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The authors assert children reason from initial, core principles: 

Objects continue to exist even when they are no longer in view



My Basic Tenets

• Gradient not discrete

• Connection- not 
Proposition-based

• Learned not built in

• General not specific
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Prediction-error driven learning

Adjust each parameter of the mind to reduce the discrepancy 
between predicted and observed events

• Could this be the engine that drives cognitive development and 
the discovery of new knowledge?

McClelland, J. L. (1989). Parallel distributed processing: Implications for cognition and 
development. In Morris, R. (Ed)., Parallel distributed processing: Implications for psychology and 
neurobiology. (pp. 8-45). New York: Oxford University Press. 

McClelland, J. L. (1994). The interaction of nature and nurture in development: A parallel 
distributed processing perspective. In P. Bertelson et al. (Eds.), International perspectives on 
psychological science, Volume 1: Leading themes. United Kingdom: Erlbaum. 



Aspects of Human Developmental Change: 
A Case Study (McClelland, 1989)

• Stage-like progression:
– Early incomprehension

– Systematic errors

– Gradual progression to approximate intuitive mastery

• Readiness to learn:
– Gradual developmental change creates conditions for fast learning

– Consistent new knowledge can be added to existing knowledge easily

– Inconsistent new knowledge is much harder to learn



Siegler’s Balance Scale Task 
and Rule-Based Analysis

Weights
Equal?

Side with greater
weight goes down
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Equal?

Older children used more

complex ‘Rules’ (III and IV).

We focus on I and II today



Readiness to Learn Experiment

• Rule 1 children are given 3 
types of conflict problems with 
feedback

5 examples of each type

• 5 year olds:
show no change or regress

• 7-8 year olds:
progress on to Rule 2



The Balance Scale Model: 
Setup, training, and testing

• Training set:

– All combinations of 2 W’s and 2 D’s

– W varies more frequently than D

• Test set: 

– Same 24 problems used by Siegler

• Scoring Criterion: 

– 20/24 responses must match a Rule

• Four nets were trained and tested



Results

• After an initial delay, networks 
were consistent with one of 
the rules 85% of the time 
(compared to 90% for 
children)

• One run is shown at right
(gap = not rule consistent)
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Rules, the model and
to human performance

□ Rule

◊ Child
× Model



Readiness to Learn: Simulation

• Weights from Run 3 of the 
model received Siegler’s 15 
item learning experience

– Early in the Rule 1 phase

– Late in the Rule 1 phase

• Early model regresses 
toward guessing

• Late model progresses to 
Rule 2



What’s going on?

• Learning in a multi-layer 
network is prior knowledge 
dependent

• The signals that drive change 
in each layer of weights 
depend on the strengths of 
the connections in all of the 
other layers of weights

• You have to know something 
already to be ready to learn



Rule 1 phase



An extended exploration of these ideas

• Human semantic cognition

– Progressive differentiation

– U-shaped developmental change

– Reorganization of conceptual 
knowledge

– Acquired domain-specific inductive 
biases through domain general 
error-correcting learning



Shortcomings of these models

• Toy vs real problems

• Abstract vs grounded inputs and outputs

• Early-acquired intuitions vs advanced cognitive abilities

• Do not exhibit exploration and discovery

• Do not generalize beyond a specific task space 

• Do not exhibit explicit understanding

• Do not benefit from explicit instruction

• Wherein lie the solutions?





DeepMind provides key aspects of the solution



Real Progress - But Challenges Remain

 Real problems

 Grounded inputs and outputs

 Advanced cognitive abilities

 Exhibit exploration and discovery

• Do not generalize beyond a specific task space 

• Do not exhibit explicit understanding

• Do not benefit from explicit instruction

• Wherein lie the solutions?



My Plan

• Focus on human mathematical cognition
– From number, to arithmetic, algebra, geometry, and beyond

• Apply the principles and resources of DeepMind

• Extend them to address the challenges



Why Mathematical Cognition?



A Human Solves a Geometry Proof Problem

We’re given a right angle.  

This is a right angle,

perpendicular on both sides

BD bisects angle ABC

And we’re done.

We know that this is reflexive

We know we have corresponding triangles; 
we can determine anything from there 
in terms of corresponding parts

And that’s what this is going to mean…

that these are congruent

Koedinger & Anderson, Cognitive Science, 1992



Why mathematical cognition?

• Mathematical discoveries are among the highest achievements of human thought

• Mathematical is often hard to learn, yet mastery leads to powerful capabilities

• Some view math as strictly formal, but grounding, intuition and insight play central roles

– Mathematics can be concretely grounded while still obeying formal rules

– Grounding facilitates understanding and transfer

• Mathematics includes justification and explanation as well as formal procedures

• Stage-like transitions, and readiness to learn, arise at every step

• The main thread of a mathematics curriculum, from counting to geometry to calculus, 
appears tractable to explore, since its core contents and grounding structures are 
circumscribed

• Should complement the existing Theorem Proving and Maths effort at DeepMind



What if we could…

• Create a simulated agent that would learn mathematics 
cumulatively, in a virtual environment, up through the basics of 
calculus, such that the agent could:

– Solve novel problems

– Learn new extensions of its skills quickly through 
demonstration, explanation and discovery

– Explain and justify its solutions



Two Conjectures

1. Solving advanced cognitive abilities will depend on building systems that 
rely on the DeepMind philosophy

– Learned not Hard-coded

– General not Specific

– Grounded not Logic-Based

– Active not Passive

• But that alone is not enough

– When these processes are leveraged though the embodied engagement 
with the tools and the practices of advanced cultural and educational 
institutions, we will be able to address the remaining challenges



DeepMind tools essential to this effort

• Powerful stochastic neural networks with memory and attention

– Gregor et al. (2015). DRAW

• Models that learn to read and write from external memory

– Graves, Wayne et al. (2016). DNC

• Models that learn to communicate with others through 
embodied and situated language

– Hermann, Hill et al. (2017)

• Virtual physical environments in which we can create learning 
opportunities for simulated learners



Two Conjectures

1. Solving advanced cognitive abilities will depend on building systems that 
rely on the DeepMind philosophy

– Learned not Hard-coded

– General not Specific

– Grounded not Logic-Based

– Active not Passive

2. But that alone is not enough

– Advanced cognitive abilities depend on culturally-constructed tools
that leverage human thought



Some technological and conceptual 
tools for thought

• Writing systems and durable media

– Chalk and tablet, pencil and paper

– Electronic documents and editors

• Diagrams and number systems

– Straight edge and compass,

– ruler and protractor

– Place value systems and the abacus

• Inference systems

– Number and arithmetic,
algebra and geometry,
logic and systems of mathematical proof, 
computer programming languages

Human External Memory

External Memory 

We Compute On

Formal Systems that 

Structure Human Thought 



Systematic Thought as an 
Emergent Property

Learning in Advanced Cultures

• Vygotsky:

– We internalize logical thought as we develop, 
through language

• Luria:

– Individuals from non-literate cultures do not 
engage in hypothetical or deductive reasoning

• Scribner & Cole:

– People in such cultures appeal to authority and 
precedent rather than principles or facts



My bottom line: the basis 
of insight and discovery

• Intuition and acquired systematic thinking 
abilities are required for deep understanding and 
discovery

• Powerful computer-based mathematical 
processing systems exist but

– They were programmed by humans

– They lack insight and intuition

• Modeling the human case will give us insight into 
how to build artificial systems that incorporate 
these human-like qualities

Einstein in

Academic Regalia



Understanding the Counting Numbers: 
A Sudden Discovery or a Gradually Emerging 

Cognitive Skill?

• Reciting the count list
– Often learned early, but without apparent meaning

• Answering “how many?” 
– first for sets of 1, then up to 2, then up to 3 or 4 items

• A sudden discovery?
– If a child tends to succeed for 5, they’ll tend to succeed with larger numbers 

(though errors continue to occur)

• However the child may fail many other tasks
– Give-a-number task

– Which is more task

– The ‘remove an object and replace it with another’ task



Understanding the Counting Numbers: 
A Sudden Discovery or a Gradually Emerging 

Cognitive Skill?

• We take [such findings] to suggest that the development of the 
logical underpinnings of number knowledge is advanced by 
[gradual] increases in children’s overall experience with 
numbers.

- Davidson, Eng & Barner, Cognition, 2012



Mengting Fang, Zhenglong Zhou, Sharon Y. Chen, James L. 
McClelland

PDP Lab Stanford University

Can a Recurrent Neural Network Learn to Count Things? 



• Competence: Can a recurrent neural network architecture that can move 

its center of attention across a series of ‘glimpses’ learn to count the 

number of blobs in a display?

• Learning Condition: Can prior and concurrent learning in related tasks

help the network learn to count?

• Development: Does this architecture allow us to capture features of the 

developmental progression of counting performance seen in children? 

Questions



Two skills and their co-ordination

• Recite the count list (blank display)
– Produce the numbers 1-15 in order then

activate the ‘done’ unit

• Touch the blobs (1-15 blobs)
– Start from left, ‘touch’ each blob once then stop

• Touch-and-count the blobs (1-15 blobs)
– Start from left, ‘touch’ each blob once then stop

– Produce the numbers 1-N in order then activate 
the ‘done’ unit





The Differentiable Recurrent Attentional Counting Model

Learning the Count-the-Blobs Task



Two layer attentional window (~Mnih et al, 2014)

• Two sets of 13 x 13 evenly spaced Gaussian filters, one approximating a 

fovea (with higher resolution) and one approximating peripheral vision 

(with lower resolution).

fovea output

peripheral output



Training Regimes

• One task regime

– Train on the combined ‘touch and count the blobs’ task only

• Three task regime

– Interleave training on all three tasks

• Touch first, then three tasks

– Learn to touch til 90% correct for up to 10 items

– Then interleave training on all three tasks



Zipfian training frequency 
distribution

• Corpus and scene analyses show we encounter
small N’s far more often than larger N’s

• We used a Corpus-based frequency distribution (Piantadosi, 2016) in 
the touch the blobs and the count-and-touch the blobs tasks

– Only 10% of trials contain 5 or more blobs

– The network counts 8 blobs only 10 times per 1,000,
higher N’s even less often

𝑓(N)

N

𝑓(N) ∝ ൗ1 𝑁2



Testing

• Focus on the touch-and-count task for numbers from 1-9

• All networks were tested on 500 examples of each N from 
after every 500 training examples



Results

All three networks in each of the three learning conditions achieved perfect

performance, without making any subsequent errors

Count Performance
Perfect 

Iteration
Subsequent 

Errors

1T

Run 1 27,500 0

Run 2 32,000 0

Run 3 50,000 0

3T

Run 1 17,000 0

Run 2 23,000 0

Run 3 17,000 0

TF+3T

Run 1 30,000 0

Run 2 12,500 0

Run 3 30,000 0



Results
• Relation between Learning to Touch and Learning to Count

— Learning to count occurred most quickly in the 

TF+3T condition.

More experience, and earlier ability, in pointing 

helps the network master the ‘count the blobs’ task 

more quickly. 



Work in Progress:
Our latest TF+3T networks count 6 and 7 

as well as they count 5

The average accuracy for each value of N

Training Examples



Next steps

• Integrate with an interactive training and testing environment

• Integrate with RL to allow exploration as well as imitation learning

• Incorporate a wider range of number tasks

– Estimate numerosity
– Give N items
– Determine equivalence
– Explore effects of transformations, variations in count orders
– …

• Integrate language input and output to allow task instructions, question 

• Extend to addition, arithmetic, algebra, geometry …



There will be many challenges 
on the road ahead

• I hope to engage with many of you as we try to address them

Thanks for Listening!



Many Thanks for Listening!



A Distant Goal

• Understand how expert mathematicians acquire the ability to engage 
in abstract mathematical reasoning

• It is remains to be understood how humans acquire the ability to 
think at such a level

– They may have to learn to do it over and over as they master 
more and more advanced domains

– But I think they can at least achieve a readiness to progress to the 
next level quickly

• I look forward to thinking and working on these questions with you.


