuation theory with the Macosko-Miller framework, to probe the

post gel properties.
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