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Abstract

A coherent states field theory (CST) framework for reversible gelation of end-

functional f -arm stars is presented, which implicitly enumerates all cross-linking pat-

terns and generates the correct statistical weight for each type of cluster. At the

mean-field level, the CST produces only tree-like clusters, and recovers all essential

predictions of the Flory-Stockmayer (FS) theory. In particular, the saddle-point (mean-

field) condition reproduces the FS condition for gelation. When applied to solutions

of associative polymer stars in an implicit solvent, this mean-field theory predicts a

two-phase region where sol and gel phases of different composition coexist. Beyond

the mean-field level, where both tree and loop-like clusters are present, we develop

a loop density operator by considering the spatial translation of finite clusters. The

field theory is then fully developed and analyzed at the Gaussian level of fluctuations.

Phantom stars, dilute solutions, and dense melts are studied to better understand the

predictions of the Gaussian theory, including those for the loop density and fluctuation

corrections to the cluster number density. It is shown that the contributions from the

excluded volume interaction do not affect the density of loops at the Gaussian level,

although they do affect the bonding probability.

1. Introduction

Polymer networks are a fundamental platform for many important modern materials, in-

cluding rubber tires, artificial tissues, structural and dental composites, and adsorbents.

In recent years, polymer networks that are formed from reversible bonds have become a

topic of interest. This is in part due to novel materials properties, such as self-healing1

and stimuli-responsive behaviors, as well as biologically-motivated observations of such phe-

nomena.2 Much of our understanding of polymer networks is due to theories by Flory3 and

Stockmayer,4 who performed pioneering work based on combinatorial counting of molecular

clusters, which were later simplified by using iterative arguments.5,6 They were able to show
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that at a particular extent of reaction, the average size of a polymer cluster diverges, indicat-

ing the onset of gelation and the formation of a macroscopic sized molecule. Notably, there

are a number of deficiencies with Flory-Stockmayer (FS) theory, mainly that it neglects the

formation of cyclic (loop and ring) structures, and does not account for excluded volume

or other interactions between polymer segments. Finally, it is fundamentally a mean-field

theory for homogeneous systems that neglects the role of fluctuations or spatial gradients of

density or composition. These can be important both in solvated and dry networks.

There have been a number of efforts to correct the FS theory for excluded volume, fluc-

tuations, or inhomogeneities in both permanent and reversible networks, which often invoke

field-based methods. One example is work by Lubensky and Isaacson who used an n-vector

model and applied the n → 0 formalism of de Gennes7,8 to the problem of reversible gela-

tion. They utilized analytical approximations to study dilute gels and compute correlation

lengths, but did not analyze phase separation behavior or the concentrated regime. Be-

cause of reliance on a zero-component field theory, the approach does not enable numerical

representation or investigation.

Other examples include work by Panyukov and Rabin that used replica field theory to

predict structure factors and elastic properties of permanent gels with quenched disorder.9

Goldbart and Goldenfeld focused on the qualitative feature of how rigidity emerges at the

transition point, due to both crosslinking and entanglement.10,11 They adapted the replica

trick for spin glass to randomly crosslinked polymers, and constructed a mean-field theory

that yields the same gel point as the FS theory. These works were also limited to approximate

analytical techniques, however, and did not analyze phase separation behavior. A related

study by Erukhimovich considered the possibility of loop formation, but is based on an

approximate Hamiltonian that splits the contributions from short-ranged interaction and

polymer connectivity, and that relies on the explicit enumeration of crosslinking topology.12,13

Lang and co-authors have conducted a series of studies using both mean-field population

balance models and spatially-resolved bond-fluctuation model Monte Carlo simulations to
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interrogate the effect of loop formation on network properties, however these studies have

also neglected the effects of phase behavior.14–18

Mohan, Mester, and Fredrickson19,20 extended the FS theory to treat inhomogeneous

reversible gels and networks, preserving the tree approximation (no cyclic reaction prod-

ucts), but allowing for arbitrary density or composition gradients. Within the mean-field

approximation, this framework enabled a detailed study of phase behavior, including rich

multicritical phenomena with competing tendencies for microphase and macrophase sepa-

ration behavior in heterogeneous networks. However, numerical work with this approach is

inefficient due to the need to solve nonlinear integral equations at each field update. Fur-

thermore, the method cannot be easily extended beyond the tree approximation.

The “coherent states” (CS) framework enables a field-theoretic representation of re-

versible gels and networks with more favorable characteristics, namely that it exactly enumer-

ates all clusters irrespective of topology, can address inhomogeneities, and enables efficient

numerical investigation. This framework was originally introduced by Edwards and Freed for

studying vulcanization.21 The coherent states name derives from path integral descriptions

of quantum many-body systems with a similar mathematical structure.22 The CS represen-

tation of classical polymers has largely gone unnoticed for many years, especially compared

to auxiliary field theory representations popularized by Edwards.23 As described in recent

publications from the Fredrickson group,24–28 the CS framework is especially well suited

for tackling systems of reversibly bonding polymers that exhibit complex self-assembly and

phase behavior coupled to the reaction equilibria.

In this work we apply the CS formalism to study reversible polymer networks in solution

and melt conditions and examine both gelation and phase separation. These two phenomena

often occur simultaneously in polymer29,30 and colloid solutions31,32 and are often associated

with long relaxation times and hysteresis, leading to confusion on their relationship. With

the models considered here we are able to interrogate the equilibrium behavior without

kinetic limitations, and also examine effects of excluded volume, rings, and fluctuations.
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Figure 1: Examples of clusters formed by association of star polymers. (a) An example
of f -arm star with f = 4. Arm contour is parametrized by s, with 0 ≤ s ≤ N . (b) Dimer
tree-like cluster. (c) Trimer tree-like cluster. (d) An intra-star loop by self-association. (e)
An inter-star loop formed by linking two stars. (f) A loop formed from three stars. (g) A
cluster formed from 10 stars that contains one intra-star loop, one inter-star loop formed
from two stars, and one inter-star loop formed from four stars. (h) Two loops formed between
two stars sharing fractions of borders or edges.

We start at the mean-field level and show that a reduced set of parameters can be defined

from the fundamental parameters of reaction equilibrium constant, polymer concentration,

and solvent quality to yield a universal phase diagram. We then examine the fluctuation

corrections. First, an operator counting loop number density is introduced by considering

cluster translational degrees of freedom. Next, the Gaussian level fluctuation about the

mean-field solution is worked out, and is applied to analyze the behavior of phantom stars,

dilute stars, and stars in dense melts. The contributions from loops and bonds are considered

separately.
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2. Model

We consider solutions of f -arm stars with equal length arms and functional groups at the

terminus of each arm capable of pairwise, reversible binding. The solvent is treated implicitly

and the arms are modeled as continuous Gaussian chains. The contour variable s along the

arms initiates at the star center at s = 0 and terminates at the arm end at s = N (Fig. 1a).

The field theory model can be formulated in either the canonical (CE) or grand canonical

ensemble (GCE). The GCE proves slightly more convenient for our purposes, so is used

as the starting point, but the transition to the CE involves changing only one term in the

Hamiltonian functional, and will be described when necessary in the following.

The field-theoretic representation that we employ is not a pure CS representation, but

is an example of a “hybrid” auxiliary field-coherent states field theory (AF-CS) where a

real auxiliary field w(r) is used to decouple the pairwise excluded volume interactions and

two complex-conjugate CS fields ϕ∗(r, s) and ϕ(r, s) are used to build the star polymers

and all possible clustered reaction products. Such hybrid representations have been derived

and discussed for both continuous and discrete chain models in the recent monograph by

Fredrickson and Delaney.27 The GCE partition function Ξ for the star polymer model of

interest has the form

Ξ(λb, λf , V ) =

∫
D[w]

Dw

∫
D[ϕ, ϕ∗]

Dϕ

exp (−H[ϕ, ϕ∗, w]) (1)

H[ϕ, ϕ∗, w] =
1

2u0

∫
drw(r)2 +

∫
dr

∫
ds ϕ∗(r, s) [L+ iw(r)]ϕ(r, s) (2)

−
∫
dr

(
λf
f !
ϕ∗(r, 0)f + ϕ(r, N) +

λb
2!
ϕ(r, N)2

)

where
∫
D[w] and

∫
D[ϕ, ϕ∗] denote functional integrals over the AF and CS fields, re-

spectively, and H is the effective Hamiltonian functional. Here, λb and λf are activities

of reversible bonds and stars, and V is the system volume. Throughout this work, we

set kBT = 1 and suppress the reference to temperature T . The domain of integration for the
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spatial coordinate r is the system volume, and that of the contour variable s is from s = 0

to N .

The effective Hamiltonian in eq. (2) has three contributions. The first term depending

on w2 represents the segmental interactions, which has the pseudo-potential form u0δ(r)

for two segments separated by displacement r, where δ(r) is the Dirac delta function. The

excluded volume strength u0 (here assumed positive) depends on the solvent quality and

can be inferred from the potential of mean force between a pair of star polymer segments.

Introducing the auxiliary field w allows for decoupling the non-bonded interactions among

segments, at the cost of introducing the new functional integral over w(r).

The second term in H represents an “ideal arm” modeled as a continuous Gaussian

chain with each segment experiencing a pure imaginary effective potential iw(r). The op-

erator L = ∂
∂s

− b2

6
∇2 propagates chain conformation, where b is the statistical segmental

length. The operator L is the only place where molecular conformation statistics enter the

theory and provides the only nonlocal contribution. Proper treatment of the non-Hermitian

operator ∂
∂s

ensures that, when second moments of the coherent fields are evaluated, only

pair correlation terms of the form ⟨ϕ(r, s)ϕ∗(r′, s′)⟩ with s > s′ survive due to causality. All

other pairwise averages that violate this condition or involve the products ϕϕ or ϕ∗ϕ∗ vanish.

The coupling with field iw can also be written in terms of the segmental density operator

ρ(r) ≡
∫
ds ϕ∗(r, s)ϕ(r, s) as

∫
dr iw(r)ρ(r). In the absence of the term iw, the second term of

eq. (2) represents the contributions of non-interacting or “phantom” arms. It is worth noting

that the w integral in the partition function is Gaussian and could be explicitly performed,

simplifying the hybrid AF-CS field theory to a “pure” CS form. However, we resist this step

as it serves to facilitate the Gaussian fluctuation analysis of Section V.

The third “source” term of H defines the structure and the association reactions for the

stars. The activity-dependent term
λf

f !
ϕ∗(r, 0)f generates the cores (centers) of the f -arm

stars. The normalizing factor of 1
f !

accounts for the indistinguishability of the f identical

arms emanating from each star center. Each arm is terminated either as a free end, via the
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term ϕ(r, N), or is bonded to another arm end via λb

2!
ϕ(r, N)2. The number of reversible

bonds is controlled by the bond activity λb. These bonds can be either intra-molecular or

inter-molecular allowing the creation of both networks and isolated polymer molecules or

clusters with cyclic structures (loops). By means of a perturbation expansion in the source

term, it can be shown that this model correctly generates all possible reaction products with

proper classical statistical mechanical weighting. The products generated follow an “equal

reactivity” scheme whereby the equilibrium constant for each possible association reaction

is identical and proportional to λb.

To obtain the partition function of the CE, we Taylor-expand the GCE partition function

in powers of activity
λf

f !
. The n-th order coefficient is the CE partition function for n stars

contained in the volume V . The net result amounts to replacing only the λf -dependent term

in the GCE Hamiltonian with

−n ln
(
1

V

∫
drϕ∗(r, 0)f

)
(3)

where the factor of 1/V has been inserted to extract the ideal gas contribution of n non-

interacting star polymers from the CE partition function. Strictly speaking, this CE repre-

sentation is a semi-grand canonical ensemble where the total number of stars is fixed at n,

but the relative activity of each possible product is specified to ensure reaction equilibrium.

A true canonical ensemble would specify the number of each possible product and have a

quenched product distribution.

Finally, the normalizing factors in the partition function ensure the existence of the

partition function in the continuum limit of functional integrals and are defined as follows

Dw ≡
∫

D[w] exp

(
− 1

2u0

∫
drw(r)2

)
(4)

Dϕ ≡
∫

D[ϕ, ϕ∗] exp

(
−
∫
dr

∫
ds ϕ∗(r, s)Lϕ(r, s)

)
(5)
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It can be verified that the expression for the Hamiltonian is compatible with the following

unit convention that we adopt for physical properties: [w] = [ϕ∗] = 1, [u0] = [λb] = volume,

and [ϕ] = [λf ] =
1

volume
, which ensures that the density ρ ∼ ϕ∗ϕ has the dimension of

inverse volume.

Finally, we note that this model is exactly equivalent to a traditional auxiliary field (AF)

model that can be expressed as

Ξ(λb, λf , V ) =
1

Dw

∫
D[w] exp (−HAF[w]) (6)

HAF[w] =
1

2u0

∫
drw(r)2 −

∑
j

zjV Qj[iw] (7)

where the second term in eq. (7) represents a sum over all possible reaction products in the

system. Each product is associated with an activity zj and single chain partition function

Qj. For the reactive stars considered here with f ≥ 2, this is an infinite sum, which limits

the utility of the AF model. Nevertheless, it can be shown analytically that the path integral

over [ϕ, ϕ∗] in eq. (1) generates the infinite sum in eq. (7).

2.1 Equations of state

The partition function in the GCE is directly related to the osmotic pressure Π, via

Π =
1

V
ln Ξ (8)

When all non-bonded interactions and reactions are turned off, no w dependent terms are

needed and the bond activity λb becomes zero. The GCE partition function can then be

calculated analytically, giving Ξ = exp
(

λf

f !
V
)
and Π =

λf

f !
= n

V
, with n the average number

of polymers, i.e., the ideal gas law. In the general case, the model is specified by two
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equations of state, derived from the dependence on λf and λb respectively:

ρf =
λf
f !V

∫
dr

〈
ϕ∗(r, 0)f

〉
= λf

∂Π

∂λf
(9)

ρb =
λb
2!V

∫
dr

〈
ϕ(r, N)2

〉
= λb

∂Π

∂λb
(10)

Here and hereafter, the thermal averages are defined as usual, and evaluated over the field

variable integrals weighted by the Boltzmann factor. Equation (9) gives the volume average

for the number density of stars ρf and, effectively, that for the segmental number density ρ

by the stoichiometric relation ρ = fNρf . Equation (10) gives the corresponding density

for the number of bonds ρb. From these two densitites, the number density of free ends is

deduced as ρe = fρf − 2ρb, which can also be obtained from a field average

ρe =
1

V

∫
dr ⟨ϕ(r, N)⟩ (11)

The conversion of end groups used in the literature, or bonding probability, can be defined

as

p ≡ 2ρb
fρf

=
2ρb
ρ/N

(12)

In an inhomogeneous system, the local segmental densities can be expressed using the

CST field average as ρ(r) =
∫
ds ⟨ϕ∗(r, s)ϕ(r, s)⟩. The volume average of this segment

density will generate an identical result as deduced from ρf . We will demonstrate this

explicitly in the section on the mean-field solution, and merely note that ρf and ρb are the

two fundamental state variables. In practice, we found it convenient to parametrize the state

using the segmental density ρ and the reaction conversion p, which should become clear in

the results section.

In the CE formulation with partition function Z(λb, n, V ),25,27 the equation of state for

bond number density has the same form as eq. (10). Differentiating the Helmholtz free

energy F = − lnZ with respect to the number of stars n, gives the following form of the
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chemical potential

µ =
∂F

∂n
= ln(ρfv)−

〈
ln

(
1

V

∫
drϕ∗(r, 0)f

)〉
(13)

The first term is the ideal gas contribution, in which v is a normalization factor analogous

to the cube of the thermal de Broglie wavelength and does not affect the thermodynamic

properties. The second term is an excess contribution representing the contributions of

reaction and non-bonded interactions. At the mean-field level, where the field ϕ∗(r, 0) is

replaced by a stationary (non-fluctuating) value at the saddle point, the argument of the

logarithmic term in eq. (13) can be related to ρf by eq. (9). The explicit dependence on ρf in

the ideal gas and excess contributions cancel out, giving rise to µ = ln
(

λf

f !
v
)
. This relation

and eq. (9) will facilitate the conversion of thermodynamic potentials between the GCE and

CE ensembles.

3. Mean field theory

The mean-field theory of the CS model is worked out in this section, which reveals trans-

parently the connection with the FS theory and forms the basis for the fluctuation theory

developed in the following sections. Following the standard approach,27 we seek a solution

to the saddle point conditions for all the field variables

δH

δϕ∗(r, s)

∣∣∣∣
ϕ0,ϕ∗

0,w0

= 0

δH

δϕ(r, s)

∣∣∣∣
ϕ0,ϕ∗

0,w0

= 0 (14)

δH

δw(r)

∣∣∣∣
ϕ0,ϕ∗

0,w0

= 0

Throughout this work, we focus on a spatially homogeneous solution represented by ϕ0(s),

ϕ∗
0(s), and w0, and use a subscript “0” to indicate properties evaluated at the mean-field
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level, in particular the segmental density ρ0 and the bonding probability p0. Without spatial

variation, the conditions eq. (14) simplify to first order ODEs for the CST fields and an

algebraic condition for w0:
25

∂sϕ0(s) = −w0 ϕ0(s) +
λf

(f − 1)!
ϕ∗
0(0)

f−1δ(s)

∂sϕ
∗
0(s) = w0 ϕ

∗
0(s)− [1 + λbϕ0(N)] δ(N − s) (15)

w0 = u0ρ0 (16)

The segmental density ρ0 in the last line is calculated from ρ0 =
∫
ds ϕ0ϕ

∗
0. The source terms

in the pair of conditions for the CST fields are derived from the causality requirements:

ϕ(s) = 0 for s < 0 since no arm can be terminated before initiated, and ϕ∗(s) = 0 for s > N

since no arm initiation is permitted after termination.

The solutions to eqs. (15) is readily found, and can be expressed in terms of segmental

density ρ0 and bonding probability p0 as follows

ϕ0(s) =
p0 e

−u0ρ0s

τλb(1− p0)
Θ(s)

ϕ∗
0(s) =

τeu0ρ0s

1− p0
Θ(N − s) (17)

where Θ(s) is the unit step function. The step functions restrict the chain contour variable to

the physical interval 0 ≤ s ≤ N and provide no contributions to physical quantities outside

this range. The auxiliary parameter τ is the Boltzmann weight for the excluded volume

interaction, τ ≡ e−u0ρ0N . The bonding probability p0 relates to the mean-field solution via

eq 12

p0 =
τ 2λbλf
(f − 1)!

ϕ∗
0(0)

f−2 (18)

It is clear from eqs. (17) that the product ϕ0(s)ϕ
∗
0(s) is independent of s, as expected for a
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homogeneous solution. Thus, the segmental density ρ0 =
∫
ds ϕ0(s)ϕ

∗(s) evaluates to

ρ0
N

=
p0

λb(1− p0)2
(19)

Equivalently, the density can be written using eq. (9) as ρ0
N

=
λf

(f−1)!
ϕ∗
0(0)

f . It can be verified

that this expression and eq. (19) are compatible by substitution of eq. (18) and ϕ∗
0(0) =

τ
1−p0

,

the latter derived from eq. (17).

To understand why the expression eq. (18) can be assigned to the bonding probability,

we notice that eq. (10) for bond density evaluates to λb

2
ϕ0(N)2 =

p20
λb(1−p0)2

at the mean-field

level. Taking the ratio of bond density and ρ0
N

by following eq. (12) yields precisely p0.

Therefore, eq. (18) gives the mean-field expression for the probability of an end group being

bonded. Noticing further that ρ0
N

is the density of end groups, the equation of state eq. (19)

can be interpreted as the law of mass action (LMA): the products p0
ρ0
N

and (1 − p0)
ρ0
N

are

the concentrations of reacted and open groups, respectively.

Equations (18) and (19) play the same role as the equations of states, eqs. (9) and (10),

but are more convenient to use. In practice, we obtain p0 by keeping the physical solution

to the quadratic eq. (19) for the prescribed value of density ρ0 and reactivity λb, then

substitute p0 into eq. (17) to get a unique solution for the CST fields at the saddle point.

3.1 Thermodynamics of star-polymer solution

Using the mean-field solution eq. (17), it is straightforward to evaluate eq. (2) to obtain the

value of the Hamiltonian at the saddle point, which then leads to the mean-field expression

for the osmotic pressure,

Π0 =
1

V
ln Ξ0 =

ρ0
Nn

+
u0
2
ρ20 (20)

Here Nn = fN
1−p0f/2

is the number average molecular weight of the clusters formed due to end-

association, i.e., the Carothers equation.33 The ratio ρ0
Nn

is the number density of crosslinked
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clusters, so the first term in eq. (20) is an ideal gas contribution. The second term is

the correction due to binary segmental interactions. Equation (20) reduces to the osmotic

pressure of non-associating stars25 by setting p0 = 0. At the mean-field level, the difference

between non-associating and associative systems is solely contained in the term Nn. Notice

that Nn apparently diverges at p0 = 2/f , which is an artifact of the mean-field statistics.

Strictly speaking, this expression for Nn holds only below the gel point, while the predicted

divergence in Nn occurs above the gel point.

To obtain the density-explicit equation of state, we begin with the expression for chemical

potential derived from eq. (13) and the discussion therein, µ = ln
(

λf

f !
v
)
. The activity λf can

be expressed in terms of density via eq. (9), in which ϕ∗
0(0) is given by eq. (17) as ϕ∗

0(0) =
τ

1−p0
.

By substitution, we obtain
λf

f !
= ρf

(
1−p0
τ

)f
and subsequently

µ = ln
[
vρf (1− p0)

f
]
+ u0ρ0Nf (21)

Since ρf (1−p0)f is the density of un-associated stars, the above expression can be understood

as the sum of ideal gas and interaction contributions to chemical potential.

By invoking a Legendre transform to the GCE potential, we obtain the following expres-

sion for the Helmholtz free energy at the mean-field level,

F0

V
= µρf − Π0

= ρf ln
[
vρf (1− p0)

f
]
− ρ0
Nn

+
u0
2
ρ20 (22)

The density of stars is related to segmental density through ρf = ρ0
fN

. In the limit of non-

associating stars, eq. (22) reduces to a familiar mean-field expression ρf ln(vρf/e)+
u0

2
ρ20, the

sum of an ideal gas contribution and a binary interaction term. Equation (22) agrees with

the mean-field free energy derived for a solution of associative linear polymers29 when the

densities of reacting groups, c
l
for linear chains29 and ρ0

N
for our star polymers, are set equal.

It is worth noting that the Helmholtz free energy is fully specified by the density ρ0, while
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the probability p0 is constrained by the LMA. Equation (19) implies that,

∂p0
∂ρ0

=
p0(1− p0)

ρ0(1 + p0)
(23)

which can be used to handle the implicit dependence of p0 on ρ0 while λb is fixed. For

instance, it allows us to verify that eq. (21) can also be derived from µ = ∂F0

∂n
= ∂(F0/V )

∂ρf
.

More importantly, by differentiation, we obtain the following expression for the inverse of

the osmotic compressibility,

dµ

dρ0
=

1

ρ0Nw

+ u0Nf (24)

in which Nw = fN 1+p0
1−(f−1)p0

is the weight-average molecular weight of associated stars pre-

dicted by the FS theory.34 In fact, the Helmholtz free energy is the generating function for

the moments of associated clusters. The next order of differentiation with respect to ρ0 gives

the z-average molecular weight, depending on Nz/N
2
w, etc.

The weight average Nw diverges at p0 = (f − 1)−1, the gel point predicted by the FS

theory.3,35,36 It shows the consistency between our thermodynamic theory and the FS ar-

gument based on percolation structure. For non-vanishing u0, setting the inverse osmotic

compressibility to vanish gives the following expression for the stability limit of a homoge-

neous mixture, i.e., the spinodal condition,

1− (f − 1)p0 + u0(Nf)
2ρf (1 + p0) = 0 (25)

The dependence on u0 (> 0) shows the contribution from the excluded volume interaction;

consequently the value of p0 at the spinodal is always above the gel point (f−1)−1. The

competition between gelation and phase separation will be discussed below.
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3.2 Order parameter for gelation

We show in this section how the fraction of the star polymers that reside in the gel or sol, Pgel

or Psol, emerges from the saddle point condition for the CST fields. Polymers belonging to

infinite (percolating) clusters constitute the gel fraction, while the sol fraction is comprised of

isolated stars and clusters of finite molecular weight. The two fractions are complementary,

so we can focus on, e.g., Psol alone and denote it the order parameter of gelation. Below the

gel point p0 = 1
f−1

, Psol = 1; above the gel point, Psol decreases monotonically with p0 and

reaches zero at p0 = 1 according to the FS theory. This trend is exhibited in Fig. 2 for f = 3

and 5.

Next, we show how this characteristic Psol behavior is obtained from the mean-field CST

equations, eqs. (17–19). For any prescribed segmental density ρ0
N

and bond fugacity λb,

a solution for p0 can be found from the LMA, eq. (19). The conversion p0 can then be

substituted to eq. (17) to find the CST fields, and to eq. (18) to further find λf . The

solution is unique: for given ρ0
N

and λb, only one set of p0, ϕ0(s), ϕ
∗
0(s), and λf can be found.

To reveal the piecewise expression for Psol spanning the gel point, we examine the saddle

point condition more closely. Equations (17) and (18) can be combined to yield the condition

for ϕ∗
0(0),

ϕ∗
0(0)

τ
− 1 =

λbλfτ
f

(f − 1)!

(
ϕ∗
0(0)

τ

)f−1

(26)

Substitution of ϕ∗
0(0) = τ

1−p0
into eq. (18) leads to

λbλf τ
f

(f−1)!
= p0(1 − p0)

f−2. Then noticing

that τ = e−u0ρ0N is a constant, we denote x ≡ ϕ∗
0(0)/τ for convenience and write eq. (26) as

x − 1 = c xf−1, where c ≡ p0(1 − p0)
f−2. This equation has a unique solution for x in the

cases of f = 1 and 2. For f ≥ 3, we show in section S1.1 that eq. (26) has two, one, and zero

positive roots for c < cg, c = cg, and c > cg respectively, where cg ≡ (f−2)f−2

(f−1)f−1 is a threshold

value representing the gel point.

The pattern of solution can be summarized as follows. For fixed density ρ0, increasing λb

amounts to increasing p0. Below the gel point p0 = 1
f−1

, the value of c also increases. For
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Figure 2: Left: Fraction of sol chains versus the mean-field reaction conversion for f =
3 and 5. Right: bonding probabilities for gel chains (solid) and sol chains (dashed) at
different f . The diagonal line is the limiting behavior for f = ∞. The dots indicate the
mean-field gel point 1

f−1
.

each value, two solutions of eq. (26) can be found and the smaller one is the physical solution,

which we denote x0. At the gel point, c = cg and x = xg ≡ f−1
f−2

. Above the gel point, the

value of coefficient c decreases with p0 and, again, two solutions are found, with the physical

one x0 now being the greater (x0 > xg). This physical solution contains contributions from

both the sol and gel chains.

The smaller solution above the gel point, which decreases monotonically as p0 increases,

corresponds to the finite clusters belonging to the sol phase. Denoting this solution by xs,

the density of sol chains is given by
∫
ds ϕ∗

s (s)ϕs(s). In section S1.1, we show that the ratio

of this density and the total segmental density, i.e. the order parameter, can be written

Psol =
[
(1− p0)ϕ

∗
s (0)τ

−1
]f

(27)

in which ϕ∗
s (0) is obtained from xs. The curves in Fig. 2 are generated using the above

expression. Substituting xs = P
1/f
sol (1− p0)

−1 into eq. (26), we obtain

P
1/f
sol = (1− p0) + p0P

(f−1)/f
sol (28)

When expressed in terms of Psol = 1− Pgel, the above equation is known as the equation of

the gel curve.34 The factor P
1/f
sol gives the probability that the end of a randomly selected arm
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is not connected to the gel network, which is decomposed into two contributions. The first is

the probability that the selected end is not bonded, 1−p0. The second is the probability that

the selected end is bonded, but is not further connected with gel network via the other f−1

arms on the same star, p0P
(f−1)/f
sol . Equation (28) is identical to eq. (6.51) of Rubinstein

and Colby’s text.34 In essence, what we have demonstrated is that the iterative argument

adopted in the FS theory coincides with the saddle point condition for the field theory. The

order parameter Psol is the generating function for the number of finite clusters. When Psol

is Taylor-expanded in powers of p0 using eq. (28), the coefficient of ps0 is the fraction of stars

in tree-like clusters containing s stars. This property can be used to evaluate Nn, Nw and

higher order of moments.

Over the full range of p0, the chemical potential of stars is given by eq. (21), which

decreases progressively with p0 for constant overall segmental density ρ0 and interaction

strength u0. Section S1.1 shows that the clusters formed from the sol chains above the gel

point have the same chemical potential, which justifies the assignment of the solution xs to the

sol chains and equilibrium between finite clusters and gel-strands. The sol chains exhibits on

average a bonding probability ps, which is related to xs through xs =
1

1−ps
. This probability

is less than the bond conversion p0 for the whole system. Therefore, the bonding probability

for the gel chains must be above p0, which can be calculated using the conservation of total

bond number as p0−psPsol

Pgel
. The variation of ps and bonding probability of the gel chains are

shown in Fig. 2b. As the gel point is approached, the bonding probability pgel has the limiting

value 2
f
and Pgel drops to zero. The limiting value pgel =

2
f
corresponds to the minimum

bonding probability at which tree-like products can become infinite clusters as each chain

in the cluster will on average propagate the cluster. Above the gel point, the system can

be considered topologically heterogeneous, even while remaining spatially homogeneous. The

gel network that percolates the system volume is impregnated with finite clusters that have

a broad size distribution and smaller bond conversion ps. Next, we turn to see under what

conditions gelation can be accompanied by phase separation.
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Figure 3: Universal mean-field phase diagram for end-linking star polymers with f = 3 arms.
The binodal is indicated with the grey curve whereas the spinodal region is indicated with
white. The black line is the gel transition. The background of the plot is colored according
to the conversion of end groups p0. Parameters: C = ρ0u0Nf ; K = λb/(u0N

2f).

3.3 Phase separation vs. gelation

Using the mean-field expressions for the osmotic pressure and the chemical potential, we

can identify the condition of phase separation and the equilibrium concentrations of the

coexisting dilute and concentrated phases. For fixed molecular parameters N and f , the

thermodynamic state can be parameterized by the dimensionless concentration ρ0u0 and

dimensionless reactivity λb/u0. In fact, it is evident from eqs. (20) and (21), that the

scaled osmotic pressure u0Π0 and the shifted chemical potential µ+ ln(u0/v) depend on the

dimensionless combinations, ρ0u0 and p0, whereas the bonding probability p0 depends on

ρ0λb, which can be factored into the product (ρ0u0)(λb/u0).

In Fig. 3 we present the phase diagram for f = 3 in the coordinates of the reduced

concentration C ≡ ρ0u0Nf and reduced reactivityK ≡ λb/(u0N
2f). The grey curve denotes

the binodal in the system, whereas the white region is the interior of the spinodal determined

using eq. (25). The dotted black line indicates the Flory gel point which is computed

according to p0 = 1
f−1

. Plugging this condition into eq. (19), it is straightforward to see

that the mean-field gelation line is given by CK = f−1
(f−2)2

. This is an underestimate of
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the true gel point since the formation of loops is not accounted for at the mean-field level.

Fig. 3 can be compared with the analogous mean-field theory prediction for linear associative

polymers.29

The figure shows that at small values of λb/u0, i.e., weak bonding or good solvent quality,

the system does not undergo phase separation for any concentration of polymer. It can still

undergo gelation for sufficiently concentrated solutions, however. For large λb/u0, a two

phase region occurs. Notably, the spinodal for this region lies entirely in the gel regime.

This has important implications for experimental studies depending on how the system

is prepared, since the system could first percolate to form a network before undergoing

phase separation. This would significantly hinder the kinetics of phase separation. Because

the bonds are reversible, at sufficiently long times the system will be able to fully phase

separate, but large scale separation could be suppressed for a considerable amount of time

if λb/u0 is large. The physical interpretation of the phase coexistence region is that the

equilibrium constant is sufficiently large such that the system wants to form a gel, however,

the concentration is low enough that the polymers would have to stretch excessively to reach

one another to maintain a homogeneous solution. Instead, the system phase separates into

a concentrated polymer phase that can easily form a gel and a sol phase where polymers are

sufficiently dilute that they do not form a network. This phenomenon is often referred to as

syneresis. It should be noted that Fig. 3 is constructed using the mean-field theory, which

neglects loop formation. In sec. 5.3 below, we will discuss the possibility that loop formation

delays or eliminates the gel point in the dilute region.

In addition to the equilibrium constant λb and concentration ρ0, the excluded volume pa-

rameter u0 is a measure of the solvent quality and is non-negative for theta and good solvents.

As the the solvent quality increases (larger u0), polymer chains undergo coil expansion and

the arms of the star will stretch out. This increases the pervaded volume of each molecule

and the number of molecules that each polymer can interact with will increase. The grouping

ρ0u0 thus represents this effective concentration that is increased by solvent quality. On the
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Figure 4: Mean-field phase diagram for end-linking star polymers for a variety of number of
arms f . Binodals are indicated with solid lines while dotted lines indicate the gel transition.
Parameters: C = ρ0u0Nf ; K = λb/(u0N

2f).

other hand, when the solvent quality is high, polymer would rather be surrounded by solvent

molecules than other polymer segments. This means that forming a supramolecular bond

will be energetically disadvantageous for large u0. As such, the effective bond strength λb/u0

is reduced and bond formation is suppressed.

The effect of the arm number f on the phase behavior is illustrated in Fig. 4. As the

number of arms is increased, the binodal shifts to lower values of K as do the gel transition

curves. For larger number of arms it is easier to undergo gelation as a smaller conversion

is required to percolate the system, so smaller values of λb (or ρ0) are required for gelation.

Similarly, increased f expands the regime in which gelation is favorable, but not possible

due to insufficient polymer concentration, so the binodal regions shift to lower λb as well.

Although not shown in Fig. 4, the spinodal for each value of f lies completely in the gel

region.

For each f value, a critical point can be identified at the minimum value of K on the

spinodal curve, the latter depending on K implicitly via p0. By setting dK
dC

= 0 for solution

of the spinodal condition eq. (25) and applying eq. (23) to carry out the chain rule, we show
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in section S1.2 that the value of p0 at the critical point satisfies

f =
(1 + p0)

3

p20 (3 + p0)
(29)

which agrees to the expression obtained by Semenov and Rubinstein for associative linear

polymers.29 Equation (29) has a unique positive root between 0 and 1 for f ≥ 2 and decreases

monotonically from p0 = 1 at f = 2 to 0 at large f . For the example of f = 3, we

have p0 = 0.63. By plugging eq. (29) into eq. (25) to eliminate f , the value of C at the critical

point is found to be 1−p0
p0(3+p0)

. Correspondingly, the value of K is calculated from eq. (19).

By eliminating p0 from expressions for C and K, a quadratic equation in K is obtained in

section S1.2, whose solution approaches K = 1+6C
16C3 for small C and approaches K = 1

3C2 for

large C. As f is increased from f = 2, the critical point moves from C = 0 and K = ∞

towards the lower right corner of Fig. 4. In the limit of large f , the solution for p0 approaches

1√
3f
, and correspondingly, C approaches

√
f
3
and K approaches 1

f
.

The mean-field analysis provides a comprehensive and thermodynamically consistent pic-

ture of phase separation and gelation, but a few inherent problems should be noted. Firstly, it

neglects the presence of any rings or loops in the system and assumes that only tree-like prod-

ucts are possible.37 Such a picture of gelation is unphysical, especially at low concentrations

where intramolecular bonds (producing only loops) are more probable than intermolecular

bonds. Additionally, the mean field predictions neglect all concentration fluctuations in the

system which will simultaneously influence the reaction equilibria, the gelation behavior, and

phase separation. A preliminary analyses of these issues at the Gaussian fluctuation level

will be presented in the following sections.

4. Loop density in fluctuation theory

A major deficiency of the mean-field theory is the omission of cyclic polymer structures,

which focuses on the tree-like clusters, e.g., Fig. 1b,c. Although our primary concern in this
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work is the presentation of the Gaussian fluctuation theory, it will be important to assess to

what degree it restores cyclic structures relevant to gelation and phase separation behavior.

For this reason, it is essential that we have tools for exactly counting the number of loops

present in a reacting system. In this section, we first summarize a well-known topological

result that relates the loop density to the densities of polymers, bonds, and stars, then cast

it in the form of fluctuation corrected quantities. Next, we introduce a loop density operator

that permits direct enumeration of loops. Both sets of results are valid generally, and will be

specifically applied with the added approximation of Gaussian fluctuations in the subsequent

section. Examples of loop-containing clusters are provided in Fig. 1d–h.

4.1 Topological constraint

The densities of loops ρl, arm ends ρe, polymers (or clusters) ρp, and f -arm stars ρf , in an

arbitrary ensemble of associated species are related by a topological constraint. This is the

Euler relation adapted to the problem of polymer gelation by Lubensky and Isaacson:7,8

ρp = ρl +
1

2
ρe + (1− f/2) ρf

= ρl +
ρ0
2N

(1− p) + (1− f/2)
ρ0
fN

(30)

In the second line, the end density ρe is expressed using the arm number density ρ0
N

and the

fraction of non-reacted ends 1 − p. The star number density ρf has also been expressed in

terms of the monomer density ρ0. At the mean-field level, ρl = 0, the above relation reduces

to the Carothers equation33 for the number average molecular weight, Nn = ρ0
ρp

= fN
1−pf/2

. To

discuss the fluctuation correction, it is convenient to hold the monomer number density ρ0

fixed, and focus on the variational form of the Euler relation,

δρp = ρl −
ρ0
2N

δp = ρl − δρb (31)
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Here the variation is defined in reference to the mean-field solution where ρl = 0. In the

variational expression above we use ρl rather than δρl due to the zero reference value. The

combination ρ0
2N
δp is recognized as the variation of the bond density δρb. It is seen that

forming loops increases the number of polymers, whose effect is opposite to that of bond

formation. In the analysis below, we can focus on the two independent variables ρl and δρb.

The variation in bond number density is derived by differentiating the fluctuation free

energy or minus the fluctuation correction to the osmotic pressure ∆Π with respect to the

bond chemical potential µb ≡ lnλb (see eq. (10)):

δρb =
∂p0
∂µb

∂∆Π

∂p0
=
p0(1− p0)

1 + p0

∂∆Π

∂p0
(32)

In the last step, the relation ∂p0
∂λb

= p0(1−p0)
λb(1+p0)

was inserted, which is derived from eq. (19) for

the law of mass action, p0
(1−p0)2

= ρ0
N
λb.

Our approach to calculating the loop number density ρl is indirect. We first develop an

operator for the total polymer density ρp and then use the Euler relation eq. (30) to solve

for ρl given that we already have exact operator expressions for ρe and ρf . Here we sketch

the approach and provide the main result, leaving the detailed derivation to the subsequent

section.

To count the number of polymers, we note that each polymer is a connected cluster

and, if the clusters are non-interacting, each is subject to free translation and contributes a

factor V to the partition function. A configuration containing np non-interacting polymers

therefore contributes a factor V np to the partition function. Differentiating the logarithm of

the partition function with respect to the logarithm of volume V therefore gives the average

number of polymers ⟨np⟩. Real polymers are of course interacting, but in the CST partition

function it is the w integral that installs the pairwise interactions. Thus if the V derivative

is taken before the w average is performed, we can derive an operator for the average number

of polymers. The next subsection shows that this procedure leads to the polymer number
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density ρp = ⟨np⟩
V

decomposed into the same form as eq. (30):

ρp = ρl +
1

2
ρe + (1− f/2) ρf (33)

Here the respective densities are given by

ρl = − b2

9V

∫
ds

∫
dr

〈
ϕ∗(r, s)∇2ϕ(r, s)

〉
(34)

ρe =
1

V

∫
dr ⟨ϕ(r, N)⟩ (35)

ρf =
λf
f !V

∫
dr

〈
ϕ∗(r, N)f

〉
(36)

The expressions for ρf and ρe are identical to eqs. (9) and (11), with ρe being simply related

to ρb. The operator for the loop number density ρl, eq. (34), is a new result. Because of

the Laplacian operator, it is clear that the mean-field solution with homogeneous CST field

values does not contribute to the average in eq. (34). Spatial variation or fluctuation in the

CST fields is needed to describe loops.

4.2 Loop density operator

Next we provide a more detailed sketch of the derivation of this result for the loop density

operator. The partition function in eq. (1) contains two field integrals, the outer one over the

auxiliary field w and the inner one over the CST fields ϕ and ϕ∗. The inner CST integral has

two important properties. First, for fixed w(r) field, all bonding patterns are enumerated by

the integral over the ϕ and ϕ∗ fields. Second, the stars and the resulting polymers are non-

interacting until the outer w integral is performed. When the Boltzmann factor e−H[ϕ,ϕ∗,w],

excluding the term Hw ≡ 1
2u0

∫
drw2, is Taylor-expanded and integrated over the CST fields,

the surviving terms are a mix of connected clusters. Each cluster represents one polymer

with certain crosslinking structure and contributes a value proportion to V , due to the spatial

translation. A configuration with np clusters or polymers contributes a factor V np to the
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partition function.

Therefore, the average polymer number can be obtained from

⟨np⟩ =
∫

D[w]

Dw

e−Hw
∂ ln Ξϕ

∂ lnV

=

〈
∂ ln Ξϕ

∂ lnV

〉
w

(37)

where the partition function for the CST fields subject to the fixed AF field w is defined as

Ξϕ =

∫
D[ϕ, ϕ∗]

Dϕ

e−H[ϕ,ϕ∗,w]+Hw (38)

The notation ⟨·⟩w indicates an average weighted by exp(−Hw). Introducing the analogous

notation ⟨·⟩ϕ for an average weighted by a Boltzmann factor with the CST Hamiltonian

Hϕ ≡ H[ϕ, ϕ∗, w]−Hw, the polymer number density ρp = ⟨np⟩ /V can be written as

ρp =
⟨np⟩
V

=

〈〈
−∂Hϕ

∂V

〉
ϕ

〉
w

(39)

where we have assumed that the normalizing denominator Dϕ has no volume dependence.

This can be achieved by rescaling the spatial coordinates and fields as follows: r = xV 1/3,

ϕ̄(x, s) = V 1/2ϕ(r, s) and ϕ̄∗(x, s) = V 1/2ϕ∗(r, s). Then we find that Hϕ can be written as

the sum of

−b
2

6
V −2/3

∫
ds

∫
dx ϕ̄∗∇2

xϕ̄− V 1−f/2λf
f !

∫
dx ϕ̄∗(x, 0)f − V 1/2

∫
dx ϕ̄(x, N) (40)

in addition to two terms that are independent of V : one from the reaction term ϕ(x, N)2

and one from the coupling with the auxiliary potential w. Differentiation of Hϕ, followed by

restoring the r coordinate and fields gives

∂Hϕ

∂V
=

b2

9V

∫
ds

∫
drϕ∗∇2ϕ− (1− f/2)λf

f !V

∫
drϕ∗(r, 0)f − 1

2V

∫
drϕ(r, N) (41)
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Substituting the above back to eq. (39) leads to

ρp = ρl + (1− f/2)ρf +
1

2
ρe (42)

which coincides with the topological relation, eq. (30) with the three densities taking the

forms given in eqs. (34–36). In particular, applying eq. (34) to diagrams in Fig. 1a–g results

in loop counts 0, 0, 0, 1, 1, 1, 3, and 2 respectively.

It is natural to ask how the particular form of the loop density operator counts loops.

To see this, we need to examine the effects of the operator −ϕ∗(r, s)∇2ϕ(r, s) applied to

individual polymers. In section A2, we show that applying the loop operator to a polymer

generates a result equal to the sum of the compression factors of all the arms in the polymer,

divided by the volume V . The compression factor is defined as the average

⟨ς⟩ = 1− ⟨r2⟩
R2

(43)

where r2 is the end-to-end vector of the arm under consideration, and R2 = Nb2 is the

unperturbed Gaussian value. The average ⟨·⟩ is evaluated for the non-interacting stars

under the fixed potential w.

The compression factor is non-vanishing only if the arm is part of a loop. If it belongs to

a dangling end or a part of a tree diagram, the average ⟨r2⟩ = R2 because the conformational

statistics of the arm is not constrained. However, if the arm is part of, say, a simple loop

consisting of n arms, the distribution of the end-to-end vector r is constrained by the arm

itself, which is Gaussian with variance Nb2/3, and by the complementing (n − 1) arms,

which is Gaussian with variance (n − 1)Nb2/3. The constraint of two Gaussian strands

producing r vectors simultaneously, reduces the average to ⟨r2⟩ = (1−1/n)Nb2. As a result,

the compression factor of one arm in the simple loop is 1/n. The sum over the n arms

involved gives the correct counting of one loop which, when normalized by the volume V ,

gives the loop number density. Physically, what we observe is the natural expectation that
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each arm belonging to a loop is slightly compressed, and the sum of compression factors

counts the loops.

5. Gaussian fluctuation theory

Our approach to assessing fluctuations in the CST assumes that the system fluctuates

around the homogeneous saddle point and that the magnitude of these fluctuations are small.

This allows expansion of the Hamiltonian around the saddle point state and truncation at

quadratic order, yielding a set of Gaussian functional integrals that can be performed analyt-

ically. Throughout this section, such fluctuation analysis is carried out below the mean-field

gel point, in close vicinity of the saddle point for the sol phase.

5.1 RPA free energy

The FS theory addresses the statistics of tree-like clusters formed by arm association. To

incorporate the effects of loops as well as excluded volume correlations, we examine the

nature of Gaussian fluctuations in both the CST fields and the auxiliary field. Around the

spatially homogeneous saddle point, the small fluctuations are parameterized as follows,25

ϕ∗(r, s) = ϕ∗
0(s)(1 + ψ∗(r, s))

ϕ(r, s) = ϕ0(s)(1 + ψ(r, s)) (44)

iw(r) = ω0 + ω(r)

To simplify the notation, we have absorbed the imaginary unit i into ω0 and ω(r). The

perturbations ψ(r, s), ψ∗(r, s) and ω(r) are understood to be small and of similar amplitude.

The minimal order of fluctuation correction is obtained by substituting these expressions

into the Hamiltonian and expanding it to quadratic order in the fluctuation fields, which

can be conveniently done in Fourier space. Our convention for forward and inverse Fourier
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transforms, using ω(r) as example, is ω̂k =
∫
dr e−ik·rω(r) and ω(r) = 1

(2π)3

∫
dk eik·rω̂k.

The coefficients for the other field variables, in particular ψ̂k(s) and ψ̂
∗
k(s) are similarly de-

fined. The transform of the delta function δ(r) is δ̂k = 1. So we can use
∫
dk eik·r = (2π)3δ(r)

and
∫
dr eik·r = (2π)3δ(k) to facilitate the forward and inverse transforms. For instance, this

enables us to write
∫
drψ(r, s)ω(r) =

∫
dk

(2π)3
ψ̂k(s)ω̂−k, as an example of Parseval’s theorem.38

A further simplification we shall use below is ω̂−k = ω̂k because of the inversion symmetry

around the homogeneous solution. The units of the relevant amplitudes for field variable

fluctuations are: [ω(r)] = [ψ(r, s)] = [ψ∗(r, s)] = 1 and [ω̂k] = [ψ̂k(s)] = [ψ̂∗
k(s)] = volume.

For consistency, the accentˆis reserved for Fourier mode amplitudes.

In section S3, we show that the quadratic contributions to the Hamiltonian from a given k

mode equals the product of the arm number density ρ0/N and the following,

∫
ds ψ̂∗

k(s)L ψ̂k(s) +

∫
ds

[
ψ̂k(s) + ψ̂∗

k(s)
]
ω̂k −

f−1

2
ψ̂∗
k(0)

2 − p0
2
ψ̂k(N)2 − N

2ρ0u0
ω̂2
k (45)

In k space, the ideal chain evolution operator is L = ∂
∂s

+ b2

6
k2. The above quadratic form is

amenable to standard Gaussian analysis, which yields the Gaussian or RPA grand potential

and the corresponding Gaussian fluctuation correction to the osmotic pressure,

ΠG =
1

V
ln ΞG = −1

2

∫
dk

(2π)3
ln
(
∆̂(1 + ρ0u0NĜ)

)
≡ ΠG,l +ΠG,v (46)

The total osmotic pressure is given by the sum of ΠG and the mean-field contribution,

Π = Π0 +ΠG. Equation (46) includes contributions from different Fourier modes. The term

∆̂(x) ≡ 1 − p0(f − 1)e−2x, with x ≡ k2Nb2/6, will be seen to be derived from clusters that

contain a single loop. The term Ĝ is the RPA structure factor for a mixture of tree-like
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clusters resulting from star association,

Ĝ ≡ ĝ(x) + ĥ(x)2
(f−1) + p0 + 2p0(f−1)e−x

1− p0(f−1)e−2x
(47)

where ĝ(x) ≡ 2
x2 (x− 1 + e−x) is the Debye function, and ĥ(x) ≡ 1

x
(1− e−x).

The definition in the last line of eq. (46) assigns the terms derived from ln ∆̂ and ln(1 +

ρ0u0NĜ) to ΠG,l and ΠG,v that represents contributions due to loop formation and excluded

volume correlations respectively. The advantage of this decomposition will be justified by

noticing that ΠG,l provides the only RPA contribution to the loop density, and ΠG,v depends

on the excluded volume interaction. Notably, in the case of no reactions, p0 = 0, so no

loops are possible and ΠG,v recovers the RPA fluctuation contribution to the free energy for

a solution of interacting homopolymer stars.

The above free energy expression is our main result. The underlying algebraic details

are provided in section S3, and the physical implications will be our main concern in the

sections below. Here we note that the types of fluctuations considered are those around the

fixed homogeneous mean-field saddle point, which does not shift the total segmental number

density. So a treatment in the GCE or CE yields identical results and the parameterization

using p0 and ρ0 is both intuitive and convenient.

The RPA free energy can be independently derived by a diagrammatic expansion. In

section S4, we show explicitly that the RPA free energy can be constructed by two groups

of diagrams (Fig. S3, SI). The first group captures excluded volume correlations among

tree clusters. The second group contains single loops, which belongs to the category of the

diagrams on the right side of Fig. S2 (SI). Therefore, applying the loop density operator,

eq. (34), to each diagram in this group results in a count of one. The sum of statistical

weights of the diagrams in group 2 normalized by volume V gives the loop density, which is
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precisely ΠG,l. At the Gaussian level, we can write

ρl = ΠG,l = −1

2

∫
dk

(2π)3
ln ∆̂ =

(
3

4π

)3/2 Li5/2(z)

2R3
(48)

in which Li5/2(z) with z ≡ p0(f−1) is the poly-log function defined by the sum Lin(z) =∑∞
k=1

zk

kn
. The types of loops sketched in Fig. 1d–g, which are isolated simple ones, are

included by eq. (48), but the loops of the type Fig. 1h or more complicated ones are not

included at the Gaussian level. We stress that this expression gives the correct loop density

at the Gaussian level regardless of the concentration and the interaction strength. The

difference among the examples discussed below arises solely from the variation in bond

density δρb.

5.2 Structure factor

To understand the physical meaning of the RPA structure factor Ĝ, we recall that each

tree diagram is just a connected portion of the infinite Bethe lattice.39 From each lattice

site grows f arms outwards. The crosslinking is represented by connecting the ends of two

arms, with probability p0. To generate the ensemble of clusters, one starts from an arbitrary

arm on any star (the choice of star does not matter since all stars on the Bethe lattice are

equivalent statistically), and walks to the end of this arm, or to the end of the remaining

f−1 arms. At any of these f ends, the star connects with probability p0 to some other

star. Below the percolation threshold 1
f−1

, all finite tree clusters are produced by iteration.

Because all arms are statistically equivalent on the Bethe lattice, instead of enumerating all

stars, we may calculate the structure function on the Bethe lattice itself, by noticing that

the structure factor is a measure of the correlation between two randomly selected arms on

the Bethe lattice. Our iterative derivation of the structure factor is similar to those adopted

in the literature.40,41

We therefore proceed as follows. First, label a randomly selected arm on a Bethe lattice 1
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Figure 5: Illustration of the recursive nature for RPA structure factor. The numerals indicate
the “distance” on the Bethe lattice from a randomly selected initial arm labeled 1.

(Fig. 5), to which f−1 arms living on the same star are linked and labeled 2. Another arm

labeled 3 may be linked to 1 with probability p0, with which f−1 arms labeled 5 belong to

the same star. Similarly, with probability p0, each of the arms labeled 2 may be crosslinked

to one of the f−1 arms labeled 4. This whole cascading process propagates indefinitely. For

ease of tracking, we call arm 1 generation 1, arms 2, 3, 4, 5 generation 2, etc. The generation

is defined by either encountering a new crosslinking site that demands a probability p0 to

advance further (e.g., ends of arms 5), or by encountering a new branching point (e.g., ends of

arms 4 that meets the star centers). Therefore, every generation grows two bonds outwards.

To calculate the pair correlation, our strategy is to consider the correlation between arm 1

and all the generations produced via the iterative procedure. The self-correlation (1−1) is

the Debye function ĝ(x). The contributions from generation 2 are given by

[
(f − 1) + p0 + 2p0(f − 1)e−xe−x

]
ĥ(x)2 (49)

These correlations have the common factor ĥ(x)2. The coefficients in the brackets correspond

to correlations (1−2), (1−3), and equal contributions from correlations (1−4) and (1−5).

The contributions from generation 3 equals p0(f − 1)e−2x times that of generation 2, and

those from each higher order generations acquires the same additional multiplying factor.

Overall, the results from generations 2 onward form a geometrical series, which combined
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with the self-correlation gives

Ĝ = ĝ(x) + ĥ(x)2
(f−1) + p0 + 2p0(f−1)e−x

1− p0(f−1)e−2x
(50)

The second term is recognized as eq. (49) divided by ∆̂, which captures the correlations

between distinct arms on the same cluster averaged over the cluster population.

The above result for Ĝ can be interpreted as the structure factor for an ensemble of tree-

like clusters following the FS statistical weight. In the absence of cross-linking, with p0 = 0,

it reduces to the structure factor of a single star, ĝ(x)+(f−1)ĥ(x)2, in which (f−1) obviously

counts the neighboring arms on the same star. For non-zero p0, the expression is simplified

in the limit of large N . We can drop all the exponential terms and obtain 2
x
+ −2+(f−1)+p0

x2 .

The leading term is the Edwards approximation to the intra-arm correlation. The secondary

term contains a variety of end correlations: those from ends on the same arm (−2), that

from arm center connected to remaining arms on the same star (f−1), and that from the

bonded arm at the arm end (p0). For finite arm length N , the exponential factors e−x or e−2x

represent the weights needed by the chemical distance between arms.

In the long wavelength limit, the structure factor can be expanded to linear order in x as

Ĝ =
f(1 + p0)

1− p0(f − 1)

(
1− k2ξ2 + · · ·

)
(51)

The prefactor equals Nw/N , the ratio between weight average molecular weight and the arm

length, which quantifies the density-density correlation and can be related to the osmotic

compressibility, as noted earlier. In the second factor, the correlation length ξ is found to

scale as ξ ∝ R |ϵ|−1/2, where ϵ ≡ p0(f−1)− 1 is the degree of gelation introduced by Flory.34

The divergence of the correlation length is governed by the exponent ν = 1/2, consistent

with the prediction of mean-field theory for the gelation problem.

The structure factor Ĝ was calculated for clusters formed from non-interacting stars.

When the excluded volume interaction is turned on, following the standard self-consistent
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treatment,25 it can be shown that the density response to an external perturbation Ĵ(k) in

the linear regime is given by ρ̂1(k) = −S(k)Ĵ(k), with S(k)−1 = [ρ0NĜ]
−1 + u0. It can be

expanded to S(k)−1 = 1
ρ0Nw

(1 + k2ξ2 + · · · )+u0, whose value at k = 0 is identical to eq. (24).

The low-k behavior of the RPA structure factor can in principle be used to obtain Nw and ξ

from scattering measurements on density fluctuations conducted in the small angle regime.

5.3 Phantom stars

In the subsequent subsections, we examine the consequence of the Gaussian fluctuation by

considering the densities of loops and bonds in three limiting cases. The simplest case

corresponds to associative phantom stars, attained by setting u0 = 0. In this limit, we

have ΠG = ΠG,l = ρl, where the loop density is given by eq. (48). Thus, the variation in

bond number is entirely derived from the loop density. Substituting eq. (48) into eq. (32)

yields

δρb =
p0(1− p0)

1 + p0

∂ρl
∂p0

=

(
3

4π

)3/2
1− p0
1 + p0

Li3/2(z)

2R3
(52)

The polylog functions have the asymptotic behavior Lin(z) ∼ z = p0(f−1) near the origin

irrespective of the value of n. Therefore, in the limit of low reaction conversion, we have

δρb ∝ ρl ∝ p0(f−1), which implies that the variation of bond formation in the low p0 regime

is due to the formation of intra-star bonds which always produces a loop. The bond and loop

densities for phantom stars, normalized by 2R3(4π/3)3/2, are plotted in Fig. 6 for f = 3, 5, 15.

In the case of f = 3, increasing p0 causes the loop density ρl to grow faster than the variation

of bond density δρb, which implies that inter-star bonds are suppressed in favor of intra-star

bonds that form loops. For f = 15, the reverse is true and the variation of bond density

δρb grows faster than the loop density, which implies the promotion of inter-star bonds. In

particular, near the gel point, most bonds associated with loop structures are inter-molecular

for f ≥ 15.

The loop density evaluated at the Gaussian level is independent of the excluded vol-
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Figure 6: Variation of bond and loop densities for phantom stars with f = 3, 5 and 15,
which are normalized by the factor 2R3(4π/3)3/2. The reaction conversion is terminated at
the mean-field gel point p0 = (f−1)−1.

ume interaction. It can be shown that our expression for the total loop density, eq. (48),

generates the distribution of single loops formed via both inter- and intra-molecular bonds,

which was previously considered by Jacobson and Stockmayer for linear condensation42 and

subsequently by Hoeve for f -arm stars.43 In fact, eq. (48) can be expanded as ρl =
∑∞

n=1 Ln,

in which

Ln ≡ [p0(f−1)]n

2(2π)3n

∫
dk e−2nx =

1

2

(
3

4π

)3/2
[p0(f−1)]n

n5/2R3
(53)

The term Ln is the number density of single loops constructed from n stars. The factor n−1

is the symmetry number of the loop, while the product [p0(f−1)]n gives the probability

of generating n bonds. The factor (f−1) is included to account for the (f−1) arms that

may participate in loop formation. Finally, the integral over the weight e−2nx gives the

loop closure probability for 2n arms adopting Gaussian statistics, which results in additional

factors of R−3 and n−3/2. The most salient feature is the n−5/2 dependence on the loop

number density, initially obtained by Jacobson and Stockmayer.42

The simulation44–46 and experimental47 literature have also considered the number of

loop-participating stars, which is proportional to nLn and exhibits an n−3/2 dependence.

Specifically, the “primary” and “secondary” loops used,46,47 are proportional to L1 and L2.

Most of these studies considered the crosslinking formed between, for instance, Af stars

and Bg junctions. In these systems, two separate conversions conversions pA and pB are
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needed, which are fixed by the law of mass action and mass conservation. Our expression

for loop densities, eq. (53), is still applicable once p0(f−1) is replaced with pApB(f−1)(g−1).

The predicted scaling n−5/2 as well as the dependence on f and g is fully consistent with

the simulation results,45 which is perhaps a bit surprising. The simulations45 use the bond

fluctuation model, which contains the excluded volume interaction, while the calculation

leading to eq. (53) does not address the effects of excluded volume.

In addition to fixing the necessary prefactor, equation (53) contains explicit dependence

on the arm size, scaling like R−3. The fraction of arms in the n-loops is given by the ratio

between nLn and the arm number density ρ0/N . Thus the parametric combination N/(ρ0R
3)

plays an important role determining the loop density, which is consistent with the analysis

of Erukhimovich,12 the observation of Wang and Olsen et al.46 obtained on grounds of

dimensional analysis, as well as the work by Lang and Kumar.17 Furthermore, when R =

N1/2b is substituted, the fraction of arms forming loops scales as N−1/2, which again is

consistent with the earlier simulation data45 and, moreover, with the expectation of the

mean-field theory becoming asymptotically exact in the limit of large N .

The formation of loops delays the gel point and may, for sufficiently dilute concentration,

eliminate gelation completely.17,18,48,49 The earlier treatment of Jacobson and Stockmayer on

linear polycondensation42 shows that the reaction of telechelic chains, with f = 2, may result

in the system containing only loops when reactivity is high. With the explicit expression for

loop density Ln, we can now recapitulate their analysis for general f as follows. Since each

loop of order n contains n arms, the number density of all loop-forming arms is

ρb,l =
∞∑
n=1

nLn =

(
3

4π

)3/2 Li3/2(z)

2R3
,

where z = (f − 1)p0 has been substituted. It is clear that ρb,l increases with z. For fixed

concentration ρ0, the density ρb,l reaches maximum if λb is on the mean-field gelation curve,

giving z = 1. At this point, we have Li3/2(1) = ζ(3/2) = 2.61. The Jacobson-Stockmayer
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condition demands that ρb,l equals the number density of arms ρ0/N . Therefore, a threshold

value of segment density is identified as

ρc = c
N

R3
,

where the numerical coefficient c =
(

3
4π

)3/2 ζ(3/2)
2

= 0.15. The above expression for ρc is

consistent with those reported in the literature.17,18,48

For ρ0 < ρc, below the threshold density, the formation of loops exhausts all arms present

in the solution before the gel point is reached, making it impossible to form a gel. Apart

from the numerical prefactor c, the threshold value ρc is comparable to the self-concentration

of a single arm N/R3, i.e., the crossover point between dilute and semidilute regimes. This is

expected since sufficient inter-arm overlap is necessary for effective inter-molecular crosslink-

ing. Therefore, the mean-field gelation curve identified in Section 3.3 is applicable only in

the semi-dilute regime. To thoroughly discuss the impacts of loop formation, the shift to

the mean-field gel point and the fluctuation effects on the bionodal diagram both need to be

studied, which is beyond the scope of the current work.

5.4 Dilute solution

A second limiting case is a dilute solution of f -arm stars. The loop density can be calculated

from eq. (48). The bond density variation in the dilute limit contains two contributions. The

first contribution is positive, due to the formation of loops and equal to the loop density.

This is verified by keeping only the linear term in Li5/2(z) or Li3/2(z). We have

δρb,l = ρl =
p0(f−1)

2

∫
dk

(2π)3
e−2x

=
ρ0
fN

f(f − 1)

2

[(
3

4π

)3/2
λb
R3

]
(54)
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In the second line, we have inserted p0 = ρ0λb

N
, which is valid in the dilute regime. The

density of a single star is ρ0
fN

, the combinatorial factor f(f−1)
2

is the total number of arm-to-

arm pairs per star, and the remaining term in the bracket is the probability of linking two

arm ends from Gaussian chain statistics.

The second contribution to the variation in bond density, due to excluded volume in-

teraction, is negligible compared to the self-loop contribution. This is seen by noting that

the Gaussian free energy contribution that contains the excluded volume interaction can be

expanded up to linear order in the dilute limit as

ΠG,v = −1

2
ρ0u0N

∫
dk

(2π)3
Ĝ (55)

which is always of the linear order in ρ0. Further substitution into eq. (32) leads to

δρb,v = −1

2
ρ0u0N

p0(1− p0)

1 + p0

∫
dk

(2π)3
∂Ĝ

∂p0

= −λbu0
2

ρ20

∫
dk

(2π)3
∂Ĝ

∂p0
(56)

In the dilute limit, p0 and ρ0 are in proportion, p0 = ρ0λb

N
, as demanded by the LMA,

eq. (19). So the correction δρb,v is of order ρ20, which can be neglected when compared

to δρb,l. Therefore, it is clear that, in the dilute regime, the extra bonds contribute only to

the formation of intra-star loops.

5.5 Dense melt

As a final illustration of the Gaussian fluctuation analysis, we consider the limit of a molten,

solvent free system. The melt limit with finite ρ0 is obtained by taking u0 very large to

suppress density variations. When this is done, the parameter u0 is viewed as a compres-

sional modulus of the melt. Its value can be determined from the density of state for ρ0

when needed. However, in practice, it is more convenient to suppress u0 and focus on the
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density ρ0. The fluctuation effects captured by the Gaussian analysis are caused by variation

in compositions and spatial arrangement of clusters, while maintaining a spatially uniform

density. Keeping the leading term of the integrand for ΠG, while dropping an inconsequential

factor ln(ρ0u0N) in the integrand, we have

ΠG = −1

2

∫
dk

(2π)3
ln
(
∆̂Ĝ

)
= −1

2

∫
dk

(2π)3
ln
(
ĝ∆̂ + ĥ2Λ̂

)
(57)

Here Λ̂ ≡ f−1+p0+2p0(f−1)e−x. While every term in the integrand depends on x = k2R2
g,

only ∆̂ and Λ̂ depend on p0. The dependence on density ρ0 is implicit, via the equation of

state for p0, eq. (19).

Since the loop density has an identical form as for phantom stars at the Gaussian level,

we focus on the variation in bond density. Substituting eq. (57) in eq. (32) gives

δρb =
p0(1− p0)

2(1 + p0)

∫
dk

(2π)3
H(x), (58)

H(x) ≡ (f−1)e−2xĝ − [1 + 2(f−1)e−x]ĥ2

ĝ∆̂ + ĥ2Λ̂
(59)

The integrand approaches −(1+p0)
−1 as k → 0, causing no difficulty in numerical evaluation.

However, eq. (58) is divergent in the high k or ultraviolet (UV) regime. The exponential

terms e−2x and e−x are negligible in this regime, so that ∆̂ → 1, Λ̂ → (f−1)+ p0, ĝ → ĝ∞ =

2
x
− 2

x2 , and ĥ→ ĥ∞ = 1
x
. The integrand therefore behaves asymptotically as

− ĥ2∞

ĝ∞ + [(f−1) + p0]ĥ2∞
= − 1

2x
+O(x−2) (60)

Except the leading term −1/(2x), all the higher order terms are UV convergent. Based on

our analysis of the RPA structure factor, the term ĥ2∞ is due to the bonding between arms

on two neighboring stars. The term ĝ∞ captures the self-correlation of a single arm. The

term [(f−1) + p0]ĥ
2
∞ gives the correlation between a randomly selected arm and the (f−1)

arms belonging to the same star, as well as one bonded arm from a neighboring star. The
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diverging factor −1/(2x) originates from the leading term in −ĥ2∞/ĝ∞.

The physical reason for the divergence in high-k regime is the break-down of random walk

statistics at small scale. To proceed, we observe that settingN → ∞ gives the same integrand

as the divergent contribution, −1/(2x). Therefore, the integral can be renormalized by

choosing a melt of stars with N → ∞ as reference. Since the mean-field theory is expected

to be exact in this limit, the value of δρb,∞ obtained using the structure factor with the

correct liquid-state packing will vanish. Choosing this N → ∞ system as reference amounts

to subtracting the factor −1/(2x) from the integrand. We therefore have the following

renormalized form of δρ∗b = δρb − δρb,∞

δρ∗b =
p0(1− p0)

2(1 + p0)

∫
dk

(2π)3

(
H(x) +

1

2x

)
, (61)

This scheme effectively renormalizes the value of the bonding activity λb, which now should

be understood as the value attained in a melt with N = ∞. In practice, this bonding activity

can be calibrated by (1) first measuring the conversion p0 for star polymers with large N

values, so that the fluctuation correction is small, (2) then using eq. (19) to calculate λb

from p0 and the known value of ρ0. Such renormalization is necessary only because we

adopted the random walk as a coarse-grained description to the structural correlation of real

polymers, and the apparent divergence should not be present for a structural model with

proper liquid-state details.

Equations (61) and (48) can be combined with eq. (31) to obtain the change in poly-

mer number density. Before presenting the numerical results, the scaling with the system

parameters is analyzed. First, the loop and bond densities can be normalized by the arm

number density ρ0/N . Second, since Rg = 6−1/2R is the only length scale in the k integral of

eq. (58), the wavenumber can be scaled by setting q ≡ kRg. By completing the integration

over the azimuthal and polar angles, this brings out a factor 63/2

2π2R3 , leaving only the radial
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Figure 7: Variation of bond, loop, and polymer densities under melt conditions (f = 3). The
dependence of δρb and δρp on N̄−1/2 and the convergence with increasing f are governed
mainly by the product p0(f−1).

integration over 0 < q <∞. Therefore, we have (z ≡ p0(f−1))

N

ρ0
ρl =

N

ρ0R3

[(
3

4π

)3/2 Li5/2(z)

2

]
(62)

N

ρ0
δρb =

N

ρ0R3

[
p0(1− p0)

1 + p0

63/2

4π2

∫ ∞

0

dq q2
(
H(x) +

1

2x

)]
(63)

where H(x) is defined in eq. (59) and x = q2. The asterisk on the renormalized bond density

has been dropped for simplicity of notation going forward. The factor outside the bracket is

recognized as N̄−1/2, with N̄ ≡ (ρ0R
3/N)2 being the invariant degree of polymerization.50

The parameter N̄ counts the degree of inter-chain overlap, and therefore controls the strength

of the fluctuation contributions. The behaviors of both ρl and δρb are fully analogous to the

scaling for fluctuation effects in block polymers51,52 and several other examples surveyed.50

Therefore, we are led to the following scaling

ρl ∼ δρb ∼ δρp ∼ 1

N̄1/2

ρ0
N

(64)

for the Gaussian fluctuation theory. Such dependence naturally reflects the fact that the

ability of an arm to bond with another one in the neighborhood depends on the degree of

inter-chain overlap. The convergence towards the mean-field behavior is controlled by N̄−1/2.

Numerical results for the normalized ρl, δρb and δρp are shown in Fig. 7. We focus

on δρb and δρp because ρl is the same as the case of phantom stars. The variation δρb includes
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contributions from loop formation and excluded volume interaction, the latter resulting from

the constraint of constant melt density. The number of extra bonds associated with loop

formation is the same as for phantom stars, which is comparable to ρl and may exceeds ρl

for large f values (Fig. 6).

Our result in Fig. 7a shows that δρb is always less than ρl, causing δρp to increase

monotonically. This implies that the excluded volume has reduced bond formation resulting

in more polymers. Such reduction is anticipated for finite N values, and can be attributed

to the effects of a correlation hole. For finite N values, the fraction of non-reacting middle

segments in the arms increases, which dilutes the concentration of reacting end groups. As

a result, the number of inter-molecular bonds is suppressed, compared to formation of intra-

molecular bonds resulting in loops. The net result is the increment of δρp, the delayed growth

of large clusters, and a delayed gel point.

The competition of ρl and δρb depends only weakly on the value of f , when the conversion

is represented as z = p0(f−1), which measures the distance to the mean-field gel point

(Fig. 7). The normalized results converge for large f , which suggests a convenient way to

analyze data from systems with variable N̄ and f values.

5. Conclusions

We have constructed a coherent states model of f -arm star polymers with reversibly reacting

ends in solution or molten conditions and applied approximate analytical techniques to

interrogate phase behavior and gelation. At the mean-field level, this model reproduces the

Flory-Stockmayer threshold for gelation, includes only tree-like clusters and no loops, and

the mean-field condition is found to coincide with the equation of the gel fraction. In this

particular bonding scheme, the system can phase separate into a polymer-lean supernatant

sol, coexisting with a polymer rich gel, and spinodal decomposition can only occur after

crossing the gelation threshold. This suggests strong kinetic limitations and path dependence
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in experimental investigations.

In analyzing fluctuation corrections to the mean-field analysis, we discovered that only

two independent densities, for loops and bonds, are needed. An expression for the bond

density can be derived from a thermodynamic derivative involving the bonding activity (or

equilibrium constant) for the reversible reaction. To obtain the loop number density, a loop

density operator was developed by analyzing the spatial translation of crosslinked clusters.

We argue that the loop density operator counts loops by summing up the compression factors

of all arms belonging to a cluster.

At the Gaussian level of fluctuations, we analyzed the variation of loop number and

bond number due to fluctuations in crosslinking pattern and excluded volume interactions.

In the dilute limit, we show that the bonds are formed to create intra-star loops. In the

limit of a dense melt, the Gaussian theory is UV divergent, but can be renormalized by

choosing a fictitious melt of stars with infinitely long arms as a reference. The renormalized

theory shows that the fluctuation correction to densities of bonds, loops, and clusters, when

normalized by the star density ρ0/N , all scale as N̄−1/2, where N̄ is the invariant degree

of polymerization, which places a bound on the rate of convergence towards the mean-field

theory. The fluctuation correction for all three densities are positive. The fluctuation in loop

number has to be positive since it is strictly zero in the mean-field approximation. The rate

of increment of bond density is lower than that of the loop number density because the finite

fraction of middle star segments depletes free ends slightly; a consequence of the correlation

hole. The difference of the two gives the net change in the number density of polymers or

clusters. The variation of these densities, when plotted against the product p0(f−1), with

p0 the fractional conversion in the mean-field reference, saturate when the number of arms

f is high. The product p0(f−1) equals 1 + ϵ, where ϵ is the degree of gelation parameter

suggested by Flory.

One intriguing result of our work is that the excluded volume interaction does not in-

fluence the counting of loops at the Gaussian level. This allows one to split the fluctuation
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contribution to the osmotic pressure according to ΠG = ρl + ΠG,v, with ρl the loop density

and where the excluded volume interaction term ΠG,v only alters the bond number density. A

more complete diagrammatic analysis shows that at least cubic order couplings are required

in the theory for excluded volume effects to be manifest in the loop density. The effects of

such higher-order couplings will be examined in the future. Other important questions, such

as the impact of loop density on the shift of the gel point and network elasticity, will be

studied after an adequate treatment of excluded volume effects is in hand.

The current work provide the foundation for systematically incorporating fluctuation

effects. Several future developments based on this can be envisioned. First, we have briefly

discussed the possibility that the formation of loops may exhaust all reacting arms and

suppress gelation in the dilute regime (Sec. 5.3). This clearly will affect the competition

between gelation and phase separation, and can be examined after the fluctuation effects on

phase separation is treated. Second, formation of loops delays the gel point. Our explicit

expressions for the variations in bond number density and loop number density can be

combined with the Stockmayer analysis36,42 of heterogeneous reacting species to find out

how the invariant arm length N̄ influences the shift in the gel point. Third, extending our

analysis to the post-gel regime and analyzing the network elasticity will be of great practical

value. In this regime, the saddle point condition has two solutions, one related to the

percolating gel component and another related to the finite clusters (Sec. 3.2). It is possible

to relate the value of the CST field ϕ∗(0) to the exiting probability P (F out
A ) introduced by

Macosko-Miller in their analysis of network polymers.5,6 A useful extension would be to

combine our Gaussian fluctuation theory with the Macosko-Miller framework, to probe the

post gel properties.
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