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Abstract

We update Complementary Learning Systems theory, which holds that intelligent
agents must possess two learning systems, instantiated in mammalians in neocortex
and hippocampus. The first gradually acquires structured knowledge representations
while the second quickly learns specifics of individual experiences. We extend the
role of replay of hippocampal memories in the theory, noting that replay allows goal-
dependent weighting of experience statistics. We also address recent challenges to the
theory and extend it by showing that recurrent activation of hippocampal traces can
support some forms of generalization and that neocortical learning can be rapid for
information consistent with known structure. Finally, we note the relevance of the
theory to the design of artificial intelligent agents, highlighting connections between
neuroscience and machine learning.

NOTE: This is a preprint of this article as cited above. Boxes including Trends Box
and Glossary are located at the end of this preprint. Citation numbers and some
citation details differ from the published version.

Complementary Learning Systems

Twenty years have passed since the introduction of the complementary learning
systems (CLS) theory of human learning and memory [1], a theory that, itself, had
roots in earlier ideas of Marr and others. According to the theory, effective learning
requires two complementary systems: one, located in the neocortex, serves as the
basis for the gradual acquisition of structured knowledge about the environment,
while the other, centered on the hippocampus, allows for rapid learning of the
specifics of individual items and experiences. Here we begin with a review of the
core tenets of this theory. We then provide three kinds of updates. First, we extend
the role of replay of memories stored in the hippocampus. This mechanism, initially
proposed to support the integration of new information into the neocortex, may
support an increasingly diverse set of functions [2,3], including goal related
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manipulation of experience statistics so that the neocortex is not a slave to the
statistics of its environment. Second, we describe recent updates to the theory in
response to two key empirical challenges: i) evidence suggesting that the
hippocampus supports certain forms of generalization that go beyond that originally
envisioned [4—6] and ii) evidence suggesting that when new information is consistent
with existing knowledge the time required for its integration into the neocortex may
be much shorter than originally suggested [7,8]. In a final section, we highlight links
between the core principles of CLS theory and recent themes in machine learning,
including neural network architectures that incorporate memory modules that have
parallels with the hippocampus. While there remain several issues not yet fully
addressed (see Outstanding Questions Box), the extensions, responses to challenges,
and integration with machine learning bring the theory into agreement with many
important recent developments and provide a take-off point for future investigation.

Summary of the theory

CLS theory [1] provided a framework within which to characterize the organization
of learning in the brain (Figure 1, Key Figure): drawing on earlier ideas by David
Marr [9], it offered a synthesis of the computational functions and characteristics of
the hippocampus and neocortex that not only accounted for a wealth of empirical data
(see Box 1 at end of ms.) but resonated with rational perspectives on the challenges
faced by intelligent agents.

Structured knowledge representation system in neocortex. A central tenet of the
theory is that the neocortex houses a structured knowledge representation, stored in
the connections among the neurons in the neocortex. This tenet arose from the
observation that multi-layered neural networks (Figure 2) gradually learn to extract
structure when trained by adjusting connection weights to minimize error in the
network’s outputs [10]. Early examples were provided by networks that learned to
read words aloud [11-13] from repeated exposure to the spellings and corresponding
sounds of English words. These networks supported the gradual acquisition of a
structured knowledge representation in the connection weights among the units in the
network, shaped by the statistics of the environment in a fashion that was efficient and
generalized to novel examples [1,14,15], while also supporting performance on
atypical items occurring frequently in the domain. Such a representation can be
described as parametric rather than item-based (or non-parametric, see Glossary at
end of ms.) in that the connection weights can be viewed as a set of parameters
optimized for the entire domain (e.g. the spellings and sounds of the full set of words
in the language) rather than supporting memory for the items per se. According to the
theory, such networks underlie acquired cognitive abilities of all types in domains as
diverse as perception, language, semantic knowledge representation, and skilled
action. This idea can be seen as an extension of Marr’s original proposal [9], which
held that cortical neurons each learned the statistics associated with a particular
category.
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Figure 1: Complementary learning systems and their interactions. Lateral view of
one hemisphere of the brain, where dotted lines indicate regions deep inside the brain or
on the medial surface. Primary sensory and motor cortices shown in darker yellow. Medial
temporal lobe (MTL) surrounded by dotted lines, with hippocampus in dark grey and
surrounding MTL cortices in light grey (size and location are approximate). Green arrows
represent bidirectional connections within and between integrative neocortical association
areas and between these areas and modality specific areas (the integrative areas and their
connections are more dispersed than the figure suggests). Blue arrows denote bidirectional
connections between neocortical hubs and the medial temporal lobe. Both blue and green
connections are part of the structure-sensitive neocortical learning system in the CLS
theory. Red arrows within the MTL denote connections within the hippocampus, and
lighter red arrows indicate connections between the hippocampus and surrounding MTL
cortices: these connections exhibit rapid synaptic plasticity (red greater than light red
arrows) critical for the rapid binding of the elements of an event into an integrated
hippocampal representation. Systems-level consolidation involves hippocampal activity
during replay spreading to neocortical association areas via pathways indicated with blue
arrows, thereby allowing gradual learning within intra-neocortical connections (green
arrows). Systems-level consolidation is considered complete when memory retrieval —
reactivation of the relevant set of neocortical representations — can occur without the
hippocampus.

The CLS theory proposed that learning in such a parametric system will necessarily
be slow, for two main reasons: First, each experience represents a single sample from
the environment. Given this, a small learning rate allows a more accurate estimate of
the underlying population statistics by effectively aggregating information over a
larger number of samples [1]. Second, the optimal adjustment of each connection
depends on the values of all of the other connections. Before the ensemble of
connections has been structured by experience, the signals specifying how to change



connection weights to optimize the representation will be both noisy and weak,
slowing initial learning. This issue has proven to be particularly important in deep
(i.e., many-layered) neural network architectures that have enjoyed recent successes
in machine learning [16] and in modelling the neural computations of the supporting
visual processing of objects in primates [17,18]. Here the considerable advantages of
depth in allowing the learning of increasingly complex and abstract mappings [16] are
balanced by the strong interdependencies among connection weights in deep networks
(Saxe et al., arXiv, 2013)[19] such that the weights are learned gradually through
extensive, repeated, interleaved exposure to an ensemble of training examples that
embody the domain statistics.

Although there are real advantages of a system using structured parametric
representations, on its own such a system would suffer from two drastic limitations
[1]. Firstly, it is important to be able to base behavior on the content of an individual
experience. For example, after experiencing a life-threatening situation — say a brush
with a lion at a watering-hole — it would clearly be beneficial to learn to avoid that
particular location without the need for further encounters with the lion. The second
problem is that the rapid adjustment of connection weights in a multilayer network to
accommodate new information can severely disrupt the representation of existing
knowledge in it — a phenomenon termed catastrophic interference [1,20-22] and
related to the stability-plasticity dilemma [23]. If the new information about the
dangerous lion is forced into a multi-layer network by making large connection
weight adjustments just to accommodate this item, this can interfere with knowledge
of other, less threatening animals one may already be familiar with.

Instance-based representation in the hippocampal system. Fortunately, a second,
complementary learning system can address both problems, affording the rapid and
relatively individuated storage of information about individual items or experiences
(such as the encounter with the lion). Following Marr’s and subsequent proposals
[24-26], the CLS theory proposed that the hippocampus and related structures in the
Medial Temporal Lobe (MTL) support the initial storage of item-specific information,
including the features of the watering hole as well as those of the lion (Figure 1). This
proposal has been captured in models of the role of the hippocampus in recognition
memory for specific items and in sensitivity to context and co-occurrence of items
within the same event or experience [27-35].

In CLS theory, the dentate gyrus (DG) and CA3 subregions of the hippocampus are
the heart of the fast learning system (Boxes 2-4). The DG is critical in selecting a
distinct neural activity pattern in CA3 for each experience, even when different
experiences are quite similar ([24-26,36,37]), a process known as pattern separation.
Increases in the strengths of connections onto and among the participating neurons in
DG and CAS3 stabilize the activity pattern for an experience and support reactivation
of the pattern from a partial cue: because of the strengthened connections, re-
activation of part of the pattern that was activated during storage (features of the
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Figure 2. A neocortex-like artificial neural network. In the CLS, neocortical processing
is seen as occurring through the propagation of activation among neurons via weighted
connections, as simulated using artificial networks of neuron-like units (small circles).
Each unit has an input line and an output line (with arrowhead). There is a separate real-
valued weight where each output line crosses an input line. The weights are the knowledge
that governs processing in the network. During processing (inset), each unit computes a
net input (n) from the activations of its inputs and the weights, producing an activation (a)
that is a non-linear function of n (one such function shown). The units in a layer may
project back onto their own inputs (illustrated for layer 3), simulating recurrent intra-
cortical computations and higher layers may project back to lower layers (see Figure 1). In
the situation shown, the input (lower left) is a pattern in which units are either active (a =
1, black) or inactive (a = 0, white), and example possible resulting activations of units in
other layers are shown (darker for greater activation). Learning occurs through adjusting
the weights to reduce the difference between the networks’ output and a target output
(upper right) [10,16]. In the case shown, the output activations are similar to the target,
but there is some error to drive learning. There are no targets for internal or hidden layers
(i.e. layers 2 & 3). These patterns depend on the connection weights, which in turn are
shaped by the error-driven learning process.

watering hole in which the lion was encountered) can then reactivate the rest of the
pattern (i.e. the encounter with the lion), a process called pattern completion. Return
connections from hippocampus to neocortex then support adaptive behavior (e.g.
avoidance of that location).

Note, however, that a hippocampal system acting alone would also be insufficient due
to capacity limitations [25] and its limited ability to generalize. Related to the latter



point, the use of pattern-separated hippocampal codes for related experiences — in
contrast to the relatively dense similarity-based coding scheme thought to operate in
the parametric neocortical system (Box 4)[17,38-45] — may be adaptive for some
purposes but comes with a cost: it disregards shared structure between experiences,
thereby limiting both efficiency and generalization.

The theory is supported by findings that neocortical activity patterns generally show
less sparsity (see Glossary) and exhibit greater similarity-based overlap compared to
the hippocampus [17,39,40,42-46] (Boxes 4-5). It should be noted, however, that the
degree of sparsity and similarity-based overlap varies across sub-regions of the
hippocampus and neocortex (Boxes 4-5). While some of the relevant findings have
been seen as supporting other theories [47], such differences are fully consistent with
CLS and have long been exploited in CLS-based accounts of the roles of specific
hippocampal sub-regions (Boxes 2-4).  Similarly, learning rates vary across
hippocampal areas in the theory (Box 2), and likewise, there may be variation in
learning rates across neocortical areas (see Box 5).

Joint contribution to task performance. In the CLS theory, the hippocampal and
neocortical systems contribute jointly to performance in many tasks and many
different types of memories. This point applies to tasks that are often thought of as
tapping “episodic memory” (memory for the elements of one specific experience),
“semantic memory” (knowledge of facts e.g., about the properties of objects) or
“implicit memory” (performance enhancement as a consequence of prior experience
that is not dependent on explicit recollection of the prior experience). In the CLS
theory, tasks and types of memory are seen as falling on a continuum, with varying
degrees of dependence on the two learning systems depending on task, item, and other
variables. For example, consider the task of learning a list of paired associates (see
Glossary). The list may contain a mixture of pairs with strong, weak, or no
discernable prior association (e.g. dog-cat, heavy-suitcase, city-tiger). Recall of the
second word of a pair when cued with the first is worse in hippocampal patients than
controls but both groups show better performance on items with stronger prior
association [48]. The findings have been captured in a model [49] (Kwok, PhD
Thesis, Carnegie-Mellon University, 2003) in which hippocampal and neocortical
networks jointly contribute to retrieval. Background associative knowledge is
mediated by the cortex and the hippocampus mediates acquisition of associations
linking each item pair to the learning context.

Replay of hippocampal memories and interleaved learning

We now consider two important aspects of the CLS theory that are central foci of this
review: the replay of hippocampal memories and interleaved learning. According to
the theory, the hippocampal representation formed in learning an event affords a way
of allowing gradual integration of knowledge of the event into neocortical knowledge
structures. This can occur if the hippocampal representation can reactivate or replay
the contents of the new experience back to the neocortex, interleaved with replay



and/or ongoing exposure to other experiences [1]. In this way the new experience
becomes part of the database of experiences that govern the values of the connections
in the neocortical learning system [50-52]. Which other memories are selected for
interleaving with the new experience remains an open question. Most simply, the
hippocampus might replay recent novel experiences interleaved with all other recent
experiences still stored in the hippocampus. A variant of this scheme would be for
new experiences to be interleaved with related experiences activated by the new
experience, through the dynamics of a recurrent mechanism (as in the REMERGE
model [5], described below). An alternative possibility would be that interleaved
learning does not actually involve the faithful replay of previous experiences: instead,
hippocampal replay of recent experiences might be interleaves with activation of
cortical activity patterns consistent with the structured knowledge implicit in the
neocortical network (e.g. [22,53-55]).

Thus, the dual-system architecture proposed by CLS theory effectively harnesses the
complementary properties of each of the two component systems, allowing new
information to be rapidly stored in the hippocampus and then slowly integrated into
neocortical representations. This process, sometimes labeled systems level
consolidation [50], arises, within the theory, from gradual cortical learning driven by
replay of the new information, interleaved with other activity to minimize disruption
of existing knowledge during the integration of the new information.

Empirical evidence of replay. Because of its centrality in the theory, we highlight key
empirical evidence that replay events really do occur. The data comes primarily from
rodents, recorded during periods of inactivity (including sleep), in which hippocampal
neurons exhibit large irregular activity (LIA) patterns that are distinct from the
activity patterns observed during active states [2,3]. During LIA states, synchronous
discharges thought to be initiated in hippocampal area CA3 produce sharp-wave
ripples (SWRs), which are propagated to neocortex. SWRs reflect the reactivation of
recent experiences, expressed as the sequential firing of so-called place cells, cells
that fire when the animal is at a specific location [2,3,56-58]. These replay events
appear to be time compressed by a factor of about 20, bringing neuronal spikes that
were well-separated in time during an actual experience into a time-window that
enhances synaptic plasticity both within the hippocampus and between hippocampus
and neocortex and allows a single event to be replayed many times during a single
sleep period [1-3,57,59,60]. Consistent with the proposal that replay events are
propagated to neocortex [1-3,59,60], SWRs within hippocampus are synchronized
with fluctuations in neocortical activity states [61,62]. Further, hippocampal replay of
specific place sequences has been shown to correlate with replay of patterns on grid
cells located in the deep layers of the entorhinal cortex that receive the output of the
hippocampal circuit[63], as well as more distant neocortical regions [64].
Furthermore, a recent study observed coordinated reactivation of hippocampal and
ventral striatal neurons during slow wave sleep (SWS), with location-specific
hippocampal replay preceding activity in reward-sensitive striatal neurons [65]. A



causal role for replay is supported by studies showing that the disruption of ripples in
the hippocampus produces a significant impairment in systems level consolidation in
rats [66—68].

Additional roles of replay. Recent work has highlighted additional roles for replay —
both during LIA but also during theta states [3,69,70] — well beyond its initially
proposed role in systems-level consolidation. Specifically, recent evidence suggests
that hippocampal replay can: i) be non-local in nature, initiated by place cell activity
coding for locations distant from the current position of the animal [3]; ii) reflect
novel shortcut paths by stitching together components of trajectories [71,72]; iii)
support look-ahead online planning during goal-directed behavior [69,73]; iv) reflect
trajectories through parts of environments that have only been seen but never visited
[74]; and v) be biased to reflect trajectories through rewarded locations in the
environment [75]. Together, this evidence points to a pervasive role for hippocampal
replay in the creation, updating and deployment of representations of the environment
[3]. Notably, these putative functions accord well with perspectives that emphasize
the role of the human hippocampus in prospection [76], imagination [77,78], and the
potential utility of episodic control of behavior over control based on learned
summary statistics in some circumstances (e.g. given relatively little experience in an
environment) [79].

Proposed role for hippocampus in circumventing the statistics of the environment. As
we have seen, hippocampal activity during LIA does not necessarily reflect a faithful
replay of recent experiences. Rather, mounting evidence suggests that replay may be
biased towards rewarding events [58,75]. Building on this, we consider the broader
hypothesis that the hippocampus may allow the general statistics of the environment
to be circumvented by the reweighting of experiences, so that statistically unusual but
significant events may be afforded privileged status, leading not only to preferential
storage and/or stabilization (as originally envisioned in the theory) but also leading to
preferential replay that then shapes neocortical learning. We see this hippocampal
reweighting process as being particularly important in enriching the memories of both
biological and artificial agents, given memory capacity and other constraints as well
as incomplete exploration of environments. These ideas link our perspective to
rational accounts that view memory systems as optimized to an organisms’ goals
rather than simply mirroring the structure of the environment [80].

A wide range of factors may affect the significance of individual experiences [81,82]:
for example, they may be surprising or novel; high in reward value (either positive or
negative) or in their informational content (e.g. in reducing uncertainty about the best
action to take in a given state). The hippocampus — in receipt of highly processed
multimodal sensory information [83] as well as neuromodulatory signals triggered by
such factors [82,84] — is well positioned to reweight individual experiences
accordingly. Indeed, recent work suggests specific molecular mechanisms that
support the stabilization of memories and specific neuromodulatory projections to the



hippocampus [82,85-87] by which the persistence of individual experiences in the
hippocampus may be modulated by events that occur both before and afterwards —
providing mechanisms by which episodes may be retrospectively reweighted if their
significance is enhanced by subsequent events [82,88], thereby influencing the
probability of replay.

The importance of the reweighting capability of the hippocampus is illustrated by the
following example. Over a multitude of experiences, consider a child gradually
acquiring conceptual knowledge about the world, which includes the fact that dogs
are typically friendly. Imagine that one day the child experiences an encounter with a
frightening, aggressive dog — an event that would be surprising, novel, and charged
with emotion. Ideally, this significant experience would not only be rapidly stored
within the hippocampus, but would also lead to appropriate updating of relevant
knowledge structures in the neocortex. While CLS theory initially emphasized the
role of the hippocampus in the first stage (i.e. initial storage of such one-shot
experiences), here we highlight an additional role for the hippocampus in “marking”
salient but statistically infrequent experiences, thereby ensuring that such events are
not swamped by the wealth of typical experiences — but rather are preferentially
stabilized and replayed to the neocortex allowing knowledge structures to incorporate
this new information. Although this reweighting would generally be adaptive, it could
on occasion have maladaptive consequences. For example, in post-traumatic stress
disorder, a unique aversive experience may be transformed into a persistent and
dominant representation through a runaway process of repeated reactivation.

Challenges arising from recent empirical findings

In this section, we discuss two significant challenges to the central tenets of CLS
theory. Both challenges have recently been addressed through computational
modeling work that extends and clarifies the principles of the theory.

The hippocampus, inference and generalization

Cross-item inferences. The first challenge concerns the role of the hippocampus in
generalizing from specific experiences to novel situations. As noted above, CLS
theory emphasized the critical role of the hippocampus as a fast learning system
relying on sparse activity patterns that minimize overlap even in the representation of
very similar experiences. This representation scheme was thought to support memory
of specifics, leaving generalization to the complementary neocortical system.
Evidence presenting a substantial challenge to this account, however, has come from
paradigms where individuals have been shown to rapidly utilize features that create
links among a set of related experiences as a basis for a form of inference within or
shortly after a single experimental session [89,4,5,90-94].

The paired associate inference (PAI) task [90,95-97] provides as an example of a task
that involves the hippocampus and captures the essence of requiring cross-item
inferences required in other relevant tasks (such as the transitive inference task



reviewed in [4]). In the study phase of the PAI task, subjects view pairs of objects
(e.g. AB, BC) that are derived from triplets (i.e. A-B-C) or larger object sets (e.g.
sextets: A, B, C, D, E, F— Box 6). In the critical test trials, subjects are tested on their
ability to appreciate the indirect relationships between items that were never presented
together (e.g. A and F in the sextet version). Evidence for a role of the hippocampus
in supporting inference in such settings [90,91,95-97] naturally raises the question of
the neural mechanisms underlying this function, and has been seen as challenging the
view that the hippocampus only stores separate representations of specific items or
experiences. Indeed, the findings have been taken as supporting “encoding-based
overlap” models [4,94,98,99], in which it is proposed that the hippocampus supports
inference by using representations that integrate or combine overlapping pairs of
items (for example, AB and BC in the triplet version of the PAI task).

While the PAI findings weigh against the view that the hippocampus only plays a role
in the behaviors based on the contents of a single previous episode, these findings can
could arise from reliance on separate representations of the relevant AB, AC item
pairs. Indeed, the CLS-grounded REMERGE model [5] proposes that representations
combining elements of items never experienced together may arise from simultaneous
activation of two or more memory traces within the hippocampal system, driven by an
interactive activation process occurring within a recurrent circuit, whereby the output
of the system can be recirculated back into it as a subsequent input (see Box 6). This
proposal is consistent with anatomical and physiological evidence [100] (Box 2).

REMERGE, therefore, can be considered to capture the insights of the relational
theory of memory [28,101] by allowing the linkage of related episodes within a
dynamic memory space, while preserving the assumption that the hippocampal
system relies primarily on pattern-separated representations seen as essential for
episodic memory [1,9,24-26,29,30,102,103]. Further, the recurrency within the
hippocampal system makes the prediction that hippocampal activity may sometimes
combine information from several separate episodes — a notion that receives empirical
support from neuronal recordings in rodents [71,72]. This generalized replay —
simultaneous reactivation of multiple related traces during testing or offline periods —
may facilitate the creation of new representations from the recombination of multiple
related episodes (“stored generalizations”) [5] and the discovery of novel
relationships (e.g. shortcuts) [71,72]. Empirical evidence also supports a role for the
hippocampus in category- and so-called ‘statistical’ learning [104-106]: the
mechanisms in REMERGE and other related models that rely on separate memory
traces for individual items allow weak hippocampal traces that support only relatively
poor item recognition to mediate near-normal generalization [5,107] .

While encoding-based overlap and retrieval-based models make divergent
experimental predictions, empirical evidence to date does not definitely distinguish
between them (see for discussion [4,5,97]). Indeed, it is conceivable that both
mechanisms operate under different circumstances — perhaps as a function of the
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experimental paradigm under consideration, amount of training, and delay between
training and testing (e.g. [108]) It is also worth noting that in reality the difference
between encoding-based and retrieval-based models is not absolute: as alluded to
above, generalized replay may facilitate the formation of new representations that
directly capture distant relationships between items (e.g. the linear hierarchy in the
transitive inference paradigm: [89,5,109]). Such representations then become the
contents of episodic memory, subject to storage in the hippocampus.

The distinction between encoding- and retrieval-based models can be related more
broadly to the finding of “concept” cells: hippocampal neurons which come to
respond to common features across many events, for example cells for specific odors
[110]; time points within an episode [111]; attributes of a task [112], and even cells
that fire to any picture or even the name of a famous person [113]. In Box 7, we
review empirical findings concerning concept cells and pattern overlap sometimes
observed in parts of hippocampus and consider how well these findings fit within the
perspective that the hippocampus supports pattern separation.

Rapid schema-dependent consolidation

It is useful to distinguish systems-level consolidation from what we refer to as within-
system consolidation. The former refers to the gradual integration of knowledge into
neocortical circuits, while the latter denotes stabilization of recently formed memories
within the hippocampus, perhaps through stabilize synapses among hippocampal
neurons [88]. In the initial formulation of CLS, systems-level consolidation was
viewed as temporally extended (e.g. spanning years or even decades in humans
[33,50-52]). Although it was noted in [1] that the timeframe could be highly variable
(depending, perhaps, on the rate of replay of memory traces in the hippocampus),
recent evidence suggests that this timeframe can be much shorter than anticipated
(e.g. as little as a few hours to a couple of days) [7,8]. We focus on empirical data
from the influential “event arena” paradigm which demonstrated striking evidence of
this phenomenon [7,8].

In the studies using this paradigm [7], rats were trained to forage for food in an event
arena whose location was indicated by the identity of a flavor (e.g. banana) presented
to the animal as a cue in a start box (Box 8). Learning of six such flavor-place paired
associations (PAs) required multiple sessions distributed over several weeks, and was
found to be hippocampus-dependent. Interestingly, although the learning of the
original 6 PAs proceeded at a slow rate, rats were then able to learn two new PAS
within the now familiar event arena based on a single exposure to each. Importantly,
this one-shot learning was dependent on the presence of prior knowledge, often
termed a “schema”: no such rapid learning was observed when rats that had been
trained within one event arena were exposed to new PAs within a novel arena.
Further, while lesioning the hippocampus just prior to exposure to new PAs severely
impaired learning, memory for the new PAs remained robust when the hippocampus
was surgically removed 2 days later. A follow-up study [8] provided insights into the
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neural basis of this phenomenon: the expression of genes associated with synaptic
plasticity was significantly greater in neocortex very shortly (80 minutes) after rats
experienced new PAs in the familiar arena compared to new PAs in the unfamiliar
arena. Taken together, these results support the view that rapid systems-level
consolidation, mediated by extensive, synaptic changes in the neocortex within a short
time after initial learning, is possible if the novel information is consistent with
previously acquired knowledge.

At face value, the findings from the event arena paradigm [7,8] present a substantial
challenge to a core tenet of CLS theory as originally stated: newly acquired
memories, the theory proposed, should remain hippocampus-dependent for an
extended time to allow for gradual interleaved learning so that integration into the
neocortex can occur while avoiding the catastrophic forgetting of previously acquired
knowledge. It is worth noting, however, that the simulations presented in the original
CLS paper to illustrate the problem of catastrophic interference involved the learning
of new information that is inconsistent with prior knowledge. As such, the
relationship between the degree to which new information is schema-consistent and
the timeframe of systems-level consolidation was not actually explored.

Recent work within the CLS framework [114] addressed this issue using simulations
designed to parallel the key features of the event arena experiments [7,8] using the
same neural network architecture and content domain that had been used in the
original CLS paper as an illustration of the principles of learning in the neocortex.
Briefly, the network was first trained to gradually acquire a schema (structured body
of knowledge) about the properties of a set of individual animals (e.g. canary is a bird,
can fly; salmon is a fish, can swim), paralleling the initial learning phase over several
weeks in the event area paradigm (see [114] for details). Next the ability of this
trained network to acquire new information was examined. The network was trained
on a new item X, whose features were either consistent or inconsistent with prior
knowledge (e.g. X is a bird and X can fly, consistent with known birds, or X is a bird
but can swim, not fly, inconsistent with the items known to the network), thus
mirroring the learning of new PAs under schema-consistent and schema-inconsistent
conditions in the Tse et al. experiments. Notably, the network exhibited rapid learning
of schema-consistent information without disrupting existing knowledge, while
schema-inconsistent information was acquired much more slowly and necessitated
interleaved training with the already-known examples (e.g. canary) to avoid
catastrophic interference. Interestingly, there was also a clear relationship between the
profile of weight changes occurring in the network and the consistency of the
information being learnt. Specifically, even though the same small value of the
learning rate parameter was used in both simulations, large amplitude weight changes
occurred during the learning of schema-consistent, but not schema-inconsistent,
information — emulating the schema-dependent pattern of neocortical plasticity-
related gene expression reported in [8]. A theoretical analysis of multilayer neural
networks makes clear why the model exhibits these effects (Saxe et al., arXiv, 2013):
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The analysis shows that the rate of learning within a multilayered neural network of
the kind CLS attributes to the neocortex (Saxe et al., arXiv, 2013) will always depend
on the state of knowledge within the network and on the compatibility of new inputs
with the structured system this knowledge represents.

The analysis just described thus addresses the challenge to CLS theory posed by the
findings from the event arena paradigm [7,8] (Box 8 discusses other issues related to
rapid systems-level consolidation). Taken together, this empirical and theoretical
research highlights the need for two amendments to the theory as originally stated
[114]. Firstly, consider the core tenet of the theory that the incorporation of novel
information into neocortical networks must be slow to avoid catastrophic interference:
We now know that this statement only applies when new information is inconsistent
with existing knowledge in the neocortex. The second important amendment relates to
the original dichotomy between the slow learning neocortical system and a fast
learning system instantiated in the hippocampus. The empirical data, simulations, and
theoretical work summarized above demonstrate that the neocortex does not
necessarily learn slowly. More accurately, we now characterize the rate of learning in
the neocortex as being prior-knowledge dependent, rather than being slow per se.
Because input to the hippocampus depends on the structured knowledge in the cortex,
it follows that hippocampal learning will also be prior knowledge dependent [115].
Future research should explore this issue.

Links between CLS Theory and Machine Learning Research

The core principles of CLS theory have broad relevance not only in understanding the
organization of memory in biological systems, but also in designing agents with
artificial intelligence. Here we discuss connections between aspects of CLS theory
and recent themes in machine learning research.

Deep Neural Networks & Slow Learning Neocortical System

Very deep networks [16], sometimes with more than 10 layers, grew out of earlier
computational work [15,16,116] on networks with only a few layers, which were used
to model the essential principles of the slow learning neocortical system within the
CLS framework. In general, therefore, deep networks share the characteristics of the
slow learning neocortical system discussed previously: since their goal is to achieve
an optimal parametric characterization of the statistics of the environment, they learn
gradually through repeated, interleaved exposure to large numbers of training
examples.

In recent years, deep networks have achieved state-of-the-art performance in several
domains, including image recognition and speech recognition [16], made possible
through increased computing power and algorithmic development. Their power
resides in their ability to learn successively more abstract representations from raw
sensory data (e.g. the image of an object) — for example oriented edges, edge
combinations and object parts — through composing multiple processing layers that
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perform non-linear transformations. One class of deep networks, termed
convolutional neural networks (CNNSs), have been particularly successful in achieving
state-of-the-art performance in challenging object recognition tasks (e.g. ImageNet:
[117]). CNNs are particularly suited to the task of object recognition since their
architecture naturally builds in robustness to changes in position through the use of a
hierarchy of convolutional filters where units within a feature map at each layer share
the same weights allowing them to detect the same feature at different locations.
Interestingly, CNNs have recently also been shown to provide a good model of object
recognition in primates at both behavioral and neural levels (e.g. V4, inferotemporal
cortex) [17,18,39].

Neural Networks and Replay

For the purposes of machine learning, deep networks are often trained in interleaved
fashion since the examples from the entire dataset are available throughout. This is
not generally the case, however, in a developmental or on-line learning context, when
intelligent agents need to learn and make decisions while gathering experiences
and/or where the data distribution is changing perhaps as the agent’s abilities change.
Here, recent machine learning research has drawn inspiration from CLS theory about
the role of hippocampal replay. Implementation of an “experience replay” mechanism
was critical to developing the first neural network (Deep Q-Network or DQN) capable
of achieving human-level performance across a wide variety of Atari 2600 games by
successfully harnessing the power of deep neural networks and reinforcement
learning (RL)[118] (see Box 9).

Continual Learning and the Hippocampus

Continual learning — the name machine learning researchers use for the ability to learn
successive tasks in sequential fashion (e.g. tasks A, B, C) without catastrophic
forgetting of earlier tasks (e.g. task A) — remains a fundamental challenge in machine
learning research, and addressing it can be considered a prerequisite to developing
artificial agents we would consider truly intelligent. A principal motivation for
incorporating a fast learning hippocampal system as a complement to the slow
neocortical system in CLS theory was to support continual learning in the neocortex:
hippocampal replay was proposed to mediate interleaved training of the neocortex
(i.e. intermixed examples from tasks A, B, C) despite the sequential nature of the real
world experiences. Here, we draw attention to a second relatively under-explored
reason why the hippocampus may facilitate continual learning, particularly over
relatively short timescales (i.e. before systems-level consolidation).

As discussed previously, the hippocampus is thought to represent experiences in
pattern-separated fashion, whereby in the idealized case even highly similar events
are allocated neuronal codes that are non-overlapping or orthogonal (e.g.[25]).
Notably, the advantages of this coding scheme for episodic memory — reduction of
interference between similar but distinct events — may also have significant benefits
for continual learning. Specifically, this mechanism allows the rapid creation of
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distinct non-interfering representations for multiple tasks to which an agent has been
exposed in sequential fashion. The utility of this function, and the ubiquity of
continual learning, is well established in the domain of spatial navigation, where the
notion of a task can be related to that of an environmental context: rodents are able to
learn and sustain robust representations of many different environments (e.g. >10
environments in [119]), with each environment represented by a pattern-separated
representational space (putatively implemented as a continuous attractor, called a
“chart” [120]) within the CA3 subregion of the hippocampus within which specific
locations are further individuated [121-123].

Neural Networks with External Memory and the Hippocampus

Recent work has suggested that deep networks may be considerably augmented by the
addition of an external memory. For example, an external memory is used in the
Neural Turing Machine (NTM) (Graves et al., Neural Turing Machines, arXiv, 2014),
and this memory has content-addressable properties akin to those of the attractor
networks used to model pattern completion in the hippocampus (see Box 10). Such
an external memory has been shown to support functionalities such as the learning of
new algorithms (e.g. performing paired associative recall: see Box 10 (Graves et al.,
Neural Turing Machines, arXiv, 2014)) and question & answering (Q & A [124],
Weston et al., arXiv, 2014) — a class of machine learning paradigms where textual
outputs are required based on queries (e.g. Q: where is Bill?; A: the bathroom)
requiring inference over a knowledge database (e.g. a set of sentences).

It is also worth noting that the neuropsychological testing of story recall can be
considered a small scale version of the Q & A task used in machine learning (e.g.
[124]). When the amount of story content to be retained exceeds a few sentences, this
task is critically dependent on the memory storage properties of the hippocampus.
Indeed, the specific working of the REMERGE model of the hippocampus —
recurrent similarity computation (see Glossary), such that the output of the episodic
system is recirculated as a new input — has parallels in a recent machine learning
algorithm developed for the purpose of Q & A, termed a “memory network” (Weston
et al., arXiv, 2014). Specifically, a learned, dense feature-vector representation of an
input query (e.g. “where is the milk?”) is used to retrieve the sentence with the most
similar feature vector in the database (e.g. “Joe left the milk): a combined feature
representation of initial query and retrieved sentence is then used to identify similar
sentences earlier in the story (“Joe travelled to the office™); this process iterates until a
response is emitted by the network (“the office”). The joint dependence of this system
on input/output feature representations that are developed gradually through training
with a large corpus of text and individual stored sentences nicely parallels the
complementary roles of neocortical and hippocampal representations in CLS theory
and REMERGE.
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Box: Outstanding Questions

e Under what conditions does the proposed hippocampal reweighting of
experiences result in a biased neocortical model of environmental structure?

e Are hippocampal representations updated to incorporate changes in
neocortical representations (the “index maintenance” problem), and if so how?

e What is the fate of hippocampal memory traces after systems-level
consolidation is complete?

e What are the precise conditions under which rapid systems-level consolidation
can occur?

e Are hippocampal memory traces susceptible to reconsolidation in a way that
mirrors amygdala-dependent memories (e.g. in fear conditioning paradigms)?

e What neocortical mechanisms complement hippocampal replay in facilitating
continual learning?

e What algorithmic functionalities and implementational schemes are desirable
for an external memory module both for human learners and for artificial
agents?

Concluding Remarks

We have argued that the core features of the memory architecture proposed by CLS
theory continue to provide a useful framework for understanding the organization of
learning systems in the brain. We have, however, refined and extended the theory in
several ways. First, we now encompass a broader and more significant role for the
hippocampus in generalization than previously thought. Second, we have amended
the statement that neocortical learning is constrained to be slow per se — rather, we
now clarify that the rate of neocortical learning is prior-knowledge dependent and can
be relatively fast under certain conditions. Together, these revisions to the theory
imply a softening of the originally strict dichotomy between characteristics of
neocortical (slow learning, parametric and so generalizing) and hippocampal (fast
learning, item-based) systems. In addition, we have extended the proposed functions
for the fast learning hippocampal system, suggesting this system can circumvent the
general statistics of the environment by reweighting experiences that are of
significance. Finally, we have highlighted the broad applicability of the principles of
CLS theory to developing agents with artificial intelligence, an area which we hope
will continue to rise in interest and become a significant direction for future research
(see Outstanding Questions Box).
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Trends Box

Discovery of structure in ensembles of experiences depends on an interleaved
learning process both in biological neural networks in neocortex and in contemporary
artificial neural networks.

Recent work shows that once structured knowledge has been acquired in such
networks, new consistent information can be integrated rapidly.

Both natural and artificial learning systems benefit from a second system that stores
specific experiences, centred on the hippocampus in mammalians.

Replay of experiences from this system supports interleaved learning and can be
modulated by reward or novelty, which acts to rebalance the general statistics of the
environment towards the goals of the agent.

Recurrent activation of multiple memories within an instance-based system can be

used to discover links between experiences, supporting generalization and memory-
based reasoning.
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BOX 1. Empirical evidence supporting core principles of CLS Theory

The role of the hippocampus in memory: Bilateral damage to the hippocampus
profoundly affects memory for new information, leaving language, reading, general
knowledge, and acquired cognitive skills intact [28,33], consistent with the idea that
many types of new learning are initially hippocampus-dependent. Memory for recent
pre-morbid information is profoundly affected by hippocampal damage, with older
memories less dependent on the hippocampus and therefore less sensitive to
hippocampal lesions [1,33,50,125], supporting gradual integration of learned
information into cortical knowledge structures. However, some evidence suggests that
memory for specific details of an event remains MTL dependent [51,126] as long as
the details are retained (e.g. [127]).

Hippocampus supports core computations and representations of a fast learning
episodic memory system: Episodic memory is widely accepted to depend on the
hippocampus, mediated by a capacity to bind together (i.e. “autoassociate”) diverse
inputs from different brain areas that represent the constituents of an event. Indeed,
information about the spatial (e.g. place) and non-spatial (e.g. what happened) aspects
of an event are thought to be processed primarily by parallel streams before
converging in the hippocampus at the level of the DG/CA3 subregions [36]. Two
complementary computations — pattern separation and pattern completion — are
viewed to be central to the function of the hippocampus for storing details of specific
experiences. Evidence suggests that the dentate gyrus (DG) subregion of the
hippocampus performs pattern separation, orthogonalizing incoming inputs prior to
autoassociative storage in the CA3 region [128-134]. Further, the CA3 subregion is
critical for pattern completion — allowing the output of an entire stored pattern (e.g.
corresponding to an entire episodic memory) from a partial input consistent with its
function as an attractor network [135,136] (see Boxes 2-4).

Hippocampal replay: A wealth of evidence demonstrates that replay of recent
experiences occurs during offline periods (e.g during sleep, rest) [2,3]. Further, the
hippocampus and neocortex interact during replay as predicted by CLS theory [64],
putatively to support interleaved learning. A causal role for replay in systems-level
consolidation is supported by the finding that optogenetic blockage of CA3 output in
transgenic mouse after learning in a contextual fear paradigm specifically reduces
sharp-wave ripple (SWR) complexes in CA1 and impairs consolidation [68].

The hippocampus and neocortex support qualitatively different forms of
representation: A recent experiment [137] found initial evidence in favour: the
behavior of rats in the Morris water maze early on appeared to reflect individual
episodic traces (i.e. an instance-based non-parametric representation), but at a later
time point (28 days after learning) was consistent with the use of a parametric
representation putatively housed in the neocortex.
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BOX 2: Functional roles of subregions of the medial temporal lobes.

Work within the CLS framework [26,115,138] relies on anatomical and physiological
properties of MTL subregions and others’ computational insights [9,24,25] to
characterize the computations performed within these structures.

ERC input to the hippocampal system: During an experience, inputs from
neocortex produces a pattern of activation in the Entorhinal Cortex (ERC) thought of
as a compressed description of the patterns in the contributing cortical areas (Box 2
Fig. I, next page): illustrative active neurons in the ERC are shown in blue). ERC
neurons give rise to projections to three sub-regions of the hippocampus proper, the
Dentate Gyrus (DG), CA1l, and CA3 [83,139]. Pattern selection and pattern
separation: Novel ERC patterns are thought to activate a small set of previously
uncommitted DG neurons (shown in red — these neurons may be relatively young
neurons, created by neurogenesis). These neurons, in turn, select a random subset of
neurons in CA3 via large ‘detonator synapses’ (shown as red dots on the projection
from DG to CA3) to serve as the representation of the memory in CA3, ensuring that
the new CA3 pattern is as distinct as possible from the CA3 patterns for other
memories, including those for experiences similar to the new experience (Boxes 3-4).
Pattern completion: Recurrent connections from the active CA3 neurons onto other
active CA3 neurons are strengthened during the experience so that if a subset of the
same neurons later becomes active, the rest of the pattern will be reactivated. Direct
connections from ERC to CA3 are also strengthened, allowing the ERC input to
directly activate the pattern in CA3 during retrieval without requiring DG
involvement (see Box 3). Pattern reinstatement in ERC and neocortex [115,138]:
The connections from ERC to CA1 and back are thought to change relatively slowly
to allow stable correspondence between patterns in CAl and ERC. Strengthening of
connections from the active CA3 neurons to the active CA1 neurons during memory
encoding allows this CA1 pattern to be re-activated when the corresponding CA3
pattern is re-activated; the stable connections from CAl to ERC then allow the
appropriate pattern there to be reactivated, and stable connections between ERC and
neocortical areas propagate the reactivated ERC pattern to the neocortex. Importantly,
the bidirectional projections between CA1 and ERC and between ERC and neocortex
support formation and decoding of invertible CA1l representations of ERC and
neocortical patterns and allow recurrent computations. These connections should not
change rapidly given the extended role of the hippocampus in memory — otherwise
reinstatement in the neocortex of memories stored in the hippocampus would be
difficult [60].
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BOX 2. Figure I: Hippocampal subregions, connectivity and representation. Schematic
depictions of neurons (with circular or triangular cell bodies) are shown, along with schematic
depictions of projections from neurons in an area to neurons in the same or other areas (grey or
colored lines — red coloring indicates projections with highly plastic synapses, while grey
coloring illustrates relatively less plastic or stable projections). CAL output to ERC then
propagates out to neocortex; ERC and even resulting neocortical activity can be fed back into the
hippocampus (dashed line) as proposed in the REMERGE model.
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BOX 3: Pattern separation and completion in different subregions of the
hippocampus

Pattern separation and completion [24-26] are defined in terms of transformations
imposed on inputs to produce outputs [139,140]. Pattern separation makes similar
patterns more distinct by relying on a conjunctive coding scheme [9,24] (Figure I,
left) thought to be implemented in DG, whereby each DG neuron responds only when
a specific combination of input neurons is active (Box 4).

Pattern completion is a process that takes a fragment of a pattern and fills in the
remaining features (as in recalling a lion upon seeing the scene where the lion
previously appeared) or that takes a pattern similar to a familiar pattern and makes it
even more similar to it. A model of CA3 [26] shows how it may combine features of
pattern separation and completion, such that moderate and high overlap results in
pattern completion toward the stored memory, but less overlap results in the creation
of a new memory [36,130,141] (Figure I, right). When environmental input produces
a pattern in ERC similar to a previous pattern, the CA3 outputs a pattern closer to the
one it previously used for this ERC pattern [123,142]. However, when the
environment produces an input on the ERC that has low overlap with patterns stored
previously, the DG recruits a new, statistically independent cell population in CA3
(i.e. pattern separation). Interestingly, emerging evidence suggests that the amount of
overlap required for pattern completion (as well as other characteristics of
hippocampal information processing) may differ across the proximal-distal [143,144]
and dorso-ventral axes [97,145-148] of the hippocampus, and may be shaped by
neuromodulatory factors (e.g Acetylcholine) [84,149]. Also, incomplete patterns
require less overlap with a stored pattern than distorted ones for completion to occur,
so that partial cues will tend to produce completion, as when one sees the watering
hole and remembers seeing a lion there previously.

Several studies point to differences between how the population response of CA3 and
CA1 regions responds to changes to the environment [36]: broadly, the CAL region
tends to mirror the degree of overlap in the inputs from the ERC while CA3 shows
more discontinuous responses reflecting either pattern separation or completion
[131,150].
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BOX 3. Figure I. Conjunctive Coding, Pattern Separation, and Pattern Completion.
Left: A set of 10 conjunctive units with connections from a layer of 5 input units is
shown twice with different input patterns. The output in each case is sparser than the
input (i.e. 30% vs 67%, respectively), and the two outputs overlap less than the two
corresponding inputs (i.e. 33% vs 60%, respectively) — where overlap is defined as
number of shared active elements in two patterns divided by the number of active
elements. Middle: the relationship between input and output overlap in the DG. Arrows
indicate the overlap of the inputs and outputs shown in the left panel (i.e. pattern
separation in DG). Right: the separation-and-completion profile associated with CA3,
were low levels of input overlap are reduced further, while higher levels are increased
[26,36].
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BOX 4: Sparse conjunctive coding and pattern separation in the dentate gyrus

Neuronal codes range from the extreme of localist codes — where neurons respond
highly selectively to single entities (“‘grandmother cells”) to dense distributed codes
where items are coded through the activity of many (e.g. 50%) neurons in an area
[151,152]. While localist codes minimize interference and are easily decodable, they
are inefficient in terms of representational capacity. In contrast, dense distributed
codes are capacity efficient: however, they are costly in terms of metabolic cost and
relatively difficult to decode. These are endpoints on a continuum quantified by a
measure called sparsity, where “population” sparsity indexes the proportion of
neurons that fire in response to a given stimulus/location, and “lifetime” sparsity
indexes the proportion of stimuli to which a single neuron responds [25,151,153].
For example, a population sparsity of 1% means that only 1% of the neurons in a
population are active in representing a given input. Two randomly selected sparse
patterns tend to have low overlap (for two randomly selected patterns of equal
sparsity over the same set of neurons, the average proportion of neurons in either
pattern that is active in the other is equal to the sparsity), but neurons still participate
in several different memories, making them more efficient than localist codes.
Despite variability in estimates of the sparsity of a given brain region
[26,151,154,155], the DG is widely believed to sustain among the sparsest neural
code in the brain (~0.5-1% population sparseness) [24-26] . The CA3 region, to
which the DG projects, is thought to be less sparse (~ 2.5% [46]). Many studies find
less sparse patterns in CA1 than CA3 [131,150].

The unique functional and anatomical properties of the DG suggest the origins of its
sparse, pattern-separated code. The perforant path from the ERC (containing ~ 200k
neurons in the rodent) projects to a layer of ~ 1 million of DG granule cells.
Combined with the high levels of inhibition in the DG, this supports the formation of
highly sparse, conjunctive representations, such that each neuron in DG responds only
when several input neurons are simultaneously active, reducing overlap between
similar input patterns [24-26,133]. Evidence also suggests that new DG neurons arise
from stem cells throughout adult life; these new neurons may be preferentially
recruited in the formation of memories [133], further reducing overlap with
previously stored memories. The CAS3 pattern for a memory is then selected by the
active DG neurons, each of which has a ‘detonator’ synapse to ~15 randomly selected
CAZ3 neurons. This process helps minimize the overlap of CA3 patterns for different
memories, increasing storage capacity and minimizing interference between them,
even if the two memories represent similar events that have highly overlapping
patterns in neocortex and ERC. Empirical evidence provides support for this, with
one study [134] showing that the representation supported by DG was highly sensitive
to small changes in the environment, despite evidence that incoming inputs from the
ERC were little affected (also see [130,143]), and DG lesions impair learning to
respond differently in very similar environments with little effect when the
environments are less similar [133].
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BOX 5: Similarity-based coding in high-level visual cortex

High level visual regions of the neocortex are thought to support distributed
representations that are thought to be less sparse than that of the DG and the
CAZ3/CAL regions of the hippocampus (see Box 4). Population sparseness in the ERC
is estimated at 7-10% [156], with high level sensory cortices exhibiting similar or
higher levels of sparseness (e.g. variable estimates: [43-45]). Although lifetime
sparseness does not directly translate to population sparseness, recent evidence
suggests that V4 and IT have a sparseness of ~ 10% on this measure [157]. It is worth
noting that learning rates may vary according to neuronal selectivity and lifetime
sparseness, resulting in differences in learning rates across neocortical areas and
hippocampal subregions. Neurons in early visual regions that encode frequently
occurring features (i.e. edges) may have a relatively slow learning rate while neurons
in higher visual regions and beyond (e.g. ITc and perirhinal cortex) may have a higher
learning rate to support the encoding of less frequently occurring, more conjunctive
features (e.g. individual objects) [12,158,159].

Evidence from electrophysiological recording studies in high level visual cortical
regions such as the inferotemporal (ITc) cortex in primates provides support for the
operation of a similarity-based coding scheme — whereby related categories (e.g. dogs
& cats) are represented by overlapping neuronal codes [17,39-42] (see Box 5 Fig. I,
next page). Representational similarity analysis (RSA) of the ITc population response
during passive viewing of pictures reveals coding of fine-grained categorical structure
(e.g. of a set of animate and inanimate objects) — that is well fit by deep convolutional
neural networks which have algorithmic parallels with feedforward processing in the
ventral visual stream [17,39]. While analogous similarity-based coding was observed
using fMRI in the human homologue of ITc [40], there was no evidence found for
greater within-category (cf between-category) representational similarity in any
subregion of the hippocampus in a recent fMRI study [160] which found evidence
consistent with the importance of pattern separation in episodic memory. Instead,
similarity-based coding in this study was observed in the perirhinal and
parahippocampal cortex — MTL regions that project to the ERC, and are typically
considered intermediate zones (i.e. between the hippocampal and neocortical systems)
in CLS theory.
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Box 5. Figure 1. Similarity-based coding in high level visual cortex

Representational dissimilarity matrices (RDM) reflect the correlation (i.e. 1-r, where r is the
Pearson correlation coefficient) between the response of voxel patterns (fMRI in humans
[40]: right panel) or neuronal populations (electrophysiological recording in monkey [42]:
left panel) to a set of 92 object images. RDMs are analogous in both monkey and human IT.
The RDMs show that the representations of animate objects are similar, as are those of
inanimate objects. In addition to this clear animate-inanimate distinction, object coding in
IT cortex exhibits finer categorical structure (e.g. for faces, body parts), visible in these
RDM s (also see [40]). Reproduced with permission from [40].
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Box 6. Generalization through Recurrence in the Hippocampal System.

The REMERGE model (Figure 1) [5], which reflects a synthesis of interactive
activation competitive (IAC) models [161] and exemplar models (see Glossary) of
memory [107,162,163], constitutes an abstraction and simplification of the multi-
stage circuitry of the hippocampal system into two principal layers: feature and
conjunctive layers, broadly corresponding to the entorhinal cortex and hippocampus
proper, respectively. The localist coding (e.g. unit AB) in the conjunctive layer
reflects an idealization of the sparse distributed pattern separated codes thought to
exist in the DG/CA3 subregions of the hippocampus (Boxes 2-4), and support
episodic memory (e.g. for trials involving presentation of A and B objects together).

An essential principle of the model — mediated by the bidirectional excitatory
connections between feature and conjunctive layers — is the principle of recurrence
between the hippocampus proper and neocortical regions such as the entorhinal cortex
(ERC) (termed “big-loop” recurrence, to distinguish it from the internal recurrence
known to exist within the CA3 region). This allows recirculation of network output
as a subsequent input to the system. Intuitively, this functionality is critical to
allowing the model to discover the higher-order structure present within a set of
related episodes: an initial probe on the feature layer (e.g. denoting stimuli present on
screen during a test trial) prompts the activation of experiences containing these
elements on the conjunctive layer, which in turn drives a new pattern of feature layer
activity that reflects not only the external input but also the content of retrieved
experiences. This in turn leads to the activation of conjunctive units denoting
experiences related to the new feature layer pattern, and so on. This can bring about a
situation where, for example, the presentation of A and C can result in the activation
of AB and BC, which jointly activate B, in turn further activating AB and BC which
then suppress other conjuncts involving A and C. This produces a stable state in
which AB, BC, and A, B, and C are all activated at the same time — thereby
effectively inferring a link between A and C. Longer range inferences (e.g. B---E)
can also be supported by the recurrent mechanism (see [5] for details). Formally, the
function of the network can be viewed as carrying out recurrent similarity
computation (see Glossary). Unlike other exemplar models [107,162,163], in which
similarity computation is performed only on external inputs REMERGE performs
such computations on inputs affected by its own outputs.

Conjunctive @ @

- 90000 ®

BOX 6. Figure 1. A schematic of the architecture of REMERGE. Recurrent architecture
of REMERGE, showing its two layer architecture, with input/output units for possible
constituents of experiences (A — F), conjunctive units representing pairs of constituents that
have occurred together (AB, BC, etc.), bidirectional connections (dotted arrows) between
conjuncts and their constituents, and recurrent inhibition (broad arrow) among conjunctive
units. Adapted from [5].
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BOX 7: Concept cells and nodal codings?

Reports of concepts cells in the hippocampus have been taken as contradicting a tenet
of CLS theory, but the existence of such neurons is not necessarily inconsistent with
it, given that the theory expects different hippocampal regions to vary in terms of
context specificity and permits variation within hippocampal regions as well (Box 3).
Evidence supporting the CLS prediction of context-specificity in the CA3 & DG
comes from a recent intracranial recording study in humans [164]. In this study,
neurons in CA3/DG, and also the subiculum, tended to discriminate between different
images of a famous person — with responses correlating with successful performance
in a recognition memory task that required discriminating previously experienced
targets from similar lures. Neurons in other MTL areas (i.e. entorhinal and
parahippocampal cortices) exhibited more invariant “concept cell like” responses that
were not linked to memory performance (the CA1 subregion was sparsely sampled in
this study).

It is also interesting to consider the finding of “splitter” cells in a task where animals
must alternate turning left and right on successive trials in a T maze [165-167]: here,
some CA1 and CA3 place cells for locations on the central stem of the T-maze are
modulated by the trajectory of the rat (e.g. whether it will subsequently turn left or
right) while others are trajectory-independent. This phenomenon, known as partial
remapping [47,168-170], is consistent with the idea that pattern separation is a matter
of degree in our theory [26,36]. As such, we should expect partly overlapping
representations (i.e. rather than fully independent “charts” [120]) when environmental
changes are sufficiently small (Box 3). We also expect the greatest differentiation in
DG, and at an early point in learning. To our knowledge no studies have yet recorded
in DG in this paradigm.

In a recent study, representational similarity analysis techniques [171] were applied to
ensemble recording data collected while rats performed a context-guided reward
discrimination task [112]. As expected, the population codes in CA3 and CA1 were
dominated by context and place coding, though other task dimensions — reward value
and item — were also represented [112] (also see [172]). Whilst there was some
representational overlap across locations based on value and item, CA3/CAL codes
were consistent with incomplete but still strong pattern separation, especially in the
dorsal hippocampus. Overall, these findings appear consistent with the CLS, with the
provision that pattern separation is a matter of degree, and may vary by task and
region. Why CA3 shows greater specificity than CA1 in some studies but not others
requires further exploration.
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Box 8: Rapid integration of new learning in the neocortex: When does it occur?

In the event arena paradigm [7,8](Box 8 Figure I, next page) hippocampal lesions
prevent acquisition of new schema-consistent associations. In contrast, hippocampal
lesions performed as little as 48 hours after learning leave memory intact. One
explanation for the critical but temporary nature of the hippocampal contribution is
replay: even a few minutes with the hippocampus intact could allow multiple replays,
each one incrementing the strength of intra-neocortical connections. In the
investigation of induction of plasticity related genes in neocortex [8]the hippocampus
was intact for 80 minutes after initial exposure to the new associations. These finding
raise the broader question of when rapid integration of new learning into the
neocortex occurs, and whether it can occur even without a hippocampus.

A substantial body of work from several laboratories now supports the view that a
single period of sleep can produce changes in how experiences from a single learning
session impact subsequent responding. As key examples, some studies have reported
increased levels of linking inferences [173] and others have reported increased lexical
competition and related phenomena [108,174] attributed to a single sleep session.
These findings are often interpreted as evidence of rapid systems level consolidation
(e.g., [174]) However, the materials used are not obviously highly consistent with
prior knowledge in most cases, so that, under the CLS framework, we would not
expect full integration into neocortical networks in such a short time period. An
alternative interpretation (illustrated in [5]) is that replays during sleep increase the
strength, robustness, and rate of activation of new hippocampus-dependent traces, and
that such strengthening may be sufficient to account for the observed effects. Thus,
the findings are consistent with the view that integration of these new memories into
neocortical structures proceeds over a considerably longer time period.

Work with the ‘fast mapping’ paradigm in humans with hippocampal lesions [175]
provides another potential source of evidence about rapid neocortical learning of
arbitrary new information. In this paradigm, human participants see pairs of pictures
of objects — one familiar and one unfamiliar — and are asked a question such as ‘is the
numbat’s tail pointing up’, inferring that the unfamiliar name ‘numbat’ must refer to
the unfamiliar object [175]. Some studies find that patients with extensive
hippocampus damage show retention of the new object-name association at a delayed
test [176,177], suggesting very rapid neocortical learning even without a
hippocampus. However, the finding has proven difficult to replicate [178-180];
future studies should continue to investigate this issue.
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Box 8. Figure I. Schematic illustration of the event arena paradigm. (A) Overhead view of
1.6m x 1.6m event-arena: rats are cued with one of six food flavors (e.g. banana) each
associated with a location in the arena (e.g. location 3) and are required to go from any of the
4 start boxes to a specific location to retrieve food. (B) Following gradual learning of the
original set, 2 new paired flavor-place pairs are introduced: (e.g., cinnamon-location7;
nutmeg-location8). Rapid schema-dependent one-shot learning of these new PAs is observed
(see Box text). Figure based on experimental design described in [7].
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Box 9: Experience Replay in Deep Q-Networks

Instead of employing a standard online learning method in which each unit of play
experience (consisting of a state, action, next state and resulting reward) is used
immediately to adjust connection weights and then discarded, an experience replay
buffer similar to the hippocampus is used. This allows learning based on randomly-
chosen subsets of recent experiences stored in the replay buffer (see for details [118])
to be interleaved with ongoing game-play. The approach is in line with findings cited
above [65] that hippocampal replay reactivates reward related neurons in striatum, in
accord with the hypothesis that hippocampus-dependent RL facilitates learning during
off-line periods.

Experience replay in the DQN architecture was critical in i) maximizing data
efficiency, allowing each unit of experience to be re-used in many updates (e.g.
mirroring benefits of repeated time-compressed hippocampal replay) and ii)
smoothing out learning and avoiding unstable response policies that can result from
the tendency of the current policy to bias the experienced samples. The approach
minimizes learning from consecutive samples, which is undesirable due to their
strongly correlated nature and inconsistent with the implicit assumptions built into
neural network learning algorithms. Instead experience replay allows updates within
the deep Q-network to be performed on non-adjacent samples from a set of recent
experiences in a fashion that break up these correlations while still relying on relevant
statistics. The dramatic advantage of a network implementing interleaved learning
through experience replay was illustrated by the effects of disabling replay on
network performance: This caused a severe drop in performance to at best ~30% of
when experience replay was present [118]. Note that the uniform sampling
mechanism as implemented treats all transitions in the replay memory as if they were
equal. Recent work [181] shows that biasing replay towards significant events —
specifically, experiences that are associated with high temporal difference reward
prediction errors — yields further gains. This mechanism, which resonates with the
role of the hippocampus in reweighting experiences as discussed above, allows
information to be harvested from rare experiences that may be particularly
informative.
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BOX 10: Neural Networks with External Memory and the Hippocampus

The Neural Turing Machine (NTM) (Graves et al., Neural Turing Machines, arXiv,
2014) consists of two basic components: an external memory and a neural network
controller that is distinguished by its ability to interact with the external memory (Box
10 Figure I, next page). An external memory allows specific inputs (such as items to
be remembered) or the results of intermediate computations to be written to it, and
then to be read out in a content- or location- based addressable fashion [182].

The controller interacts with the external memory through write and read heads, that
focus on particular parts of the memory matrix through attentional addressing
mechanisms. Content-based addressing focuses attention on memory slots based on
their similarity to the current values (i.e. “key”’) emitted by the controller. The graded,
similarity-based nature of these addressing mechanisms allows the architecture to be
trained using the continuous learning signals that drive learning in other deep neural
networks[10]. The controller may be a feedforward network, but is more typically a
recurrent network exploiting specialized long-short-term memory (LSTM) modules
[183] that can learn to retain information over very extended numbers of timesteps. In
contrast to standard neural networks, the architecture of the NTM allows a separation
of computation from memory, as in conventional computers (Graves et al., Neural
Turing Machines, arXiv, 2014). This allows the NTM to learn to perform algorithms
independently of the variables concerned (also see [184]).

While parallels have been drawn between the external memory of the NTM and
working memory (Graves et al., Neural Turing Machines, arXiv, 2014), the
characteristics of its external memory can easily be related to long term memory
systems as well. Indeed, content-based addressable external memories of this kind
share functionalities with attractor networks [142] (see Glossary), an architecture
often used to model the computational functions performed by the CA3 subregion of
the hippocampus (e.g. storage and retrieval of episodic memories) [185]. There are
further points of connection between the operation of the NTM and the hippocampus:
information is not stored and retained indiscriminately; instead it is selected based on
an estimate of potential future relevance (see section on “proposed role of the
hippocampus in circumventing the statistics of the environment”).
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BOX 10. Figure I. NTM and the paired associative recall task.

The input to the controller is a sequence of column vectors. The network receives
one column per time step, and the figure shows the columns presented over 29
consecutive time steps indexed by t. Here the input consists of a sequence of items,
where each item is three binary random vectors presented in adjacent time steps.
Two items are highlighted, one in a green box and one in a red box). A delimiter
symbol (in row 4) appears in the time step preceding each item. After three items
have been presented a different delimiter symbol (row 5) occurs followed by a query
(single item in green box). The network responds correctly with the appropriate target
(red box). Schematic representation of external memory matrix shown. Adapted with
permission from (Graves et al., Neural Turing Machines, arXiv, 2014).
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Glossary

Attractor network: Networks with recurrent connectivity that have stable states
which persist in the absence of external inputs, and afford noise tolerance.
Discrete/point attractor networks can be used to store multiple memories as individual
stable states. Continuous attractor networks have a continuous manifold of stable
points which allow them to represent continuous variables (e.g. position in space).
Autoassociative storage: the storage within an attractor network of an input pattern
constituting an experience, such that elements of the input pattern are linked together
through plasticity within the recurrent connections of the network. The operation of
recurrent connections supports functions such as pattern completion, whereby the
entire input pattern (e.g. memory of a birthday party) can be retrieved from a partial
cue (e.g. a friend’s face).

Exemplar models: exemplar models in cognitive science, related to instance-based
models in machine learning, operate by computing the similarity of a new input
pattern (i.e. presented as external sensory input) to stored experiences. This results in
the output of the model, for example a predicted category label for the new input
pattern, at which point the process terminates.

Non-parametric: we use this term to refer to algorithms where each experience or
data point has its own set of coordinates, where capacity can be increased as required
— and the number of parameters may grow with the amount of data. K-nearest
neighbor constitutes one common example of such a non-parametric instance based
method.

Parametric: we use this term to refer to algorithms that do not store each data point,
but rather directly learn a function that (e.g.) predicts the output value for a given
input. The number of parameters is typically fixed.

Paired associative inference (PAI) task: A paradigm where items are organized
into (e.g. a hundred) sets of triplets (e.g. ABC) or larger sets (e.g. sextets: ABCDEF).
Participants view item pairs (e.g. AB, BC) during the study phase and are tested on
their ability to appreciate the indirect relationships between items that were never
presented together (e.g. A and C).

Paired associate recall task: a paradigm where item pairs are experienced during
study (e.g. word pairs such as “dog-table” in a human experiment, or flavor-location
pairs in a rodent experiment), and at test the individual must recall the other item (e.g.
specific location) from a cue (the specific flavor, e.g. banana).

Recurrent similarity computation: Recurrent similarity computation allows the
procedure performed by exemplar models to iterate: that is, the retrieved products
from the first step of similarity computation are combined with the external sensory
input and a subsequent round of similarity computation is performed. This process
continues until a stable state (i.e. basin of attraction in a neural network) is reached.
This allows the model to capture higher-order similarities present in a set of related
experiences, where pairwise similarities alone are not informative.

Sharp wave ripple (SWR): spontaneous neural activity occurring within the
hippocampus during periods of rest and slow wave sleep, evident as negative
potentials (i.e. sharp waves). Transient high frequency (~150Hz) oscillations (i.e.
ripples) occur within these sharp waves, which can reflect the replay (i.e. reactivation)
of activity patterns that occurred during actual experience, sped up by an order of
magnitude.

Sparsity: the proportion of neurons in a given brain region that are active in response
to a given stimulus (“population sparseness”). Sparse coding, where a small (e.g. 1%)
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proportion of neurons is active, is contrasted with dense distributed coding where a
relatively large proportion of neurons is active (e.g. 20%).
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