
 1 

What Learning Systems do Intelligent Agents Need?  

Complementary Learning Systems Theory Updated 

 

Dharshan Kumaran
1,2

, Demis Hassabis
1,3

, James L. McClelland
4
. 

 

Trends in Cognitive Sciences 20 (2016), pp. 512-534 DOI: 10.1016/j.tics.2016.05.004 
 

1
Google DeepMind, 5 New Street Square, London EC4A 3TW, UK. 

2
Institute of Cognitive Neuroscience, UCL, 17 Queen Square, WC1N 3AR, UK. 

3
Gatsby Computational Neuroscience Unit, 17 Queen Square, London WC1N 3AR, UK. 

4
Department of Psychology and MBC, Stanford University, 450 Serra Mall, CA 94305, USA. 

 

*Correspondence: Dharshan Kumaran dkumaran@google.com, Demis Hassabis 

demishassabis@google.com, James L. McClelland mcclelland@stanford.edu  

 

Abstract 

We update Complementary Learning Systems theory, which holds that intelligent 

agents must possess two learning systems, instantiated in mammalians in neocortex 

and hippocampus. The first gradually acquires structured knowledge representations 

while the second quickly learns specifics of individual experiences. We extend the 

role of replay of hippocampal memories in the theory, noting that replay allows goal-

dependent weighting of experience statistics. We also address recent challenges to the 

theory and extend it by showing that recurrent activation of hippocampal traces can 

support some forms of generalization and that neocortical learning can be rapid for 

information consistent with known structure. Finally, we note the relevance of the 

theory to the design of artificial intelligent agents, highlighting connections between 

neuroscience and machine learning.  

 

NOTE: This is a preprint of this article as cited above. Boxes including Trends Box 

and Glossary are located at the end of this preprint.  Citation numbers and some 

citation details differ from the published version. 

 

Complementary Learning Systems 

Twenty years have passed since the introduction of the complementary learning 

systems (CLS) theory of human learning and memory [1], a theory that, itself, had 

roots in earlier ideas of Marr and others. According to the theory, effective learning 

requires two complementary systems: one, located in the neocortex, serves as the 

basis for the gradual acquisition of structured knowledge about the environment, 

while the other, centered on the hippocampus, allows for rapid learning of the 

specifics of individual items and experiences.  Here we begin with a review of the 

core tenets of this theory. We then provide three kinds of updates.  First, we extend 

the role of replay of memories stored in the hippocampus. This mechanism, initially 

proposed to support the integration of new information into the neocortex, may 

support an increasingly diverse set of functions [2,3], including goal related 
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manipulation of experience statistics so that the neocortex is not a slave to the 

statistics of its environment. Second, we describe recent updates to the theory in 

response to two key empirical challenges: i) evidence suggesting that the 

hippocampus supports certain forms of generalization that go beyond that originally 

envisioned [4–6] and ii) evidence suggesting that when new information is consistent 

with existing knowledge the time required for its integration into the neocortex may 

be much shorter than originally suggested [7,8].  In a final section, we highlight links 

between the core principles of CLS theory and recent themes in machine learning, 

including neural network architectures that incorporate memory modules that have 

parallels with the hippocampus.  While there remain several issues not yet fully 

addressed (see Outstanding Questions Box), the extensions, responses to challenges, 

and integration with machine learning bring the theory into agreement with many 

important recent developments and provide a take-off point for future investigation. 

 

Summary of the theory 

 

CLS theory [1] provided a framework within which to characterize the organization 

of learning in the brain (Figure 1, Key Figure):  drawing on earlier ideas by David 

Marr [9], it offered a synthesis of the computational functions and characteristics of 

the hippocampus and neocortex that not only accounted for a wealth of empirical data  

(see Box 1 at end of ms.)  but resonated with rational perspectives on the challenges 

faced by intelligent agents. 

 

Structured knowledge representation system in neocortex. A central tenet of the 

theory is that the neocortex houses a structured knowledge representation, stored in 

the connections among the neurons in the neocortex.  This tenet arose from the 

observation that multi-layered neural networks (Figure 2) gradually learn to extract 

structure when trained by adjusting connection weights to minimize error in the 

network’s outputs [10]. Early examples were provided by networks that learned to 

read words aloud [11–13] from repeated exposure to the spellings and corresponding 

sounds of English words. These networks supported the gradual acquisition of a 

structured knowledge representation in the connection weights among the units in the 

network, shaped by the statistics of the environment in a fashion that was efficient and 

generalized to novel examples [1,14,15], while also supporting performance on 

atypical items occurring frequently in the domain.  Such a representation can be 

described as parametric rather than item-based (or non-parametric, see Glossary at 

end of ms.) in that the connection weights can be viewed as a set of parameters 

optimized for the entire domain (e.g. the spellings and sounds of  the full set of words 

in the language) rather than supporting memory for the items per se.  According to the 

theory, such networks underlie acquired cognitive abilities of all types in domains as 

diverse as perception, language, semantic knowledge representation, and skilled 

action.  This idea can be seen as an extension of Marr’s original proposal [9], which 

held that cortical neurons each learned the statistics associated with a particular 

category. 
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The CLS theory proposed that learning in such a parametric system will necessarily 

be slow, for two main reasons: First, each experience represents a single sample from 

the environment. Given this, a small learning rate allows a more accurate estimate of 

the underlying population statistics by effectively aggregating information over a 

larger number of samples [1]. Second, the optimal adjustment of each connection 

depends on the values of all of the other connections. Before the ensemble of 

connections has been structured by experience, the signals specifying how to change 

Figure 1: Complementary learning systems and their interactions.  Lateral view of 

one hemisphere of the brain, where dotted lines indicate regions deep inside the brain or 

on the medial surface. Primary sensory and motor cortices shown in darker yellow. Medial 

temporal lobe (MTL) surrounded by dotted lines, with hippocampus in dark grey and 

surrounding MTL cortices in light grey (size and location are approximate). Green arrows 

represent bidirectional connections within and between integrative neocortical association 

areas and between these areas and modality specific areas (the integrative areas and their 

connections are more dispersed than the figure suggests). Blue arrows denote bidirectional 

connections between neocortical hubs and the medial temporal lobe. Both blue and green 

connections are part of the structure-sensitive neocortical learning system in the CLS 

theory. Red arrows within the MTL denote connections within the hippocampus, and 

lighter red arrows indicate connections between the hippocampus and surrounding MTL 

cortices: these connections exhibit rapid synaptic plasticity (red greater than light red 

arrows) critical for the rapid binding of the elements of an event into an integrated 

hippocampal representation. Systems-level consolidation involves hippocampal activity 

during replay spreading to neocortical association areas via pathways indicated with blue 

arrows, thereby allowing gradual learning within intra-neocortical connections (green 

arrows). Systems-level consolidation is considered complete when memory retrieval – 

reactivation of the relevant set of neocortical representations – can occur without the 

hippocampus.  
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connection weights to optimize the representation will be both noisy and weak, 

slowing initial learning. This issue has proven to be particularly important in deep 

(i.e., many-layered) neural network architectures that have enjoyed recent successes 

in machine learning [16] and in modelling the neural computations of the supporting 

visual processing of objects in primates [17,18].  Here the considerable advantages of 

depth in allowing the learning of increasingly complex and abstract mappings [16] are 

balanced by the strong interdependencies among connection weights in deep networks 

(Saxe et al., arXiv, 2013)[19] such that the weights are learned gradually through 

extensive, repeated, interleaved exposure to an ensemble of training examples that 

embody the domain statistics.  

 

Although there are real advantages of a system using structured parametric 

representations, on its own such a system would suffer from two drastic limitations 

[1]. Firstly, it is important to be able to base behavior on the content of an individual 

experience. For example, after experiencing a life-threatening situation – say a brush 

with a lion at a watering-hole – it would clearly be beneficial to learn to avoid that 

particular location without the need for further encounters with the lion. The second 

problem is that the rapid adjustment of connection weights in a multilayer network to 

accommodate new information can severely disrupt the representation of existing 

knowledge in it – a phenomenon termed catastrophic interference [1,20–22] and 

related to the stability-plasticity dilemma [23].  If the new information about the 

dangerous lion is forced into a multi-layer network by making large connection 

weight adjustments just to accommodate this item, this can interfere with knowledge 

of other, less threatening animals one may already be familiar with.  

 

Instance-based representation in the hippocampal system. Fortunately, a second, 

complementary learning system can address both problems, affording the rapid and 

relatively individuated storage of information about individual items or experiences 

(such as the encounter with the lion).  Following Marr’s and subsequent proposals 

[24–26], the CLS theory proposed that the hippocampus and related structures in the 

Medial Temporal Lobe (MTL) support the initial storage of item-specific information, 

including the features of the watering hole as well as those of the lion (Figure 1). This 

proposal has been captured in models of the role of the hippocampus in recognition 

memory for specific items and in sensitivity to context and co-occurrence of items 

within the same event or experience [27–35]. 

 

In CLS theory, the dentate gyrus (DG) and CA3 subregions of the hippocampus are 

the heart of the fast learning system (Boxes 2-4). The DG is critical in selecting a 

distinct neural activity pattern in CA3 for each experience, even when different 

experiences are quite similar ([24–26,36,37]), a process known as pattern separation. 

Increases in the strengths of connections onto and among the participating neurons in 

DG and CA3 stabilize the activity pattern for an experience and support reactivation 

of the pattern from a partial cue: because of the strengthened connections, re-

activation of part of the pattern that was activated during storage (features of the 
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watering hole in which the lion was encountered) can then reactivate the rest of the 

pattern (i.e. the encounter with the lion), a process called pattern completion. Return 

connections from hippocampus to neocortex then support adaptive behavior (e.g. 

avoidance of that location). 

 

Note, however, that a hippocampal system acting alone would also be insufficient due 

to capacity limitations [25] and its limited ability to generalize. Related to the latter 

                       
Figure 2. A neocortex-like artificial neural network. In the CLS, neocortical processing 

is seen as occurring through the propagation of activation among neurons via weighted 

connections, as simulated using artificial networks of neuron-like units (small circles).  

Each unit has an input line and an output line (with arrowhead). There is a separate real-

valued weight where each output line crosses an input line. The weights are the knowledge 

that governs processing in the network.  During processing (inset), each unit computes a 

net input (n) from the activations of its inputs and the weights, producing an activation (a) 

that is a non-linear function of n (one such function shown).  The units in a layer may 

project back onto their own inputs (illustrated for layer 3), simulating recurrent intra-

cortical computations and higher layers may project back to lower layers (see Figure 1). In 

the situation shown, the input (lower left) is a pattern in which units are either active (a = 

1, black) or inactive (a = 0, white), and example possible resulting activations of units in 

other layers are shown (darker for greater activation). Learning occurs through adjusting 

the weights to reduce the difference between the networks’ output and a target output 

(upper right) [10,16].  In the case shown, the output activations are similar to the target, 

but there is some error to drive learning. There are no targets for internal or hidden layers 

(i.e. layers 2 & 3).  These patterns depend on the connection weights, which in turn are 

shaped by the error-driven learning process. 
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point, the use of pattern-separated hippocampal codes for related experiences – in 

contrast to the relatively dense similarity-based coding scheme thought to operate in 

the parametric neocortical system (Box 4)[17,38–45] – may be adaptive for some 

purposes but comes with a cost: it disregards shared structure between experiences, 

thereby limiting both efficiency and generalization.  

 

The theory is supported by findings that neocortical activity patterns generally show 

less sparsity (see Glossary) and exhibit greater similarity-based overlap compared to 

the hippocampus [17,39,40,42–46] (Boxes 4-5). It should be noted, however, that the 

degree of sparsity and similarity-based overlap varies across sub-regions of the 

hippocampus and neocortex (Boxes 4-5). While some of the relevant findings have 

been seen as supporting other theories [47], such differences are fully consistent with 

CLS and  have long been exploited in CLS-based accounts of the roles of specific 

hippocampal sub-regions (Boxes 2-4).  Similarly, learning rates vary across 

hippocampal areas in the theory (Box 2), and likewise, there may be variation in 

learning rates across neocortical areas (see Box 5). 

 

Joint contribution to task performance. In the CLS theory, the hippocampal and 

neocortical systems contribute jointly to performance in many tasks and many 

different types of memories. This point applies to tasks that are often thought of as 

tapping “episodic memory” (memory for the elements of one specific experience), 

“semantic memory” (knowledge of facts e.g., about the properties of objects) or 

“implicit memory” (performance enhancement as a consequence of prior experience 

that is not dependent on explicit recollection of the prior experience).  In the CLS 

theory, tasks and types of memory are seen as falling on a continuum, with varying 

degrees of dependence on the two learning systems depending on task, item, and other 

variables.  For example, consider the task of learning a list of paired associates (see 

Glossary).  The list may contain a mixture of pairs with strong, weak, or no 

discernable prior association (e.g. dog-cat, heavy-suitcase, city-tiger).  Recall of the 

second word of a pair when cued with the first is worse in hippocampal patients than 

controls but both groups show better performance on items with stronger prior 

association [48].  The findings have been captured in a model [49] (Kwok, PhD 

Thesis, Carnegie-Mellon University, 2003) in which hippocampal and neocortical 

networks jointly contribute to retrieval. Background associative knowledge is 

mediated by the cortex and the hippocampus mediates acquisition of associations 

linking each item pair to the learning context. 

 

Replay of hippocampal memories and interleaved learning  

We now consider two important aspects of the CLS theory that are central foci of this 

review: the replay of hippocampal memories and interleaved learning.  According to 

the theory, the hippocampal representation formed in learning an event affords a way 

of allowing gradual integration of knowledge of the event into neocortical knowledge 

structures. This can occur if the hippocampal representation can reactivate or replay 

the contents of the new experience back to the neocortex, interleaved with replay 
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and/or ongoing exposure to other experiences [1]. In this way the new experience 

becomes part of the database of experiences that govern the values of the connections 

in the neocortical learning system [50–52]. Which other memories are selected for 

interleaving with the new experience remains an open question.  Most simply, the 

hippocampus might replay recent novel experiences interleaved with all other recent 

experiences still stored in the hippocampus. A variant of this scheme would be for 

new experiences to be interleaved with related experiences activated by the new 

experience, through the dynamics of a recurrent mechanism (as in the REMERGE 

model [5], described below). An alternative possibility would be that interleaved 

learning does not actually involve the faithful replay of previous experiences: instead, 

hippocampal replay of recent experiences might be interleaves with activation of 

cortical activity patterns consistent with the structured knowledge implicit in the 

neocortical network (e.g. [22,53–55]). 

 

Thus, the dual-system architecture proposed by CLS theory effectively harnesses the 

complementary properties of each of the two component systems, allowing new 

information to be rapidly stored in the hippocampus and then slowly integrated into 

neocortical representations. This process, sometimes labeled systems level 

consolidation [50], arises, within the theory, from gradual cortical learning driven by 

replay of the new information, interleaved with other activity to minimize disruption 

of existing knowledge during the integration of the new information. 

 

Empirical evidence of replay. Because of its centrality in the theory, we highlight key 

empirical evidence that replay events really do occur. The data comes primarily from 

rodents, recorded during periods of inactivity (including sleep), in which hippocampal 

neurons exhibit large irregular activity (LIA) patterns that are distinct from the 

activity patterns observed during active states [2,3]. During LIA states, synchronous 

discharges thought to be initiated in hippocampal area CA3 produce sharp-wave 

ripples (SWRs), which are propagated to neocortex. SWRs reflect the reactivation of 

recent experiences, expressed as the sequential firing of so-called place cells, cells 

that fire when the animal is at a specific location [2,3,56–58]. These replay events 

appear to be time compressed by a factor of about 20, bringing neuronal spikes that 

were well-separated in time during an actual experience into a time-window that 

enhances synaptic plasticity both within the hippocampus and between hippocampus 

and neocortex and allows a single event to be replayed many times during a single 

sleep period [1–3,57,59,60]. Consistent with the proposal that replay events are 

propagated to neocortex [1–3,59,60], SWRs within hippocampus are synchronized 

with fluctuations in neocortical activity states [61,62]. Further, hippocampal replay of 

specific place sequences has been shown to correlate with  replay of patterns on grid 

cells located in the deep layers of the entorhinal cortex that receive the output of the 

hippocampal circuit[63], as well as more distant neocortical regions [64].  

Furthermore, a recent study observed coordinated reactivation of hippocampal and 

ventral striatal neurons during slow wave sleep (SWS), with location-specific 

hippocampal replay preceding activity in reward-sensitive striatal neurons [65]. A 
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causal role for replay is supported by studies showing that the disruption of ripples in 

the hippocampus produces a significant impairment in systems level consolidation in 

rats [66–68]. 

 

Additional roles of replay. Recent work has highlighted additional roles for replay – 

both during LIA but also during theta states [3,69,70] – well beyond its initially 

proposed role in systems-level consolidation. Specifically, recent evidence suggests 

that hippocampal replay can: i) be non-local in nature, initiated by place cell activity 

coding for locations distant from the current position of the animal [3]; ii) reflect 

novel shortcut paths by stitching together components of trajectories [71,72]; iii) 

support look-ahead online planning during goal-directed behavior [69,73]; iv) reflect 

trajectories through parts of environments that have only been seen but never visited 

[74]; and v) be biased to reflect trajectories through rewarded locations in the 

environment [75]. Together, this evidence points to a pervasive role for hippocampal 

replay in the creation, updating and deployment of representations of the environment 

[3]. Notably, these putative functions accord well with perspectives that emphasize 

the role of the human hippocampus in prospection [76], imagination [77,78], and the 

potential utility of episodic control of behavior over control based on learned 

summary statistics in some circumstances (e.g. given relatively little experience in an 

environment) [79].  

 

Proposed role for hippocampus in circumventing the statistics of the environment. As 

we have seen, hippocampal activity during LIA does not necessarily reflect a faithful 

replay of recent experiences. Rather, mounting evidence suggests that replay may be 

biased towards rewarding events [58,75]. Building on this, we consider the broader 

hypothesis that the hippocampus may allow the general statistics of the environment 

to be circumvented by the reweighting of experiences, so that statistically unusual but 

significant events may be afforded privileged status, leading not only to preferential 

storage and/or stabilization (as originally envisioned in the theory) but also leading to 

preferential replay that then shapes neocortical learning. We see this hippocampal 

reweighting process as being particularly important in enriching the memories of both 

biological and artificial agents, given memory capacity and other constraints as well 

as incomplete exploration of environments.  These ideas link our perspective to 

rational accounts that view memory systems as optimized to an organisms’ goals 

rather than simply mirroring the structure of the environment [80]. 

 

A wide range of factors may affect the significance of individual experiences [81,82]: 

for example, they may be surprising or novel; high in reward value (either positive or 

negative) or in their informational content (e.g. in reducing uncertainty about the best 

action to take in a given state). The hippocampus – in receipt of highly processed 

multimodal sensory information [83] as well as neuromodulatory signals triggered by 

such factors [82,84] – is well positioned to reweight individual experiences 

accordingly.  Indeed, recent work suggests specific molecular mechanisms that 

support the stabilization of memories and specific neuromodulatory projections to the 
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hippocampus [82,85–87] by which the persistence of individual experiences in the 

hippocampus may be modulated by events that occur both before and afterwards – 

providing mechanisms by which episodes may be retrospectively reweighted if their 

significance is enhanced by subsequent events [82,88], thereby influencing the 

probability of replay. 

 

The importance of the reweighting capability of the hippocampus is illustrated by the 

following example. Over a multitude of experiences, consider a child gradually 

acquiring conceptual knowledge about the world, which includes the fact that dogs 

are typically friendly. Imagine that one day the child experiences an encounter with a 

frightening, aggressive dog – an event that would be surprising, novel, and charged 

with emotion. Ideally, this significant experience would not only be rapidly stored 

within the hippocampus, but would also lead to appropriate updating of relevant 

knowledge structures in the neocortex. While CLS theory initially emphasized the 

role of the hippocampus in the first stage (i.e. initial storage of such one-shot 

experiences), here we highlight an additional role for the hippocampus in “marking” 

salient but statistically infrequent experiences, thereby ensuring that such events are 

not swamped by the wealth of typical experiences – but rather are preferentially 

stabilized and replayed to the neocortex allowing knowledge structures to incorporate 

this new information. Although this reweighting would generally be adaptive, it could 

on occasion have maladaptive consequences. For example, in post-traumatic stress 

disorder, a unique aversive experience may be transformed into a persistent and 

dominant representation through a runaway process of repeated reactivation. 

 

Challenges arising from recent empirical findings 

In this section, we discuss two significant challenges to the central tenets of CLS 

theory. Both challenges have recently been addressed through computational 

modeling work that extends and clarifies the principles of the theory. 

 

The hippocampus, inference and generalization 

Cross-item inferences.  The first challenge concerns the role of the hippocampus in 

generalizing from specific experiences to novel situations. As noted above, CLS 

theory emphasized the critical role of the hippocampus as a fast learning system 

relying on sparse activity patterns that minimize overlap even in the representation of 

very similar experiences. This representation scheme was thought to support memory 

of specifics, leaving generalization to the complementary neocortical system. 

Evidence presenting a substantial challenge to this account, however, has come from 

paradigms where individuals have been shown to rapidly utilize features that create 

links among a set of related experiences as a basis for a form of inference within or 

shortly after a single experimental session [89,4,5,90–94].  

 

The paired associate inference (PAI) task [90,95–97] provides as an example of a task 

that involves the hippocampus and captures the essence of requiring cross-item 

inferences required in other relevant tasks (such as the transitive inference task 
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reviewed in [4]). In the study phase of the PAI task, subjects view pairs of objects 

(e.g. AB, BC) that are derived from triplets (i.e. A-B-C) or larger object sets (e.g. 

sextets: A, B, C, D, E, F – Box 6). In the critical test trials, subjects are tested on their 

ability to appreciate the indirect relationships between items that were never presented 

together (e.g. A and F in the sextet version). Evidence for a role of the hippocampus 

in supporting inference in such settings [90,91,95–97] naturally raises the question of 

the neural mechanisms underlying this function, and has been seen as challenging the 

view that the hippocampus only stores separate representations of specific items or 

experiences.  Indeed, the findings have been taken as supporting “encoding-based 

overlap” models [4,94,98,99], in which it is proposed that the hippocampus supports 

inference by using representations that integrate or combine overlapping pairs of 

items (for example, AB and BC in the triplet version of the PAI task).  

 

While the PAI findings weigh against the view that the hippocampus only plays a role 

in the behaviors based on the contents of a single previous episode, these findings can 

could arise from reliance on separate representations of the relevant AB, AC item 

pairs.  Indeed, the CLS-grounded REMERGE model [5] proposes that representations 

combining elements of items never experienced together may arise from simultaneous 

activation of two or more memory traces within the hippocampal system, driven by an 

interactive activation process occurring within a recurrent circuit, whereby the output 

of the system can be recirculated back into it as a subsequent input (see Box 6). This 

proposal is consistent with anatomical and physiological evidence [100] (Box 2).  

 

REMERGE, therefore, can be considered to capture the insights of the relational 

theory of memory [28,101] by allowing the linkage of related episodes within a 

dynamic memory space, while preserving the assumption that the hippocampal 

system relies primarily on pattern-separated representations seen as essential for 

episodic memory [1,9,24–26,29,30,102,103]. Further, the recurrency within the 

hippocampal system makes the prediction that hippocampal activity may sometimes 

combine information from several separate episodes – a notion that receives empirical 

support from neuronal recordings in rodents [71,72]. This generalized replay – 

simultaneous reactivation of multiple related traces during testing or offline periods – 

may facilitate the creation of new representations from the recombination of multiple 

related episodes (“stored generalizations”) [5] and the discovery of novel 

relationships (e.g. shortcuts) [71,72]. Empirical evidence also supports a role for the 

hippocampus in category- and so-called ‘statistical’ learning [104–106]: the 

mechanisms in REMERGE and other related models that rely on separate memory 

traces for individual items allow weak hippocampal traces that support only relatively 

poor item recognition to mediate near-normal generalization [5,107]  . 

 

While encoding-based overlap and retrieval-based models make divergent 

experimental predictions, empirical evidence to date does not definitely distinguish 

between them (see for discussion [4,5,97]). Indeed, it is conceivable that both 

mechanisms operate under different circumstances – perhaps as a function of the 
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experimental paradigm under consideration, amount of training, and delay between 

training and testing (e.g. [108]) It is also worth noting that in reality the difference 

between encoding-based and retrieval-based models is not absolute: as alluded to 

above, generalized replay may facilitate the formation of new representations that 

directly capture distant relationships between items (e.g. the linear hierarchy in the 

transitive inference paradigm: [89,5,109]).  Such representations then become the 

contents of episodic memory, subject to storage in the hippocampus.  

 

The distinction between encoding- and retrieval-based models can be related more 

broadly to the finding of “concept” cells: hippocampal neurons which come to 

respond to common features across many events, for example cells for specific odors 

[110]; time points within an episode [111]; attributes of a task [112], and even cells 

that fire to any picture or even the name of a famous person [113]. In Box 7, we 

review empirical findings concerning concept cells and pattern overlap sometimes 

observed in parts of hippocampus and consider how well these findings fit within the 

perspective that the hippocampus supports pattern separation.  

 

Rapid schema-dependent consolidation 

It is useful to distinguish systems-level consolidation from what we refer to as within-

system consolidation. The former refers to the gradual integration of knowledge into 

neocortical circuits, while the latter denotes stabilization of recently formed memories 

within the hippocampus, perhaps through stabilize synapses among hippocampal 

neurons [88]. In the initial formulation of CLS, systems-level consolidation was 

viewed as temporally extended (e.g. spanning years or even decades in humans 

[33,50–52]). Although it was noted in [1] that the timeframe could be highly variable 

(depending, perhaps, on the rate of replay of memory traces in the hippocampus), 

recent evidence suggests that this timeframe can be much shorter than anticipated 

(e.g. as little as a few hours to a couple of days) [7,8]. We focus on empirical data 

from the influential “event arena” paradigm which demonstrated striking evidence of 

this phenomenon [7,8].  

 

In the studies using this paradigm [7], rats were trained to forage for food in an event 

arena whose location was indicated by the identity of a flavor (e.g. banana) presented 

to the animal as a cue in a start box (Box 8). Learning of six such flavor-place paired 

associations (PAs) required multiple sessions distributed over several weeks, and was 

found to be hippocampus-dependent. Interestingly, although the learning of the 

original 6 PAs proceeded at a slow rate, rats were then able to learn two new PAs 

within the now familiar event arena based on a single exposure to each. Importantly, 

this one-shot learning was dependent on the presence of prior knowledge, often 

termed a “schema”: no such rapid learning was observed when rats that had been 

trained within one event arena were exposed to new PAs within a novel arena. 

Further, while lesioning the hippocampus just prior to exposure to new PAs severely 

impaired learning, memory for the new PAs remained robust when the hippocampus 

was surgically removed 2 days later. A follow-up study [8] provided insights into the 
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neural basis of this phenomenon:  the expression of genes associated with synaptic 

plasticity was significantly greater in neocortex very shortly (80 minutes) after rats 

experienced new PAs in the familiar arena compared to new PAs in the unfamiliar 

arena. Taken together, these results support the view that rapid systems-level 

consolidation, mediated by extensive, synaptic changes in the neocortex within a short 

time after initial learning, is possible if the novel information is consistent with 

previously acquired knowledge.     

 

At face value, the findings from the event arena paradigm [7,8] present a substantial 

challenge to a core tenet of CLS theory as originally stated: newly acquired 

memories, the theory proposed, should remain hippocampus-dependent for an 

extended time to allow for gradual interleaved learning so that integration into the 

neocortex can occur while avoiding the catastrophic forgetting of previously acquired 

knowledge. It is worth noting, however, that the simulations presented in the original 

CLS paper to illustrate the problem of catastrophic interference involved the learning 

of new information that is inconsistent with prior knowledge. As such, the 

relationship between the degree to which new information is schema-consistent and 

the timeframe of systems-level consolidation was not actually explored.  

 

Recent work within the CLS framework [114] addressed this issue using simulations 

designed to parallel the key features of the event arena experiments [7,8] using the 

same neural network architecture and content domain that had been used in the 

original CLS paper as an illustration of the principles of learning in the neocortex.  

Briefly, the network was first trained to gradually acquire a schema (structured body 

of knowledge) about the properties of a set of individual animals (e.g. canary is a bird, 

can fly; salmon is a fish, can swim), paralleling the initial learning phase over several 

weeks in the event area paradigm (see [114] for details). Next the ability of this 

trained network to acquire new information was examined. The network was trained 

on a new item X, whose features were either consistent or inconsistent with prior 

knowledge (e.g. X is a bird and X can fly, consistent with known birds, or X is a bird 

but can swim, not fly, inconsistent with the items known to the network), thus 

mirroring the learning of new PAs under schema-consistent and schema-inconsistent 

conditions in the Tse et al. experiments. Notably, the network exhibited rapid learning 

of schema-consistent information without disrupting existing knowledge, while 

schema-inconsistent information was acquired much more slowly and necessitated 

interleaved training with the already-known examples (e.g. canary) to avoid 

catastrophic interference. Interestingly, there was also a clear relationship between the 

profile of weight changes occurring in the network and the consistency of the 

information being learnt. Specifically, even though the same small value of the 

learning rate parameter was used in both simulations, large amplitude weight changes 

occurred during the learning of schema-consistent, but not schema-inconsistent, 

information – emulating the schema-dependent pattern of neocortical plasticity-

related gene expression reported in [8].   A theoretical analysis of multilayer neural 

networks makes clear why the model exhibits these effects (Saxe et al., arXiv, 2013): 
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The analysis shows that the rate of learning within a multilayered neural network of 

the kind CLS attributes to the neocortex (Saxe et al., arXiv, 2013) will always depend 

on the state of knowledge within the network and on the compatibility of new inputs 

with the structured system this knowledge represents. 

 

The analysis just described thus addresses the challenge to CLS theory posed by the 

findings from the event arena paradigm [7,8] (Box 8 discusses other issues related to 

rapid systems-level consolidation).  Taken together, this empirical and theoretical 

research highlights the need for two amendments to the theory as originally stated 

[114]. Firstly, consider the core tenet of the theory that the incorporation of novel 

information into neocortical networks must be slow to avoid catastrophic interference: 

We now know that this statement only applies when new information is inconsistent 

with existing knowledge in the neocortex. The second important amendment relates to 

the original dichotomy between the slow learning neocortical system and a fast 

learning system instantiated in the hippocampus. The empirical data, simulations, and 

theoretical work summarized above demonstrate that the neocortex does not 

necessarily learn slowly. More accurately, we now characterize the rate of learning in 

the neocortex as being prior-knowledge dependent, rather than being slow per se.  

Because input to the hippocampus depends on the structured knowledge in the cortex, 

it follows that hippocampal learning will also be prior knowledge dependent [115].  

Future research should explore this issue. 

 

Links between CLS Theory and Machine Learning Research 

The core principles of CLS theory have broad relevance not only in understanding the 

organization of memory in biological systems, but also in designing agents with 

artificial intelligence. Here we discuss connections between aspects of CLS theory 

and recent themes in machine learning research.  

 

Deep Neural Networks & Slow Learning Neocortical System  

Very deep networks [16], sometimes with more than 10 layers, grew out of earlier 

computational work [15,16,116] on networks with only a few layers, which were used 

to model the essential principles of the slow learning neocortical system within the 

CLS framework. In general, therefore, deep networks share the characteristics of the 

slow learning neocortical system discussed previously: since their goal is to achieve 

an optimal parametric characterization of the statistics of the environment, they learn 

gradually through repeated, interleaved exposure to large numbers of training 

examples.  

 

In recent years, deep networks have achieved state-of-the-art performance in several 

domains, including image recognition and speech recognition [16], made possible 

through increased computing power and algorithmic development. Their power 

resides in their ability to learn successively more abstract representations from raw 

sensory data (e.g. the image of an object) – for example oriented edges, edge 

combinations and object parts – through composing multiple processing layers that 
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perform non-linear transformations. One class of deep networks, termed 

convolutional neural networks (CNNs), have been particularly successful in achieving 

state-of-the-art performance in challenging object recognition tasks (e.g. ImageNet: 

[117]). CNNs are particularly suited to the task of object recognition since their 

architecture naturally builds in robustness to changes in position through the use of a 

hierarchy of convolutional filters where units within a feature map at each layer share 

the same weights allowing them to detect the same feature at different locations. 

Interestingly, CNNs have recently also been shown to provide a good model of object 

recognition in primates at both behavioral and neural levels (e.g. V4, inferotemporal 

cortex) [17,18,39].  

 

Neural Networks and Replay 

For the purposes of machine learning, deep networks are often trained in interleaved 

fashion since the examples from the entire dataset are available throughout. This is 

not generally the case, however, in a developmental or on-line learning context, when 

intelligent agents need to learn and make decisions while gathering experiences 

and/or where the data distribution is changing perhaps as the agent’s abilities change. 

Here, recent machine learning research has drawn inspiration from CLS theory about 

the role of hippocampal replay. Implementation of an “experience replay” mechanism 

was critical to developing the first neural network (Deep Q-Network or DQN) capable 

of achieving human-level performance across a wide variety of Atari 2600 games by 

successfully harnessing the power of deep neural networks and reinforcement 

learning (RL)[118] (see Box 9). 

 

Continual Learning and the Hippocampus  

Continual learning – the name machine learning researchers use for the ability to learn 

successive tasks in sequential fashion (e.g. tasks A, B, C) without catastrophic 

forgetting of earlier tasks (e.g. task A) – remains a fundamental challenge in machine 

learning research, and addressing it can be considered a prerequisite to developing 

artificial agents we would consider truly intelligent. A principal motivation for 

incorporating a fast learning hippocampal system as a complement to the slow 

neocortical system in CLS theory was to support continual learning in the neocortex: 

hippocampal replay was proposed to mediate interleaved training of the neocortex 

(i.e. intermixed examples from tasks A, B, C) despite the sequential nature of the real 

world experiences. Here, we draw attention to a second relatively under-explored 

reason why the hippocampus may facilitate continual learning, particularly over 

relatively short timescales (i.e. before systems-level consolidation).  

 

As discussed previously, the hippocampus is thought to represent experiences in 

pattern-separated fashion, whereby in the idealized case even highly similar events 

are allocated neuronal codes that are non-overlapping or orthogonal (e.g.[25]). 

Notably, the advantages of this coding scheme for episodic memory – reduction of 

interference between similar but distinct events – may also have significant benefits 

for continual learning. Specifically, this mechanism allows the rapid creation of 
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distinct non-interfering representations for multiple tasks to which an agent has been 

exposed in sequential fashion. The utility of this function, and the ubiquity of 

continual learning, is well established in the domain of spatial navigation, where the 

notion of a task can be related to that of an environmental context: rodents are able to 

learn and sustain robust representations of many different environments (e.g. >10 

environments in [119]), with each environment represented by a pattern-separated 

representational space (putatively implemented as a continuous attractor, called a 

“chart” [120]) within the CA3 subregion of the hippocampus within which specific 

locations are further individuated [121–123].  

 

Neural Networks with External Memory and the Hippocampus 

Recent work has suggested that deep networks may be considerably augmented by the 

addition of an external memory.  For example, an external memory is used in the 

Neural Turing Machine (NTM) (Graves et al., Neural Turing Machines, arXiv, 2014),  

and this memory has content-addressable properties akin to those of the attractor 

networks used to model pattern completion in the hippocampus (see Box 10).  Such 

an external memory has been shown to support functionalities such as the learning of 

new algorithms (e.g. performing paired associative recall: see Box 10 (Graves et al., 

Neural Turing Machines, arXiv, 2014)) and question & answering (Q & A [124], 

Weston et al., arXiv, 2014) – a class of machine learning paradigms where textual 

outputs are required based on queries (e.g. Q: where is Bill?; A: the bathroom) 

requiring inference over a knowledge database (e.g. a set of sentences). 

 

It is also worth noting that the neuropsychological testing of story recall can be 

considered a small scale version of the Q & A task used in machine learning (e.g. 

[124]). When the amount of story content to be retained exceeds a few sentences, this 

task is critically dependent on the memory storage properties of the hippocampus. 

Indeed, the specific working of the REMERGE model of the hippocampus  –  

recurrent similarity computation (see Glossary), such that the output of the episodic 

system is recirculated as a new input –  has parallels in a recent machine learning 

algorithm developed for the purpose of Q & A, termed a “memory network” (Weston 

et al., arXiv, 2014). Specifically, a learned, dense feature-vector representation of an 

input query (e.g. “where is the milk?”) is used to retrieve the sentence with the most 

similar feature vector in the database (e.g. “Joe left the milk”): a combined feature 

representation of initial query and retrieved sentence is then used to identify similar 

sentences earlier in the story (“Joe travelled to the office”); this process iterates until a 

response is emitted by the network (“the office”). The joint dependence of this system 

on input/output feature representations that are developed gradually through training 

with a large corpus of text and individual stored sentences nicely parallels the 

complementary roles of neocortical and hippocampal representations in CLS theory 

and REMERGE.   
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Concluding Remarks 

We have argued that the core features of the memory architecture proposed by CLS 

theory continue to provide a useful framework for understanding the organization of 

learning systems in the brain. We have, however, refined and extended the theory in 

several ways. First, we now encompass a broader and more significant role for the 

hippocampus in generalization than previously thought. Second, we have amended 

the statement that neocortical learning is constrained to be slow per se – rather, we 

now clarify that the rate of neocortical learning is prior-knowledge dependent and can 

be relatively fast under certain conditions. Together, these revisions to the theory 

imply a softening of the originally strict dichotomy between characteristics of 

neocortical (slow learning, parametric and so generalizing) and hippocampal (fast 

learning, item-based) systems. In addition, we have extended the proposed functions 

for the fast learning hippocampal system, suggesting this system can circumvent the 

general statistics of the environment by reweighting experiences that are of 

significance. Finally, we have highlighted the broad applicability of the principles of 

CLS theory to developing agents with artificial intelligence, an area which we hope 

will continue to rise in interest and become a significant direction for future research 

(see Outstanding Questions Box). 
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Box: Outstanding Questions  

 

● Under what conditions does the proposed hippocampal reweighting of 

experiences result in a biased neocortical model of environmental structure? 

● Are hippocampal representations updated to incorporate changes in 

neocortical representations (the “index maintenance” problem), and if so how?  

● What is the fate of hippocampal memory traces after systems-level 

consolidation is complete?  

● What are the precise conditions under which rapid systems-level consolidation 

can occur? 

● Are hippocampal memory traces susceptible to reconsolidation in a way that 

mirrors amygdala-dependent memories (e.g. in fear conditioning paradigms)? 

● What neocortical mechanisms complement hippocampal replay in facilitating 

continual learning? 

● What algorithmic functionalities and implementational schemes are desirable 

for an external memory module both for human learners and for artificial 

agents? 
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Trends Box 

 

Discovery of structure in ensembles of experiences depends on an interleaved 

learning process both in biological neural networks in neocortex and in contemporary 

artificial neural networks. 

  

Recent work shows that once structured knowledge has been acquired in such 

networks, new consistent information can be integrated rapidly. 

  

Both natural and artificial learning systems benefit from a second system that stores 

specific experiences, centred on the hippocampus in mammalians.  

 

Replay of experiences from this system supports interleaved learning and can be 

modulated by reward or novelty, which acts to rebalance the general statistics of the 

environment towards the goals of the agent.    

 

Recurrent activation of multiple memories within an instance-based system can be 

used to discover links between experiences, supporting generalization and memory-

based reasoning. 
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BOX 1. Empirical evidence supporting core principles of CLS Theory 

 

The role of the hippocampus in memory: Bilateral damage to the hippocampus 

profoundly affects memory for new information, leaving language, reading, general 

knowledge, and acquired cognitive skills intact [28,33], consistent with the idea that 

many types of new learning are initially hippocampus-dependent. Memory for recent 

pre-morbid information is profoundly affected by hippocampal damage, with older 

memories less dependent on the hippocampus and therefore less sensitive to 

hippocampal lesions [1,33,50,125], supporting gradual integration of learned 

information into cortical knowledge structures. However, some evidence suggests that 

memory for specific details of an event remains MTL dependent [51,126] as long as 

the details are retained (e.g. [127]). 

 

Hippocampus supports core computations and representations of a fast learning 

episodic memory system: Episodic memory is widely accepted to depend on the 

hippocampus, mediated by a capacity to bind together (i.e. “autoassociate”) diverse 

inputs from different brain areas that represent the constituents of an event. Indeed, 

information about the spatial (e.g. place) and non-spatial (e.g. what happened) aspects 

of an event are thought to be processed primarily by parallel streams before 

converging in the hippocampus at the level of the DG/CA3 subregions [36]. Two 

complementary computations – pattern separation and pattern completion – are 

viewed to be central to the function of the hippocampus for storing details of specific 

experiences. Evidence suggests that the dentate gyrus (DG) subregion of the 

hippocampus performs pattern separation, orthogonalizing incoming inputs prior to 

autoassociative storage in the CA3 region [128–134]. Further, the CA3 subregion is 

critical for pattern completion – allowing the output of an entire stored pattern (e.g. 

corresponding to an entire episodic memory) from a partial input consistent with its 

function as an attractor network [135,136] (see Boxes 2-4).   

 

Hippocampal replay: A wealth of evidence demonstrates that replay of recent 

experiences occurs during offline periods (e.g during sleep, rest) [2,3]. Further, the 

hippocampus and neocortex interact during replay as predicted by CLS theory [64], 

putatively to support interleaved learning. A causal role for replay in systems-level 

consolidation is supported by the finding that optogenetic blockage of CA3 output in 

transgenic mouse after learning in a contextual fear paradigm specifically reduces 

sharp-wave ripple (SWR) complexes in CA1 and impairs consolidation [68]. 

 

The hippocampus and neocortex support qualitatively different forms of 

representation: A recent experiment [137] found initial evidence in favour: the 

behavior of rats in the Morris water maze early on appeared to reflect individual 

episodic traces (i.e. an instance-based non-parametric representation), but at a later 

time point (28 days after learning) was consistent with the use of a parametric 

representation putatively housed in the neocortex.  
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BOX 2: Functional roles of subregions of the medial temporal lobes.  

 

Work within the CLS framework [26,115,138] relies on anatomical and physiological 

properties of MTL subregions and others’ computational insights [9,24,25] to 

characterize the computations performed within these structures. 

ERC input to the hippocampal system: During an experience, inputs from 

neocortex produces a pattern of activation in the Entorhinal Cortex (ERC) thought of 

as a compressed description of the patterns in the contributing cortical areas (Box 2 

Fig. I, next page): illustrative active neurons in the ERC are shown in blue).  ERC 

neurons give rise to projections to three sub-regions of the hippocampus proper, the 

Dentate Gyrus (DG), CA1, and CA3 [83,139].  Pattern selection and pattern 

separation: Novel ERC patterns are thought to activate a small set of previously 

uncommitted DG neurons (shown in red – these neurons may be relatively young 

neurons, created by neurogenesis).  These neurons, in turn, select a random subset of 

neurons in CA3 via large ‘detonator synapses’ (shown as red dots on the projection 

from DG to CA3) to serve as the representation of the memory in CA3, ensuring that 

the new CA3 pattern is as distinct as possible from the CA3 patterns for other 

memories, including those for experiences similar to the new experience (Boxes 3-4).  

Pattern completion: Recurrent connections from the active CA3 neurons onto other 

active CA3 neurons are strengthened during the experience so that if a subset of the 

same neurons later becomes active, the rest of the pattern will be reactivated.  Direct 

connections from ERC to CA3 are also strengthened, allowing the ERC input to 

directly activate the pattern in CA3 during retrieval without requiring DG 

involvement (see Box 3).  Pattern reinstatement in ERC and neocortex [115,138]: 

The connections from ERC to CA1 and back are thought to change relatively slowly 

to allow stable correspondence between patterns in CA1 and ERC.  Strengthening of 

connections from the active CA3 neurons to the active CA1 neurons during memory 

encoding allows this CA1 pattern to be re-activated when the corresponding CA3 

pattern is re-activated; the stable connections from CA1 to ERC then allow the 

appropriate pattern there to be reactivated, and stable connections between ERC and 

neocortical areas propagate the reactivated ERC pattern to the neocortex. Importantly, 

the bidirectional projections between CA1 and ERC and between ERC and neocortex 

support formation and decoding of invertible CA1 representations of ERC and 

neocortical patterns and allow recurrent computations.  These connections should not 

change rapidly given the extended role of the hippocampus in memory – otherwise 

reinstatement in the neocortex of memories stored in the hippocampus would be 

difficult [60].  
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BOX 2. Figure I:  Hippocampal subregions, connectivity and representation.  Schematic 

depictions of neurons (with circular or triangular cell bodies) are shown, along with schematic 

depictions of projections from neurons in an area to neurons in the same or other areas (grey or 

colored lines – red coloring indicates projections with highly plastic synapses, while grey 

coloring illustrates relatively less plastic or stable projections).  CA1 output to ERC then 

propagates out to neocortex; ERC and even resulting neocortical activity can be fed back into the 

hippocampus (dashed line) as proposed in the REMERGE model. 

 



 31 

BOX 3: Pattern separation and completion in different subregions of the 

hippocampus 

 

Pattern separation and completion [24–26] are defined in terms of transformations 

imposed on inputs to produce outputs [139,140].  Pattern separation makes similar 

patterns more distinct by relying on a conjunctive coding scheme [9,24] (Figure I, 

left) thought to be implemented in DG, whereby each DG neuron responds only when 

a specific combination of input neurons is active (Box 4). 

 

Pattern completion is a process that takes a fragment of a pattern and fills in the 

remaining features (as in recalling a lion upon seeing the scene where the lion 

previously appeared) or that takes a pattern similar to a familiar pattern and makes it 

even more similar to it.  A model of CA3 [26] shows how it may combine features of 

pattern separation and completion, such that moderate and high overlap results in 

pattern completion toward the stored memory, but less overlap results in the creation 

of a new memory [36,130,141] (Figure I, right). When environmental input produces 

a pattern in ERC similar to a previous pattern, the CA3 outputs a pattern closer to the 

one it previously used for this ERC pattern [123,142]. However, when the 

environment produces an input on the ERC that has low overlap with patterns stored 

previously, the DG recruits a new, statistically independent cell population in CA3 

(i.e. pattern separation).  Interestingly, emerging evidence suggests that the amount of 

overlap required for pattern completion (as well as other characteristics of 

hippocampal information processing) may differ across the proximal-distal [143,144] 

and dorso-ventral axes [97,145–148] of the hippocampus, and may be shaped by 

neuromodulatory factors (e.g Acetylcholine) [84,149].  Also, incomplete patterns 

require less overlap with a stored pattern than distorted ones for completion to occur, 

so that partial cues will tend to produce completion, as when one sees the watering 

hole and remembers seeing a lion there previously. 

 

Several studies point to differences between how the population response of CA3 and 

CA1 regions responds to changes to the environment [36]: broadly, the CA1 region 

tends to mirror the degree of overlap in the inputs from the ERC while CA3 shows 

more discontinuous responses reflecting either pattern separation or completion 

[131,150].  
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BOX 3. Figure I. Conjunctive Coding, Pattern Separation, and Pattern Completion.  

Left: A set of 10 conjunctive units with connections from a layer of 5 input units is 

shown twice with different input patterns.  The output in each case is sparser than the 

input (i.e. 30% vs 67%, respectively), and the two outputs overlap less than the two 

corresponding inputs (i.e. 33% vs 60%, respectively) – where overlap is defined as 

number of shared active elements in two patterns divided by the number of active 

elements.   Middle: the relationship between input and output overlap in the DG. Arrows 

indicate the overlap of the inputs and outputs shown in the left panel (i.e. pattern 

separation in DG).  Right: the separation-and-completion profile associated with CA3, 

were low levels of input overlap are reduced further, while higher levels are increased 

[26,36]. 
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BOX 4: Sparse conjunctive coding and pattern separation in the dentate gyrus  

 

Neuronal codes range from the extreme of localist codes – where neurons respond 

highly selectively to single entities (“grandmother cells”) to dense distributed codes 

where items are coded through the activity of many (e.g. 50%) neurons in an area 

[151,152]. While localist codes minimize interference and are easily decodable, they 

are inefficient in terms of representational capacity. In contrast, dense distributed 

codes are capacity efficient: however, they are costly in terms of metabolic cost and 

relatively difficult to decode. These are endpoints on a continuum quantified by a 

measure called sparsity, where “population” sparsity indexes the proportion of 

neurons that fire in response to a given stimulus/location, and “lifetime” sparsity 

indexes the proportion of stimuli to which a single neuron responds [25,151,153].    

For example, a population sparsity of 1% means that only 1% of the neurons in a 

population are active in representing a given input.  Two randomly selected sparse 

patterns tend to have low overlap (for two randomly selected patterns of equal 

sparsity over the same set of neurons, the average proportion of neurons in either 

pattern that is active in the other is equal to the sparsity), but neurons still participate 

in several different memories, making them more efficient than localist codes.  

Despite variability in estimates of the sparsity of a given brain region 

[26,151,154,155], the DG is widely believed to sustain among the sparsest neural 

code in the brain (~0.5-1% population sparseness) [24–26] . The CA3 region, to 

which the DG projects, is thought to be less sparse (~ 2.5% [46]).  Many studies find 

less sparse patterns in CA1 than CA3 [131,150]. 

 

The unique functional and anatomical properties of the DG suggest the origins of its 

sparse, pattern-separated code. The perforant path from the ERC (containing ~ 200k 

neurons in the rodent) projects to a layer of ~ 1 million of DG granule cells. 

Combined with the high levels of inhibition in the DG, this supports the formation of 

highly sparse, conjunctive representations, such that each neuron in DG responds only 

when several input neurons are simultaneously active, reducing overlap between 

similar input patterns [24–26,133]. Evidence also suggests that new DG neurons arise 

from stem cells throughout adult life; these new neurons may be preferentially 

recruited in the formation of memories [133], further reducing overlap with 

previously stored memories.  The CA3 pattern for a memory is then selected by the 

active DG neurons, each of which has a ‘detonator’ synapse to ~15 randomly selected 

CA3 neurons.  This process helps minimize the overlap of CA3 patterns for different 

memories, increasing storage capacity and minimizing interference between them, 

even if the two memories represent similar events that have highly overlapping 

patterns in neocortex and ERC.  Empirical evidence provides support for this, with 

one study [134] showing that the representation supported by DG was highly sensitive 

to small changes in the environment, despite evidence that incoming inputs from the 

ERC were little affected (also see [130,143]), and DG lesions impair learning to 

respond differently in very similar environments with little effect when the 

environments are less similar [133]. 
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BOX 5: Similarity-based coding in high-level visual cortex 

 

High level visual regions of the neocortex are thought to support distributed 

representations that are thought to be less sparse than that of the DG and the 

CA3/CA1 regions of the hippocampus (see Box 4). Population sparseness in the ERC 

is estimated at 7-10% [156], with high level sensory cortices exhibiting similar or 

higher levels of sparseness (e.g. variable estimates: [43–45]). Although lifetime 

sparseness does not directly translate to population sparseness, recent evidence 

suggests that V4 and IT have a sparseness of ~ 10% on this measure [157]. It is worth 

noting that learning rates may vary according to neuronal selectivity and lifetime 

sparseness, resulting in differences in learning rates across neocortical areas and 

hippocampal subregions. Neurons in early visual regions that encode frequently 

occurring features (i.e. edges) may have a relatively slow learning rate while neurons 

in higher visual regions and beyond (e.g. ITc and perirhinal cortex) may have a higher 

learning rate to support the encoding of less frequently occurring, more conjunctive 

features (e.g. individual objects) [12,158,159]. 

  

Evidence from electrophysiological recording studies in high level visual cortical 

regions such as the inferotemporal (ITc) cortex in primates provides support for the 

operation of a similarity-based coding scheme – whereby related categories (e.g. dogs 

& cats) are represented by overlapping neuronal codes [17,39–42] (see Box 5 Fig. I, 

next page). Representational similarity analysis (RSA) of the ITc population response 

during passive viewing of pictures reveals coding of fine-grained categorical structure 

(e.g. of a set of animate and inanimate objects) – that is well fit by deep convolutional 

neural networks which have algorithmic parallels with feedforward processing in the 

ventral visual stream [17,39]. While analogous similarity-based coding was observed 

using fMRI in the human homologue of ITc [40], there was no evidence found for 

greater within-category (cf between-category) representational similarity in any 

subregion of the hippocampus in a recent fMRI study [160] which found evidence 

consistent with the importance of pattern separation in episodic memory. Instead, 

similarity-based coding in this study was observed in the perirhinal and 

parahippocampal cortex – MTL regions that project to the ERC, and are typically 

considered intermediate zones (i.e. between the hippocampal and neocortical systems) 

in CLS theory.  
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Box 5. Figure I. Similarity-based coding in high level visual cortex   
Representational dissimilarity matrices (RDM) reflect the correlation (i.e. 1-r, where r is the 

Pearson correlation coefficient) between the response of voxel patterns (fMRI in humans 

[40]: right panel) or neuronal populations (electrophysiological recording in monkey [42]: 

left panel) to a set of 92 object images. RDMs are analogous in both monkey and human IT. 

The RDMs show that the representations of animate objects are similar, as are those of 

inanimate objects. In addition to this clear animate-inanimate distinction, object coding in 

IT cortex exhibits finer categorical structure (e.g. for faces, body parts), visible in these 

RDMs (also see [40]). Reproduced with permission from [40].  

 



 36 

Box 6. Generalization through Recurrence in the Hippocampal System.  

 

The REMERGE model (Figure I) [5], which reflects a synthesis of interactive 

activation competitive (IAC) models [161] and exemplar models (see Glossary) of 

memory [107,162,163], constitutes an abstraction and simplification of the multi-

stage circuitry of the hippocampal system into two principal layers: feature and 

conjunctive layers, broadly corresponding to the entorhinal cortex and hippocampus 

proper, respectively. The localist coding (e.g. unit AB) in the conjunctive layer 

reflects an idealization of the sparse distributed pattern separated codes thought to 

exist in the DG/CA3 subregions of the hippocampus (Boxes 2-4), and support 

episodic memory (e.g. for trials involving presentation of A and B objects together). 

 

An essential principle of the model – mediated by the bidirectional excitatory 

connections between feature and conjunctive layers – is the principle of recurrence 

between the hippocampus proper and neocortical regions such as the entorhinal cortex 

(ERC) (termed “big-loop” recurrence, to distinguish it from the internal recurrence 

known to exist within the CA3 region).  This allows recirculation of network output 

as a subsequent input to the system. Intuitively, this functionality is critical to 

allowing the model to discover the higher-order structure present within a set of 

related episodes: an initial probe on the feature layer (e.g. denoting stimuli present on 

screen during a test trial) prompts the activation of experiences containing these 

elements on the conjunctive layer, which in turn drives a new pattern of feature layer 

activity that reflects not only the external input but also the content of retrieved 

experiences. This in turn leads to the activation of conjunctive units denoting 

experiences related to the new feature layer pattern, and so on. This can bring about a 

situation where, for example, the presentation of A and C can result in the activation 

of AB and BC, which jointly activate B, in turn further activating AB and BC which 

then suppress other conjuncts involving A and C. This produces a stable state in 

which AB, BC, and A, B, and C are all activated at the same time – thereby 

effectively inferring a link between A and C.  Longer range inferences (e.g. B---E) 

can also be supported by the recurrent mechanism (see [5] for details).  Formally, the 

function of the network can be viewed as carrying out recurrent similarity 

computation (see Glossary). Unlike other exemplar models [107,162,163], in which 

similarity computation is performed only on external inputs REMERGE performs 

such computations on inputs affected by its own outputs. 

 

                                     
BOX 6. Figure I. A schematic of the architecture of REMERGE. Recurrent architecture 

of REMERGE, showing its two layer architecture, with input/output units for possible 

constituents of experiences (A – F), conjunctive units representing pairs of constituents that 

have occurred together (AB, BC, etc.), bidirectional connections (dotted arrows) between 

conjuncts and their constituents, and recurrent inhibition (broad arrow) among conjunctive 

units.  Adapted from [5].  
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BOX 7: Concept cells and nodal codings?  

 

Reports of concepts cells in the hippocampus have been taken as contradicting a tenet 

of CLS theory, but the existence of such neurons is not necessarily inconsistent with 

it, given that the theory expects different hippocampal regions to vary in terms of 

context specificity and permits variation within hippocampal regions as well (Box 3).  

Evidence supporting the CLS prediction of context-specificity in the CA3 & DG 

comes from a recent intracranial recording study in humans [164].  In this study, 

neurons in CA3/DG, and also the subiculum, tended to discriminate between different 

images of a famous person – with responses correlating with successful performance 

in a recognition memory task that required discriminating previously experienced 

targets from similar lures. Neurons in other MTL areas (i.e. entorhinal and 

parahippocampal cortices) exhibited more invariant “concept cell like” responses that 

were not linked to memory performance (the CA1 subregion was sparsely sampled in 

this study). 

 

It is also interesting to consider the finding of “splitter” cells in a task where animals 

must alternate turning left and right on successive trials in a T maze [165–167]: here, 

some CA1 and CA3 place cells for locations on the central stem of the T-maze are 

modulated by the trajectory of the rat (e.g. whether it will subsequently turn left or 

right) while others are trajectory-independent. This phenomenon, known as partial 

remapping [47,168–170], is consistent with the idea that pattern separation is a matter 

of degree in our theory [26,36].  As such, we should expect partly overlapping 

representations (i.e. rather than fully independent “charts” [120]) when environmental 

changes are sufficiently small (Box 3).  We also expect the greatest differentiation in 

DG, and at an early point in learning.  To our knowledge no studies have yet recorded 

in DG in this paradigm.  

 

In a recent study, representational similarity analysis techniques [171] were applied to 

ensemble recording data collected while rats performed a context-guided reward 

discrimination task [112]. As expected, the population codes in CA3 and CA1 were 

dominated by context and place coding, though other task dimensions – reward value 

and item – were also represented [112] (also see [172]). Whilst there was some 

representational overlap across locations based on value and item, CA3/CA1 codes 

were consistent with incomplete but still strong pattern separation, especially in the 

dorsal hippocampus. Overall, these findings appear consistent with the CLS, with the 

provision that pattern separation is a matter of degree, and may vary by task and 

region.  Why CA3 shows greater specificity than CA1 in some studies but not others 

requires further exploration. 
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Box 8: Rapid integration of new learning in the neocortex: When does it occur? 

 

In the event arena paradigm [7,8](Box 8 Figure I, next page) hippocampal lesions 

prevent acquisition of new schema-consistent associations. In contrast, hippocampal 

lesions performed as little as 48 hours after learning leave memory intact. One 

explanation for the critical but temporary nature of the hippocampal contribution is 

replay: even a few minutes with the hippocampus intact could allow multiple replays, 

each one incrementing the strength of intra-neocortical connections.  In the 

investigation of induction of plasticity related genes in neocortex [8]the hippocampus 

was intact for 80 minutes after initial exposure to the new associations. These finding 

raise the broader question of when rapid integration of new learning into the 

neocortex occurs, and whether it can occur even without a hippocampus.   

 

A substantial body of work from several laboratories now supports the view that a 

single period of sleep can produce changes in how experiences from a single learning 

session impact subsequent responding.  As key examples, some studies have reported 

increased levels of linking inferences [173] and others have reported increased lexical 

competition and related phenomena [108,174] attributed to a single sleep session.  

These findings are often interpreted as evidence of rapid systems level consolidation 

(e.g., [174]) However, the materials used are not obviously highly consistent with 

prior knowledge in most cases, so that, under the CLS framework, we would not 

expect full integration into neocortical networks in such a short time period.  An 

alternative interpretation (illustrated in [5]) is that replays during sleep increase the 

strength, robustness, and rate of activation of new hippocampus-dependent traces, and 

that such strengthening may be sufficient to account for the observed effects.  Thus, 

the findings are consistent with the view that integration of these new memories into 

neocortical structures proceeds over a considerably longer time period. 

 

Work with the ‘fast mapping’ paradigm in humans with hippocampal lesions [175] 

provides another potential source of evidence about rapid neocortical learning of 

arbitrary new information.  In this paradigm, human participants see pairs of pictures 

of objects – one familiar and one unfamiliar – and are asked a question such as ‘is the 

numbat’s tail pointing up’, inferring that the unfamiliar name ‘numbat’ must refer to 

the unfamiliar object [175]. Some studies find that patients with extensive 

hippocampus damage show retention of the new object-name association at a delayed 

test [176,177], suggesting very rapid neocortical learning even without a 

hippocampus.  However, the finding has proven difficult to replicate [178–180]; 

future studies should continue to investigate this issue. 
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Box 8. Figure I. Schematic illustration of the event arena paradigm. (A) Overhead view of 

1.6m x 1.6m event-arena: rats are cued with one of six food flavors (e.g. banana) each 

associated with a location in the arena (e.g. location 3) and are required to go from any of the 

4 start boxes to a specific location to retrieve food. (B) Following gradual learning of the 

original set, 2 new paired flavor-place pairs are introduced: (e.g., cinnamon-location7; 

nutmeg-location8). Rapid schema-dependent one-shot learning of these new PAs is observed 

(see Box text). Figure based on experimental design described in [7]. 
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Box 9: Experience Replay in Deep Q-Networks 

 

Instead of employing a standard online learning method in which each unit of play 

experience (consisting of a state, action, next state and resulting reward) is used 

immediately to adjust connection weights and then discarded, an experience replay 

buffer similar to the hippocampus is used. This allows learning based on randomly-

chosen subsets of recent experiences stored in the replay buffer (see for details [118]) 

to be interleaved with ongoing game-play. The approach is in line with findings cited 

above [65] that hippocampal replay reactivates reward related neurons in striatum, in 

accord with the hypothesis that hippocampus-dependent RL facilitates learning during 

off-line periods.  

 

Experience replay in the DQN architecture was critical in i) maximizing data 

efficiency, allowing each unit of experience to be re-used in many updates (e.g. 

mirroring benefits of repeated time-compressed hippocampal replay) and ii) 

smoothing out learning and avoiding unstable response policies that can result from 

the tendency of the current policy to bias the experienced samples. The approach 

minimizes learning from consecutive samples, which is undesirable due to their 

strongly correlated nature and inconsistent with the implicit assumptions built into 

neural network learning algorithms. Instead experience replay allows updates within 

the deep Q-network to be performed on non-adjacent samples from a set of recent 

experiences in a fashion that break up these correlations while still relying on relevant 

statistics.  The dramatic advantage of a network implementing interleaved learning 

through experience replay was illustrated by the effects of disabling replay on 

network performance: This caused a severe drop in performance to at best ~30% of 

when experience replay was present [118]. Note that the uniform sampling 

mechanism as implemented treats all transitions in the replay memory as if they were 

equal. Recent work [181] shows that biasing replay towards significant events – 

specifically, experiences that are associated with high temporal difference reward 

prediction errors – yields further gains. This mechanism, which resonates with the 

role of the hippocampus in reweighting experiences as discussed above, allows 

information to be harvested from rare experiences that may be particularly 

informative.  

 

  



 41 

BOX 10: Neural Networks with External Memory and the Hippocampus 

 

The Neural Turing Machine (NTM) (Graves et al., Neural Turing Machines, arXiv, 

2014) consists of two basic components: an external memory and a neural network 

controller that is distinguished by its ability to interact with the external memory (Box 

10 Figure I, next page). An external memory allows specific inputs (such as items to 

be remembered) or the results of intermediate computations to be written to it, and 

then to be read out in a content- or location- based addressable fashion [182].  

 

The controller interacts with the external memory through write and read heads, that 

focus on particular parts of the memory matrix through attentional addressing 

mechanisms. Content-based addressing focuses attention on memory slots based on 

their similarity to the current values (i.e. “key”) emitted by the controller. The graded, 

similarity-based nature of these addressing mechanisms allows the architecture to be 

trained using the continuous learning signals that drive learning in other deep neural 

networks[10]. The controller may be a feedforward network, but is more typically a 

recurrent network exploiting specialized long-short-term memory (LSTM) modules 

[183] that can learn to retain information over very extended numbers of timesteps. In 

contrast to standard neural networks, the architecture of the NTM allows a separation 

of computation from memory, as in conventional computers (Graves et al., Neural 

Turing Machines, arXiv, 2014). This allows the NTM to learn to perform algorithms 

independently of the variables concerned (also see [184]).  

 

While parallels have been drawn between the external memory of the NTM and 

working memory (Graves et al., Neural Turing Machines, arXiv, 2014), the 

characteristics of its external memory can easily be related to long term memory 

systems as well. Indeed, content-based addressable external memories of this kind 

share functionalities with attractor networks [142] (see Glossary), an architecture 

often used to model the computational functions performed by the CA3 subregion of 

the hippocampus (e.g. storage and retrieval of episodic memories) [185]. There are 

further points of connection between the operation of the NTM and the hippocampus: 

information is not stored and retained indiscriminately; instead it is selected based on 

an estimate of potential future relevance (see section on “proposed role of the 

hippocampus in circumventing the statistics of the environment”).  
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BOX 10. Figure I. NTM and the paired associative recall task.  
The input to the controller is a sequence of column vectors.  The network receives 

one column per time step, and the figure shows the columns presented over 29 

consecutive time steps indexed by t.  Here the input consists of a sequence of items, 

where each item is three binary random vectors presented in adjacent time steps.  

Two items are highlighted, one in a green box and one in a red box). A delimiter 

symbol (in row 4) appears in the time step preceding each item. After three items 

have been presented a different delimiter symbol (row 5) occurs followed by a query 

(single item in green box). The network responds correctly with the appropriate target 

(red box). Schematic representation of external memory matrix shown. Adapted with 

permission from (Graves et al., Neural Turing Machines, arXiv, 2014). 
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Glossary  

Attractor network: Networks with recurrent connectivity that have stable states 

which persist in the absence of external inputs, and afford noise tolerance. 

Discrete/point attractor networks can be used to store multiple memories as individual 

stable states. Continuous attractor networks have a continuous manifold of stable 

points which allow them to represent continuous variables (e.g. position in space).   

Autoassociative storage: the storage within an attractor network of an input pattern 

constituting an experience, such that elements of the input pattern are linked together 

through plasticity within the recurrent connections of the network. The operation of 

recurrent connections supports functions such as pattern completion, whereby the 

entire input pattern (e.g. memory of a birthday party) can be retrieved from a partial 

cue (e.g. a friend’s face).  

Exemplar models: exemplar models in cognitive science, related to instance-based 

models in machine learning, operate by computing the similarity of a new input 

pattern (i.e. presented as external sensory input) to stored experiences. This results in 

the output of the model, for example a predicted category label for the new input 

pattern, at which point the process terminates.  

Non-parametric: we use this term to refer to algorithms where each experience or 

data point has its own set of coordinates, where capacity can be increased as required 

– and the number of parameters may grow with the amount of data. K-nearest 

neighbor constitutes one common example of such a non-parametric instance based 

method.  

Parametric: we use this term to refer to algorithms that do not store each data point, 

but rather directly learn a function that (e.g.) predicts the output value for a given 

input. The number of parameters is typically fixed.  

Paired associative inference  (PAI) task: A paradigm where items are organized 

into (e.g. a hundred) sets of triplets (e.g. ABC) or larger sets (e.g. sextets: ABCDEF). 

Participants view item pairs (e.g. AB, BC) during the study phase and are tested on 

their ability to appreciate the indirect relationships between items that were never 

presented together (e.g. A and C).  

Paired associate recall task: a paradigm where item pairs are experienced during 

study (e.g. word pairs such as “dog-table” in a human experiment, or flavor-location 

pairs in a rodent experiment), and at test the individual must recall the other item (e.g. 

specific location) from a cue (the specific flavor, e.g. banana).  

Recurrent similarity computation: Recurrent similarity computation allows the 

procedure performed by exemplar models to iterate: that is, the retrieved products 

from the first step of similarity computation are combined with the external sensory 

input and a subsequent round of similarity computation is performed. This process 

continues until a stable state (i.e. basin of attraction in a neural network) is reached. 

This allows the model to capture higher-order similarities present in a set of related 

experiences, where pairwise similarities alone are not informative.  

Sharp wave ripple (SWR): spontaneous neural activity occurring within the 

hippocampus during periods of rest and slow wave sleep, evident as negative 

potentials (i.e. sharp waves). Transient high frequency (~150Hz) oscillations (i.e. 

ripples) occur within these sharp waves, which can reflect the replay (i.e. reactivation) 

of activity patterns that occurred during actual experience, sped up by an order of 

magnitude.  

Sparsity: the proportion of neurons in a given brain region that are active in response 

to a given stimulus (“population sparseness”). Sparse coding, where a small (e.g. 1%) 
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proportion of neurons is active, is contrasted with dense distributed coding where a 

relatively large proportion of neurons is active (e.g. 20%).  

 


