
CHAPTER 

On Learning the
Past Tenses of English Verbs

D. E. RUMELHART and 1. L. McCLELLAND

THE ISSUE

Scholars of language and psycholinguistics have been among the first
to stress the importance of rules in describing human behavior. The
reason for this is obvious. Many aspects of language can be character-
ized by rules, and the speakers of natural languages speak the language
correctly. Therefore , systems of rules are useful in characterizing what
they will and will not say. Though we all make mistakes when we
speak , we have a pretty good ear for what is right and what is wrong-
and our judgments of correctness-or grammaticality-are generally
even easier to characterize by rules than actual utterances.

On the evidence that what we will and won t say and what we will
and won t accept can be characterized by rules , it has been argued that
in some sense, we " know" the rules of our language. The sense in
which we know them is not the same as the sense in which we know
such " rules " as before e except after c," however , since we need not
necessarily be able to state the rules explicitly. We know them in a way
that allows us to use them to make judgments of grammaticality, it is
often said , or to speak and understand , but this knowledge is not in a
form or location that permits it to be encoded into a communicable ver-
bal statement. Because of this , this knowledge is said to be implicit.

A slight variant of this chapter will appear in B. MacWhinney (Ed.

), 

Mechanisms of

language acquisiTion. Hillsdale, NJ: Erlbaum (in press).
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So far there is considerable agreement. However, the exact charac-
terization of implicit knowledge is a matter of great controversy. One
view , which is perhaps extreme but is nevertheless quite clear, holds
that the rules of language are stored in explicit form as propositions
and are used by language production , comprehension, and judgment

mechanisms. These propositions cannot be described verbally only
because they are sequestered in a specialized subsystem which is used
in language processing, or because they are written in a special code
that only the language processing system can understand. This view we

will call the explicit inaccessible rule view.
On the explicit inaccessible rule view , language acquisition is thought

of as the process of inducing rules. The language mechanisms are
thought to include a subsystem-often called the language acquisition
device (LAD) -whose business it is to discover the rules. A consider-
able amount of effort has been expended on the attempt to describe
how the LAD might operate , and there are a number of different pro-
posals which have been laid out. Generally, though , they share three
assumptions:

. The mechanism hypothesizes explicit inaccessible rules.

Hypotheses are rejected and replaced as they prove inadequate
to account for the utterances the learner hears.

. The LAD is presumed to have innate knowledge of the possible
range of human languages and , therefore , is presumed to con-
sider only hypotheses within the constraints imposed by a set of
linguistic universals.

The recent book by Pinker (1984) contains a state-of-the-art example
of a model based on this approach.

We propose an alternative to explicit inaccessible rules. We suggest
that lawful behavior and judgments may be produced by a mechanism
in which there is no explicit representation of the rule. Instead, we
suggest that the mechanisms that process language and make judgments
of grammaticality are constructed in such a way that their performance
is characterizable by rules , but that the rules themselves are not written
in explicit form anywhere in the mechanism. An illustration of this
view, which we owe to Bates (1979), is provided by the honeycomb.
The regular structure of the honeycomb arises from the interaction of
forces that wax balls exert on each other when compressed. The
honeycomb can be described by a rule , but the mechanism which pro-
duces it does not contain any statement of this rule.

In our earlier work with the interactive activation model of word per-
ception (McClelland & Rumelhart, 1981; Rumelhart & McClelland
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1981 , 1982), we noted that lawful behavior emerged from the interac-
tions of a set of word and letter units. Each word unit stood for a par-
ticular word and had connections to units for the letters of the word.
There were no separate units for common letter clusters and no explicit
provision for dealing differently with orthographically regular letter
sequences-strings that accorded with the rules of English-as opposed
to irregular sequences. Yet the model did behave differently with
orthographically regular non words than it behaved with words. In fact
the model simulated rather closely a number of results in the word per-
ception literature relating to the finding that subjects perceive letters in
orthographically regular letter strings more accurately than they per-
ceive letters in irregular , random letter strings. Thus , the behavior of
the model was lawful even though it contained no explicit rules.

It should be said that the pattern of perceptual facilitation shown by
the model did not correspond exactly to any system of orthographic
rules that we know of. The model produced as much facilitation , for

example , for special nonwords like SLNT which are clearly irregular , as
it did for matched regular nonwords like SLET. Thus , it is not correct
to say that the model exactly mimicked the behavior we would expect
to emerge from a system which makes use of explicit orthographic
rules. However , neither do human subjects. Just like the model , they
showed equal facilitation for vowelless strings like SLNT as for regular

nonwords like SLET. Thus , human perceptual performance seems, in
this case at least , to be characterized only approximately by rules.

Some people have been tempted to argue that the behavior of the
model shows that we can do without linguistic rules. We prefer , how-
ever , to put the matter in a slightly different light. There is no denying
that rules still provide a fairly close characterization of the performance
of our subjects. And we have no doubt that rules are even more useful
in characterizations of sentence production , comprehension , and gram-
maticality judgments. We would only suggest that parallel distributed
processing models may provide a mechanism sufficient to capture law-
ful behavior , without requiring the postulation of explicit but inaccessi-
ble rules. Put succinctly, our claim is that PDP models provide an
alternative to the explicit but inaccessible rules account of implicit
knowledge of rules.

We can anticipate two kinds of arguments against this kind of claim.
The first kind would claim that although certain types of rule-guided
behavior might emerge from PDP models , the models simply lack the
computational power needed to carry out certain types of operations
which can be easily handled by a system using explicit rules. 
believe that this argument is simply mistaken. We discuss the issue of
computational power of POP models in Chapter 4. Some applications
of POP models to sentence processing are described in Chapter 19.
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The second kind of argument would be that the details of language
behavior, and , indeed , the details of the language acquisition process
would provide unequivocal evidence in favor of a system of explicit
rules.

It is this latter kind of argument we wish to address in the present
chapter. We have selected a phenomenon that is often thought of as
demonstrating the acquisition of a linguistic rule. And we have
developed a parallel distributed processing model that learns in a
natural way to behave in accordance with the rule , mimicking the gen-
eral trends seen in the acquisition data.

THE PHENOMENON

The phenomenon we wish to account for is actually a sequence of
three stages in the acquisition of the use of past tense by children learn-

ing English as their native tongue. Descriptions of development of the
use of the past tense may be found in Brown 0973), Ervin 0964), and
Kuczaj 0977).

In Stage 1 , children use only a small number of verbs in the past
tense. Such verbs tend to be very high-frequency words, and the
majority of these are irregular. At this stage , children tend to get the
past tenses of these words correct if they use the past tense at all. For
example , a child's lexicon of past- tense words at this stage might con-
sist of came, got, gave, looked, needed, took and went. Of these seven
verbs , only two are regular- the other five are generally idiosyncratic
examples of irregular verbs. In this stage , there is no evidence of the
use of the rule- it appears that children simply know a small number of
separate items.

In Stage 2, evidence of implicit knowledge of a linguistic rule
emerges. At this stage, children use a much larger number of verbs in
the past tense. These verbs include a few more irregular items , but it
turns out that the majority of the words at this stage are examples of
the regular past tense in English. Some examples are wiped and pulled.

The evidence that the Stage 2 child actually has a linguistic rule
. comes not from the mere fact that he or she knows a number of regu-

lar forms. There are two additional and crucial facts:

. The child can now generate a past tense for an invented word.
For example , Berko 0958) has shown that if children can be
convinced to use rick to describe an action , they will tend to say
ricked when the occasion arises to use the word in the past
tense.
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Children now incorrectly supply regular past-tense endings for
words which they used correctly in Stage 1. These errors may
involve either adding ed to the root as in corned md/, or

adding ed to the irregular past tense form as in camed /kAmdjI
(Ervin , 1964; Kuczaj, 1977).

Such findings have been taken as fairly strong support for the asser-
tion that the child at this stage has acquired the past-tense " rule." To
quote Berko 0958):

If a child knows that the plural of witch is witches he may sim-
ply have memorized the plural form. If, however, he tells us
that the plural of KUtch is gutches we have evidence that he
actually knows, albeit unconsciously, one of those rules which
the descriptive linguist , too , would set forth in his grammar.
(p. 151)

In Stage 3 , the regular and irregular forms coexist. That is , children
have regained the use of the correct irregular forms of the past tense,
while they continue to apply the regular form to new words they learn.
Regularizations persist into adulthood- in fact , there is a class of words
for which either a regular or an irregular version are both considered
acceptable-but for the commonest irregulars such as those the child
acquired first , they tend to be rather rare. At this stage there are some
clusters of exceptions to the basic , regular past-tense pattern of English.
Each cluster includes a number of words that undergo identical changes
from the present to the past tense. For example, there is a inK! ang
cluster , an ing!ung cluster , an eet!it cluster, etc. There is also a group
of words ending in / d! or !t/ for which the present and past are
identical.

Table 1 summarizes the major characteristics of the three stages.

Variability and Gradualness

The characterization of past-tense acquisition as a sequence of three
stages is somewhat misleading. It may suggest that the stages are
clearly demarcated and that performance in each stage is sharply dis-
tinguished from performance in other stages.

I The notation of phonemes used in this chapter is somewhal nonslandard. It is
derived from the compuler-readable diclionary comBining phonetic Iranscriptions of the
verbs used in the simulations. A key is given in Table 5.
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TABLE I

CHARACTERISTICS OF THE THREE STAGES
OF PAST TENSE ACQUISITION

Verb Type Stage I Stage 2 Stage 3

Early Verbs Correct Regularized Correct
Regular Correct . Correci
Other Irregular Regularized Correct or Regularized

Novel Regularized Regularized

In fact, the acquisition process is quite gradual. Little detailed data
exists on the transition from Stage 1 to Stage 2 , but the transition from
Stage 2 to Stage 3 is quite protracted and extends over several years
(Kuczaj, 1977). Further , performance in Stage 2 is extremely variable.
Correct use of irregular forms is never completely absent , and the same
child may be observed to use the correct past of an irregular, the
base + ed form , and the past +ed form , within the same conversation.

""'

Other Facts About Past-Tense Acquisition

Beyond these points , there is now considerable data on the detailed
types of errors.children make throughout the acquisition process, both
from Kuczaj (I977) and more recently from Bybee and Siobin (I 982).
We will consider aspects of these findings in more detail below. For
now , we mention one intriguing fact: According to Kuczaj (I 977),
there is an interesting difference in the errors children make to irregu-
lar verbs at different points in Stage 2. Early on, regularizations are

typically of the base+ed form , like goed; later on, there is a large

increase in the frequency of past +ed errors , such as wented.

THE MODEL

The goal of our simulation of the acquisition of past tense was to
simulate the three-stage performance summarized in Table 1, and to
see whether we could capture other aspects of acquisition. In particu-
lar , we wanted to show that the kind of gradual change characteristic of
normal acquisition was also a characteristic of our distributed model
and we wanted to see whether the model would capture detailed aspects
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of the phenomenon , such as the change in error type in later phases of
development and the change in differences in error patterns observed
for different types of words.

We were not prepared to produce a full-blown language processor
that would learn the past tense from full sentences heard in everyday
experience. Rather , we have explored a very simple past-tense learning
environment designed to capture the essential characteristics necessary
to produce the three stages of acquisition. In this environment, the
model is presented, as learning experiences , with pairs of inputs-one
capturing the phonological structure of the root form of a word and the
other capturing the phonological structure of the correct past-tense ver-
sion of that word. The behavior of the model can be tested by giving it
just the root form of a word and examining what it generates as its
current guess " of the corresponding past-tense form.

Structure of the Model

The basic structure of the model is illustrated in Figure 1. The
model consists of two basic parts: (a) a simple pattern associator net-
work similar to those studied by Kohonen (I 977; 1984; see Chapter 2)
which learns the relationships between the base form and the past-tense

Fixed
Encoding
Network

Pattern Associator
Modifiable Connections

DecodinglBinding
Network

Phonological
representation
of root form

Phonological
representation
of past tenseWickelfeature

representation
of root form

Wickelfeature
representation
01 past tense

FIGURE 1. The basic structure of the model.
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form, and (b) a decoding network that converts a featural representa-
tion of the past-tense form into a phonological representation. All

learning occurs in the pattern associator; the decoding network is sim-
ply a mechanism for converting a featural representation which may be
a near miss to any phonological pattern into a legitimate phonological

representation. Our primary focus here is on the pattern associator.
We discuss the details of the decoding network in the Appendix.

Units. The pattern associator contains two pools of units. One pool
called the input pool , is used to represent the input pattern correspond-
ing to the root form of the verb to be learned. The other pool , called
the output pool , is used to represent the output pattern generated by
the model as its current guess as to the past tense corresponding to the
root form represented in the inputs.

Each unit stands for a particular feature of the input or output string.
The particular features we used are important to the behavior of the
model , so they are described in a separate section below.

Connections. The pattern associator contains a modifiable connec-
tion linking each input unit to each output unit. Initially, these connec-
tions are all set to 0 so that there is no influence of the input units on
the output units. Learning, as in other PDP models described in this
book, involves modification of the strengths of these interconnections

as described below.

Operation of the Model

On test trials , the simulation is given a phoneme string corresponding
to the root of a word. It then performs the following actions. First , it
encodes the root string as a pattern of activation over the input units.
The encoding scheme used is described below. Node activations are
discrete in this model , so the activation values of all the units that
should be on to represent this word are set to 1 , and all the others are
set to O. Then , for each output unit , the model computes the net input
to it from all of the weighted connections from the input units. The
net input is simply the sum over all input units of the input unit activa-
tion times the corresponding weight. Thus , algebraically, the net input
to output unit 

neti "1:aj w

where represents the activation of input unit 

j, 

and 
i) 

represents
the weight from unit to unit 
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Each unit has a threshold

, ()

, which is adjusted by the learning pro-

cedure that we will describe in a moment. The probability that the unit
is turned on depends on the amount the net input exceeds the thresh-
old. The logistic probability function is used here as in the Boltzmann
machine (Chapter 7) and in harmony theory (Chapter 6) to determine
whether the unit should be turned on. The probability is given by

p (a; 1) = 
(neT - 9.

)/ 

1 + 

where represents the temperature of the system. The logistic func-
tion is shown in Figure 2. The use of this probabilistic response rule
allows the system to produce different responses on different occasions
with the same network. It also causes the system to learn more slowly
so the effect of regular verbs on the irregulars continues over a much
longer period of time. As discussed in Chapter 2 , the temperature
can be manipulated so that at very high temperatures the response of
the units is highly variable; with lower values of the units behave
more like linear threshold units.

Since the pattern associator built into the model is a one-layer net
with no feedback connections and no connections from one input unit
to another or from one output unit to another , iterative computation is
of no benefit. Therefore , the processing of an input pattern is a simple
matter of first calculating the net input to each output unit and then

I:::

-2 -1 
(net a~/T

FIGURE 2. The logistic function used to calculate probability of activation. The x-axis
shows values of net - 8;/ T, and the y-axis indicates the corresponding probability that
unit i will be activated.
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setting its activation probabilistically on the basis of the logistic equa-
tion given above. The temperature only enters in setting the varia-
bility of the output units; a fixed value of was used throughout the
simulations.

To determine how well the model did at producing the correct out-
put , we simply compare the pattern of output Wickelphone activations
to the pattern that the correct response would have generated. To do
this , we first translate the correct response into a target pattern of
activation for the output units, based on the same encoding scheme
used for the input units. We then compare the obtained pattern with
the target pattern on a unit-by-unit basis. If the output perfectly repro-
duces the target , then there should be a 1 in the output pattern wher-
ever there is a 1 in the target. Such cases are called hits following the

conventions of signal detection theory (Green & Swets, 1966). There
should also be a 0 in the output whenever there is a 0 in the target.
Such cases are called correct rejections. Cases in which there are Is in
the output but not in the target are called false alarms and cases in
which there are Os in the output that should be present in the input are
called misses. A variety of measures of performance can be computed.
We can measure the percentage of output units that match the correct
past tense , or we can compare the output to the pattern for any other
response alternative we might care to evaluate. This allows us to look
at the output of the system independently of the decoding network.

We can also employ the decoding network and have the system syn-
thesize a phonological string. We can measure the performance of the
system either at the feat ural level or at the level of strings of
phonemes. We shall employ both of these mechanisms in the evalua-
tion of different aspects of the overall model.

Learning

On a learning trial , the model is presented with both the root form of
the verb and the target. As on a test trial , the pattern associator net-
work computes the output it would generate from the input. Then , for
each output unit , the model compares its answer with the target. Con-
nection strengths are adjusted using the classic perceptron convergence
procedure (Rosenblatt , 1962). The perceptron convergence procedure is
simply a discrete variant of the delta rule presented in Chapter 2 and
discussed in many places in this book. The exact procedure is as fol-
lows: We can think of the target as supplying a teaching input to each
output unit, telling it what value it ought to have. When the actual
output matches the target output , the model is doing the right thing

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil



..J

226 PSYCHOLOGICAL PROCESSES

and so none of the weights on the lines coming into the unit are
adjusted. When the computed output is 0 and the target says it should
be 1 , we want to increase the probability that the unit will be active the
next time the same input pattern is presented. To do this , we increase
the weights from all of the input units that are active by a small amount
Tj. At the same time, the threshold is also reduced by Tj. When the
computed output is 1 and the target says it should be 0, we want to
decrease the probability that the unit will be active the next time the
same input pattern is presented. To do this , the weights from all of the
input units that are active are reduced by Tj, and the threshold is
increased by Tj. In all of our simulations , the value of Tj is simply set
to 1. Thus, each change in a weight is a unit change , either up or
down. For non stochastic units, it is well known that the perceptron
convergence procedure will find a set of weights that will allow the
model to get each output unit correct, provided that such a set of
weights exists. For the stochastic case, it is possible for the learning
procedure to find a set of weights that will make the probability of error
as low as desired. Such a set of weights exists if a set of weights exists
that will always get the right answer for nonstochastic units.

Learning Regular and Exceptional Patterns in a
Pattern Associator

In this section , we present an illustration of the behavior of a simple
pattern associator model. The model is a scaled-down version of the
main simulation described in the next section. We describe the scaled-
down version first because in this model it is possible to actually exam-
ine the matrix of connection weights , and from this to see clearly how
the model works and why it produces the basic three-stage learning
phenomenon characteristic of acquisition of the past tense. Various
aspects of pattern associator networks are described in a number of
places in this book (Chapters 1 , 2, 8, 9, 11, ,and 12 , in particular) and
elsewhere (J. A. Anderson , 1973 , 1977; 1. A. Anderson, Silverstein

Ritz , & Jones , 1977; Kohonen , 1977 , 1984). Here we focus our atten-
tion on their application to the representation of rules for mapping one
set of patterns into another.

For the illustration model , we use a simple network of eight input
and eight output units and a set of connections from each input unit to
each output unit. The network is illustrated in Figure 3. The network
is shown with a set of connections sufficient for associating the pattern
of activation illustrated on the input units with the pattern of activation
illustrated on the output units. (Active units are darkened; positive
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-15 -15 -15

+15 +15 +15

-15 -15 -15

-15 -15 -15

FIGURE 3. Simple network used in illustrating basic properties of pattern associator net-
works; excitatory and inhibitory connections needed to allow the active input pattern to
produce the illustrated output pattern are indicated with + and - . Next to the network
the matrix of weights indicating the strengths of the connections from each input unit to
each output unit. Input units are indexed by the column they appear in; output units are
indexed by row.

and negative connections are indicated by numbers written on each
connection). Next to the network is the matrix of connections
abstracted from the actual network itself, with numerical values
assigned to the positive and negative connections. Note that each
weight is located in the matrix at the point where it occurred in the
actual network diagram. Thus , the entry in the ith row of the jth
column indicates the connection 

i) 
from the jth input unit to the ith

output unit.
Using this diagram , it is easy to compute the net inputs that will arise

on the output units when an input pattern is presented. For each out-
put unit , one simply scans across its rows and adds up all the weights
found in columns associated with active input units. (This is exactly

what the simulation program does!) The reader can verify that when
the input pattern illustrated in the left-hand panel is presented, each

output unit that should be on in the output pattern rec~ives a net input
of +45; each output unit that should be off receives a net input of
-45. 2 Plugging these values into Equation 1 , using a temperature

2 In the examples we will be considering in this section , the thresholds of the units are
fixed at O. Threshold terms add an extra degree of freedom for each output unit and
allow the unit to come on in the absence of input . but they are otherwise inessential to
the operation of the model. Computationally, they are equivalent to an adjustable weight
to an extra input unit that is always on.
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of 15 3 we can compute that each output unit will take on the correct
value about 95% of the time. The reader can check this in Figure 2;
when the net input is +45, the exponent in the denominator of the

logistic function is 3, and when the net input is -45, the exponent
is - 3. These correspond to activation probabilities of about .95 and

, respectively.
One of the basic properties of the pattern associ at or is that it can

store the connections appropriate for mapping a number of different
input patterns to a number of different output patterns. The perceptron
convergence procedure can accommodate a number of arbitrary associa-
tions between input patterns and output patterns , as long as the input
patterns form a linearly independent set (see Chapters 9 and 11).
Table 2 illustrates this aspect of the model. The first two cells of the
table show the connections that the model learns when it is trained on
each of the two indicated associations separately. The third cell shows
connections learned by the model when it is trained on both patterns in
alternation , first seeing one and then seeing the other of the two.
Again , the reader can verify that if either input pattern is presented to a
network with this set of connections , the correct corresponding output
pattern is reconstructed with high probability; each output unit that
should be on gets a net input of at least +45 , and each output unit that
should be off gets a net input below - 45.

The restriction of networks such as this to linearly independent sets
of patterns is a severe one since there are only linearly independent
patterns of length N. That means that we could store at most eight
unrelated associations in the network and maintain accurate perform-
ance. However , if the patterns all conform to a general rule , the capac-

ity of the network can be greatly enhanced. For example, the set of
connections shown in Table 2D is capable of processing all of the pat-
terns defined by what we call the rule of 78. The rule is described in
Table 3. There are 18 different input/ output pattern pairs correspond-
ing to this rule , but they present no difficulty to the network. Through
repeated presentations of examples of the rule, the perceptron conver-
gence procedure learned the set of weights shown in cell D of Table 2.
Again , the reader can verify that it works for any legal association fit-
ting the rule of 78. (Note that for this example, the " regular " pairing

3 For the actual simulations of verb learning, we used a value of equal to 200. This
means that for a fixed value of the weight on an input line, the effect of that line being

active on the unit s probability of firing is much lower than it is in these illustrations.
This is balanced by the fact that in the verb learning simulations, a much larger number
of inputs contribute to the activation of each output unit. Responsibility for turning a

unit on is simply more distributed when larger input patterns are used.
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TABLE 2

WEIGHTS IN THE 8-UNIT NETWORK
AFTER VARIOUS LEARNING EXPERIENCES

A. Weights acquired in learning
(2 4 7) (I 4 6)15 

. -

16 

. -. -

17 

. -

16 

. -

16 

. -

17 

. -

16 

. -. -

17 

. - . -. -. -. -. -

Weights acquired in learning
A and B together

24 -

. -

13 -13 -

. -

23 24 
24 -25 -

. -

13 -13 -
13 13 

. -

25 24 -

. -

12 -13 -

. -

24 

. -

13 -
24 -

. -

25 

. -

13 -
13 
24 -

. -

13 -

Weights acquired in learning
(3 4 6) (J 6 7)

. -

16 -

. -

17 -
17 

. -

16 -

. -

17 -
16 
17 

. -

17 -

. -. -. -. -. -

D. Weights acquired in learning
the rule of 78

61 -37 -
35 60 -
39 -35 

-4 -
5 .

-4 -

5 -5 -3 - - 7

4 -6 -3 -5 -
4 .5 ~ - 7 -

59 -37 -37 -8 .
36 60 -38 -7 -
37 -38 60 - - 7

. -

50 
. 49 -

THE RULE OF 78

TABLE 3

Input patterns consist of one
active unit from each of the
following sets:

(I 2 3)

(4 5 6)

(7 8)

The output pattern paired
with a given input pattern

consists of:

The same unit from (I 2 3)
The same unit from (4 5 6)
The other unit from (7 8)

Examples:

An exception:

247-248
168-167
357-358

147-147
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of (I 4 7) with (I 4 8) was used rather than the exceptional mapping
illustrated in Table 3).

We have, then , observed an important property of the pattern associ-
ator: If there is some structure to a set of patterns , the network may be
able to learn to respond appropriately to all of the members of the set.
This is true , even though the input vectors most certainly do not form

linearly independent set. The model works anyway because the
response that the model should make to some of the patterns can be
predicted from the responses that it should make to others of the pat-
terns.

Now let s consider a case more like the situation a young child faces
in learning the past tenses of English verbs. Here , there is a regular

pattern, similar to the rule of 78. In addition, however, there are
exceptions. Among the first words the child learns are many excep-
tions , but as the child learns more and more verbs , the proportion that
are regular increases steadily. For an adult, the vast majority of verbs

are regular.
To examine what would happen in a pattern associator in this kind of

a situation , we first presented the illustrative 8-unit model with two pat-
tern pairs. One of these was a regular example of the 78 rule
((2 5 8) (2 5 7) J. The other was an exception to the rule
((I 4 7) (I 4 7) J. The simulation saw both pairs 20 times , and con-
nection strengths were adjusted after each presentation. The resulting
set of connections is shown in cell A of Table 4. This number of learn-
ing trials is not enough to lead to perfect performance; .but after this
much experience , the model tends to get the right answer for each out-
put unit close to 90 percent of the time. At this point , the fact that one
of the patterns is an example of a general rule and the other is an
exception to that rule is irrelevant to the model. It learns a set of con-
nections that can accommodate these two patterns, but it cannot gen-
eralize to new instances of the rule.

This situation, we suggest, characterizes the situation that the
language learner faces early on in learning the past tense. The child
knows , at this point , only a few high-frequency verbs , and these tend
by and large, to be irregular, as we shall see below. Thus each 

treated by the network as a separate association , and very little generali-
zation is possible.

But as the child learns more and more verbs , the proportion of regu-
lar verbs increases. This changes the situation for the learning model.
Now the model is faced with a number of examples , all of which follow
the rule, as well as a smattering of irregular forms. This new situation
changes the experience of the network, and thus the pattern of inter-
connections it contains. Because of the predominance of the regular
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REPRESENTING EXCEPTIONS: WEIGHTS IN THE 8-UNIT NETWORK

TABLE 4

A. After 20 exposures to
(147)--(147), (2 5 8)--(2 5 7)

12 -12 12 -12 12 -
11 13 -11 13 -I I 
11 -11 

. -

11 -11 

. -

11 -
12 -12 12 -12 12 -II 11 

. -

11 11 

. -

11 
11 -12 

. -

11 -12 

. -

11 -
12 11 12 11 12 II
11 -13 

. -

11 -13 

. -

11 -

C. After 30 more exposures to

all 18 associations

61 -38 -38 -6 -
38 62 -39 -6 -
37 -38 62 -5 -
-4 -6 - 62 -40
5 - -4 -38 
6 -4 -5 -38 -

20 -5 - 22 -19 5 -18 

-4 -6 -
-4 -8 -
3 -7 -

38 -8 -
38 - - 7

62 - - 7

6 -50 
54 -

B. After 10 more exposures to

all 18 associations

- 7 - 7

-42

After a total of 500 exposures
to all 18 associations

- 7

-40 - 7

- 7

106

91 - 106

form in the input , the network learns the regular pattern , temporarily
overregularizing " exceptions that it may have previously learned.

Our illustration takes this situation to an extreme , perhaps , to illus-

trate the point. For the second stage of learning, we present the model
with the entire set of eighteen input patterns consisting of one active

unit from (1 2 3), one from (4 5 6), and one from (7 8), All of these
patterns are regular except the one exception already used in the first
stage of training.

At the end of 10 exposures to the full set of 18 patterns , the model
has learned a set of connection strengths that predominantly captures
the " regular pattern." At this point , its response to the exceptional pat-
tern is worse than it was before the beginning of Phase 2; rather than
getting the right output for Units 7 and 8 , the network is now regulariz-
ing it.

The reason for this behavior is very simple. All that is happening is
that the model is continually being bombarded with learning experi-
ences directing it to learn the rule of 78. On only one learning trial out
of 18 is it exposed to an exception to this rule.
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In this example , the deck has been stacked very strongly against the
exception. For several learning cycles , it is in fact quite difficult to tell
from the connections that the model is being exposed to an exception
mixed in with the regular pattern. At the end of 10 cycles , we can see
that the model is building up extra excitatory connections from input
Units 1 and 4 to output Unit 7 and extra inhibitory strength from Units
1 and 4 to Unit 8, but these are not strong enough to make the model
get the right answer for output Units 7 and 8 when the (I 4 7) input
pattern is shown. Even after 40 trials (panel C of Table 4), the model
still gets the wrong answer on Units 7 and 8 for the (1 4 7) pattern
more than half the time. (The reader can still be checking these asser-
tions by computing the net input to each output unit that would result
from presenting the (1 4 7) pattern.)

It is only after the model has reached the stage where it is making
very few mistakes on the 17 regular patterns that it begins to accommo-
date to the exception. This amounts to making the connection from
Units 1 and 4 to output Unit 7 strongly excitatory and making the con-
nections from these units to output Unit 8 strongly inhibitory. The
model must also make several adjustments to other connections so that
the adjustments just mentioned do not cause errors on regular patterns
similar to the exceptions, such as (1 5 7), (2 4 7), etc. Finally, in
panel D , after a total of 500 cycles through the full set of 18 patterns
the weights are sufficient to get the right answer nearly all of the time.
Further improvement would be very gradual since the network makes
errors so infrequently at this stage that there is very little opportunity
for change.

It is interesting to consider for a moment how an association is
represented in a model like this. We might be tempted to think of the
representation of an association as the difference between the set of
connection strengths needed to represent a set of associations that
includes the association and the set of strengths needed to represent the
same set excluding the association of interest. Using this definition , we

see that the representation of a particular association is far from invari-
ant. What this means is that learning that occurs in one situation (e.
in which there is a small set of unrelated associations) does not neces-
sarily transfer to a new situation (e. , in which there are a number of
regular associations). This is essentially why the early learning our
illustrative model exhibits of the (I 4 7) (1 4 7) association in the

context of just one other association can no longer support correct per-
formance when the larger ensemble of regular patterns is introduced.

Obviously, the example we have considered in this section is highly
simplified. However , it illustrates several basic facts about pattern asso-
ciators. One is that they tend to exploit regularity that exists in the
mapping from one set of patterns to another. Indeed , this is one of the
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main advantages of the use of distributed representations. Second , they
allow exceptions and regular patterns to coexist in the same network.
Third , if there is a predominant regularity in a set of patterns , this can
swamp exceptional patterns until the set of connections has been
acquired that captures the predominant regularity. Then further , grad-
ual tuning can occur that adjusts these connections to accommodate
both the regular patterns and the exception. These basic properties of
the pattern associator model lie at the heart of the three-stage acquisi-
tion process, and account for the gradualness of the transition from
Stage 2 to Stage 3.

Featural Representations of Phonological Patterns

The preceding section describes basic aspects of the behavior of the
pattern associator model and captures fairly well what happens when a
pattern associ at or is applied to the processing of English verbs , follow-
ing a training schedule similar to the one we have just considered for
the acquisition of the rule of 78. There is one caveat , however: The
input and target patterns- the base forms of the verbs and the correct
past tenses of these verbs-must be represented in the model in such a
way that the features provide a convenient basis for capturing the regu-
larities embodied in the past-tense forms of English verbs. Basically,
there were two s;onsiderations:

. We needed a representation that permitted a differentiation of
all of the root forms of English and their past tenses.

. We wanted a representation that would provide a natural basis
for generalizations to emerge about what aspects of a present
tense correspond to what aspects of the past tense.

A scheme which meets the first criterion , but not the second , is the
scheme proposed by Wickelgren 0969) . He suggested that words
should be represented as sequences of context-sensitive phoneme units
which represent each phone in a word as a triple, consisting of the

phone itself, its predecessor, and its successor. We call these triples
Wicke/phones. Notationally, we write each Wickelphone as a triple of
phonemes , consisting of the central phoneme , subscripted on the left
by its predecessor and on the right by its successor. A phoneme occur-
ring at the beginning of a word is preceded by a special symbol (#)
standing for the word boundary; likewise , a phoneme occurring at the
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end of a word is followed by #. The word Ikat/, for example , would be
represented as ~a' kat, and a #. Though the Wickelphones in a word
are not strictly position specific , it turns out that (a) few words contain
more than one occurrence of any given Wickelphone, and (b) there are
no two words we know of that consist of the same sequence of Wickel-
phones. For example Islitl and Isiltl contain no Wickelphones in

common.
One nice property of Wickelphones is that they capture enough of

the context in which a phoneme occurs to provide a sufficient basis for
differentiating between the different cases of the past-tense rule and for
characterizing the contextual variables that determine the subregulari-
ties among the irregular past-tense verbs. For example , the word-final
phoneme that determines whether we should add Idl, It I or rdl 

forming the regular past. And it is the sequence iN # which 
transformed to aN # in the ing ang pattern found in words like sing.

The trouble with the Wickelphone solution is that there are too many
of them , and they are too specific. Assuming that we distinguish 35
different phonemes, the number of Wickelphones would be 353 , or

875 , not even counting the Wickelphones containing word bound-
aries. And , if we postulate one input unit and one output unit in our
model for each Wickelphone , we require rather a large connection
matrix (4.3x 1()4 squared , or about 2x 109) to represent all their possi-
ble connections.

Obviously, a more compact representation is required. This can 
obtained by representing each Wickelphone as a distributed pattern of
activation over a set of feature detectors. The basic idea is that we
represent each phoneme , not by a single Wickelphone , but by a pattern
of what we call Wickelfeatures. Each Wickelfeature is a conjunctive , or
context-sensitive , feature , capturing a feature of the central phoneme , a
feature of the predecessor, and a feature of the successor.

..-=:.

Details of the Wickelfeature representation. For concreteness , we
will now describe the details of the feature coding scheme we used. It
contains several arbitrary properties , but it also captures the basic prin-
ciples of coarse , conjunctive coding described in Chapter 3. First , we
will describe the simple feature representation scheme we used for cod-
ing a single phoneme as a pattern of features without regard to its
predecessor and successor. Then we describe how this scheme can be
extended to code whole Wickelphones. Finally, we show how we
blur" this representation , to promote generalization further.
To characterize each phoneme, we devised the highly simplified

feature set illustrated in Table 5. The purpose of the scheme was (a) to
give as many of the phonemes as possible a distinctive code, (b) to

allow code similarity to reflect the similarity structure of the phonemes
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TABLE 5

CATEGORIZATION OF PHONEMES ON FOUR SIMPLE DIMENSIONS

Place

Front Middle

Interrupted Stop
Nasal

Cont. Consonant Fric. v/D fiT
Liq/SV w/I

Vowel High
Low

Back

V/L V/S

Z/j SIC

. /0

V/L V/S V/L V/S

a/a

Key: N - ng in sing; D., th in the; T., th in with; Z., z in azure; S ~ sh in ship;
C -= ch in chip; E - ee in beet i - i in bit, 0 = oa in boat: . -= u in but or schwa;

V "" 00 in boot; u ., 00 in book; A - ai in bait e - e in bet I - Le in bite;
a ~ a in bat; a -= a in father:, W = ow in cow: . ., aw in saw, 0 - 0 in hOT,

in a way that seemed sufficient for our present purposes , and (c) to
keep the number of different features as small as possible.

The coding scheme can be thought of as categorizing each phoneme
on each of four dimensions. The first dimension divides the phonemes
into three major types: interrupted consonants (stops and nasals), con-
tinuous consonants (fricatives, liquids, and semivowels) , and vowels.

The second dimension further subdivides these major classes. The
interrupted consonants are divided into plain stops and nasals; the con-
tinuous consonants into fricatives and sonorants (liquids and
semi vowels are lumped together); and the vowels into high and low.
The third dimension classifies the phonemes into three rough places of
articulation- front, middle , and back. The fourth subcategorizes the
consonants into voiced vs. voiceless categories and subcategorizes the
vowels into long and short. As it stands, the coding scheme gives

. identical codes to six pairs of phonemes, as indicated by the duplicate
entries in the cells of the table. A more adequate scheme could easily
be constructed by increasing the number of dimensions andlor values
on the dimensions.

Using the above code , each phoneme can be characterized by one
value on each dimension. If we assigned a unit for each value on each
dimension , we would need 10 units to represent the features of a single
phoneme since two dimensions have three values and two have two
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values. We could then indicate the pattern of these features that
corresponds to a particular phoneme as a pattern of activation over the
10 units.

Now , one way to represent each Wickelphone would simply be to use
three sets of feature patterns: one for the phoneme itself, one for its
predecessor, and one for its successor. To capture the word-boundary
marker , we would need to introduce a special eleventh feature. Thus
the Wickelphone ~a can be represented by

( (000) (00) (000) (00) 1 
( 000) 00) (Oon (On 0 )
( (Oon (on (010) (Ot) 0 ).

Using this scheme , a Wickelphone could be represented as a pattern of
activation over a set of 33 units.

However , there is one drawback with this. The representation is not
sufficient to capture more than one Wickelphone at a time. If we add
another Wickelphone, the representation gives us no way of knowing
which features belong together.

We need a representation , then , that provides us with a way of deter-
mining which features go together. This is just the job that can be
done with detectors for Wickelfeatures- triples of features , one from
the central phoneme, one from the predecessor phoneme, and one
from the successor phoneme.

Using this scheme , each detector would be activated when the word
contained a Wickelphone containing its particular combination of three
features. Since each phoneme of a Wickelphone can be characterized
by 11 features (including the word-boundary feature) and each Wickel-
phone contains three phonemes, there are 11 x 11 x 11 possible Wickel-
feature detectors. Actually, we are not interested in representing
phonemes that cross word boundaries , so we only need 10 features for
the center phoneme.

Though this leaves us with a fairly reasonable number of units
01 x 10 x 11 or 1 210), it is still large by the standards of what will
easily fit in available computers. However, it is possible to cut the
number down still further without much loss of representational capac-
ity since a representation using all 1 210 units would be highly redun-

dant; it would represent each feature of each of the three phonemes 16
different times, one for each of the conjunctions of that feature with

one of the four features of one of the other phonemes and one of the
four features of the other.

To cut down on this redundancy and on the number of units
required, we simply eliminated all those Wickelfeatures specifying
values on two different dimensions of the predecessor and the
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, ,

successor phonemes. We kept all the Wickelfeature detectors for all
combinations of different values on the same dimension for the prede-
cessor and successor phonemes. It turns out that there are 260 of these
(ignoring the word-boundary feature), and each feature of each
member of each phoneme triple is still represented four different times.
In addition , we kept the 100 possible Wickelfeatures combining a
preceding word-boundary feature with any feature of the main
phoneme and any feature of the successor; and the 100 Wickelfeatures
combining a following word boundary feature with any feature of the
main phoneme and any feature of the successor. All in all then , we
used only 460 of the 1 210 possible Wickelfeatures.

Using this representation, a verb is represented by a pattern of
activation over a set of 460 Wickelfeature units. Each Wickelphone
activates 16 Wickelfeature units. Table 6 shows the 16 Wickelfeature
units activated by the Wickelphone k m' the central Wickelphone in
the word came. The first Wickelfeature is turned on whenever we have
a Wickelphone in which the preceding contextual phoneme is an inter-
rupted consonant, the central phoneme is a vowel , and the following
phoneme is an interrupted consonant. This Wickelfeature is turned on
for the Wickelphone k

m since Ikl and Iml, the context phonemes
are both interrupted consonants and I AI, the central phoneme , is a

vowel. This same Wickelfeature would be turned on in the

TABLE 6

THE SIXTEEN WICKELFEATURES FOR THE WICKELPHONE

Feature Preceding Context Central Phoneme Following Context

Interrupted Vowel Interrupted
Back Vowel Front
Stop Vowel Nasal

Unvoiced Vowel Voiced

Interrupted Front Vowel
Back Front Front
Stop Front Nasal

Unvoiced Front Voiced

Interrupted Low Interrupted
Back Low Front
SlOP Low Nasal

Unvoiced Low Voiced

Interrupted Long Vowel
Back Long Front
Stop Long Nasal

Unvoiced Long Voiced
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representation of ~d' p '" t, m p' and many other Wickelfeatures. Simi-
larly, the sixth Wickelfeature listed in the table will be turned on when-
ever the preceding phoneme is made in the back, and the central and
following phonemes are both made in the front. Again , this is turned
on because Ikl is made in the back and I AI and Iml are both made in
the front. In addition to k m this feature would be turned on for the
Wickelphones ';v' gAp, k p' and others. Similarly, each of the sixteen
Wickelfeatures stands for a conjunction of three phonetic features and

occurs in the representation of a large number of Wickelphones.
Now, words are simply lists of Wickelphones. Thus , words can be

represented by simply turning on all of the Wickelfeatures in any Wick-
elphone of a word. Thus , a word with three Wickelphones (such as
came which has the Wickelphones ~A' k m' and a'D#) will have at

most 48 Wickelfeatures turned on. Since the various Wickelphones
may have some Wickelfeatures in common , typically there will be less
than 16 times the number of Wickelfeatures turned on for most words.
It is important to note the temporal order is entirely implicit in this
representation. All words , no matter how many phonemes in the word
will be represented by a subset of the 460 Wickelfeatures.

Blurring the Wickelfeature representation. The representational
scheme just outlined constitutes what we call the primary representation
of a Wickelphone. In order to promote faster generalization, we
further blurred the representation. This is accomplished by turning on
in addition to the 16 primary Wickelfeatures , a randomly selected sub-
set of the similar Wickelfeatures , specifically, those having the same
value for the central feature and one of the two context phonemes.
That is , whenever the Wickelfeature for the conjunction of phonemic
features 

2, and 3 is turned on , each Wickelfeature of the form
oe::: ?f 3 ~ and oe:::f Ih? ~ may be turned on as well. Here ?" stands

for "any feature. This causes each word to activate a larger set of
Wickelfeatures, allowing what is learned about one sequence of
phonemes to generalize more readily to other similar but not identical
sequences.

To avoid having too much randomness in the representation of a par-
ticular Wickelphone , we turned on the same subset of additional Wick-
elfeatures each time a particular Wickelphone was to be represented.
Based on subsequent experience with related models (see Chapter 19),
we do not believe this makes very much difference.

There is a kind of trade-off between the discriminability among the
base forms of verbs that the representation provides and the amount of
generalization. We need a representation which allows for rapid gen-
eralization while at the same time maintains adequate discriminability.
We can manipulate this factor by manipulating the probability that
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anyone of these similar Wickelfeatures will be turned on. In our simu-
lations we found that turning on the additional features with fairly high
probability (.9) led to adequate discriminability while also producing
relatively rapid generalization.

Although the model is not completely immune to the possibility that
two different words will be represented by the same pattern , we have
encountered no difficulty decoding any of the verbs we have studied.
However , we do not claim that Wickelfeatures necessarily capture all
the information needed to support the generalizations we might need to
make for this or other morphological processes. Some morphological
processes might require the use of units that were further differentiated
according to vowel stress or other potential distinguishing characteris-
tics. All we claim for the present coding scheme is its sufficiency for
the task of representing the past tenses of the 500 most frequent verbs
in English and the importance of the basic principles of distributed

coarse (what we are calling blurred), conjunctive coding that it
embodies (see Chapter 3).

Summary of the Structure of the Model

In summary, our model contained two sets of 460 Wickelfeature
units, one set (the input units) to represent the base form of each verb
and one set (the output units) to represent the past-tense form of each
verb.

The model is tested by typing in an input phoneme string, which is
translated by the fixed encoding network into a pattern of activation
over the set of input units. Each active input unit contributes to the
net input of each output unit , by an amount and direction (positive or
negative) determined by the weight on the connection between the
input unit and the output unit. The output units are then turned on or
off probabilistically, with the probability increasing with the difference
between the net input and the threshold , according to the logistic
activation function. The output pattern generated in this way can be
compared with various alternative possible output patterns , such as the
correct past-tense form or some other possible response of interest , or
can be used to drive the decoder network described in the Appendix.

The model is trained by providing it with pairs of patterns , consisting
of the base pattern and the target, or correct , output. Thus, in accord-
ance with common assumptions about the nature of the learning situa-
tion that faces the young child , the model receives only correct input
from the outside world. However , it compares what it generates inter-
nally to the target output , and when it gets the wrong answer for a
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particular output unit , it adjusts the strength of the connection between
the input and the output units so as to reduce the probability that it will
make the same mistake the next time the same input pattern is
presented. The adjustment of connections is an extremely simple and
local procedure , but it appears to be sufficient to capture what we know
about the acquisition of the past tense , as we shall see in the next
section.

THE SIMULATIONS

The simulations described in this section are concerned with demon-
strating three main points:

. That the model captures the basic three-stage pattern of acquisi-
tion.

. That the model captures most aspects of differences in per-
formance on different types of regular and irregular verbs.

. That the model is capable of responding appropriately to verbs
it has never seen before , as well as to regular and irregular
verbs actually experienced during training.

In the sections that follow we will consider these three aspects of the
model's performance in turn.

The corpus of verbs used in the simulations consisted of a set of 506
verbs. All verbs were chosen from the Kucera and Francis (I967)
word list and were ordered according to frequency of their gerund form.
We divided the verbs into three classes: 10 high-frequency verbs , 410
medium-frequency verbs, and 86 low-frequency verbs. The ten highest
frequency verbs were: come (f mf), get (f getf), give (f giv f), look

(flukf), take (ftAkf), go (fgof), have (fhavf), live (flivf), and feel
(ffFl/). There is a total of 8 irregular and 2 regular verbs among the
top 10. Of the medium-frequency verbs , 334 were regular and 76 were
irregular. Of the low-frequency verbs , 72 were regular and 14 were

. irregular.

The Three-Stage Learning Curve

The results described in this and the following sections were obtained
from a single (long) simulation run. The run was intended to capture
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approximately the experience with past tenses of a young child picking
up English from everyday conversation. Our conception of the nature
of this experience is simply that the child learns first about the present
and past tenses of the highest frequency verbs; later on , learning occurs
for a much larger ensemble of verbs , including a much larger propor-
tion of regular forms. Although the child would be hearing present and
past tenses of all kinds of verbs throughout development , we assume
that he is only able to learn past tenses for verbs that he has already

mastered fairly well in the present tense.
To simulate the earliest phase of past-tense learning, the model was

first trained on the 10 high-frequency verbs, receiving 10 cycles of
training presentations through the set of 10 verbs. This was enough to
produce quite good performance on these verbs. We take the perform-
ance of the model at this point to correspond to the performance of a
child in Phase 1 of acquisition. To simulate later phases of learning,
the 410 medium-frequency verbs were added to the first 10 verbs , and
the system was given 190 more learning trials , with each trial consisting
of one presentation of each of the 420 verbs. The responses of the
model early on in this phase of training correspond to Phase 2 of the
acquisition process; its ultimate performance at the end of 190 expo-
sures to eactJ of the 420 verbs corresponds to Phase 3. At this point
the model exhibits almost errorless performance on the basic 420 verbs.
Finally, the set of 86 lower-frequency verbs were presented to the sys-
tem and the transfer responses to these were recorded. During this
phase, connection strengths were not adjusted. Performance of the
model on these transfer verbs is considered in a later section.

We do not claim , of course , that this training experience exactly cap-
tures the learning experience of the young child. It should be perfectly
clear that this training experience exaggerates the difference between
early phases of learning and later phases , as well as the abruptness of
the transition to a larger corpus of verbs. However, it is generally
observed that the early, rather limited vocabulary of young children
undergoes an explosive growth at some point in development (Brown
1973). Thus , the actual transition in a child's vocabulary of verbs
would appear quite abrupt on a time-scale of years so that our assump-
tions about abruptness of onset may not be too far off the mark.

Figure 4 shows the basic results for the high frequency verbs. What
we see is that during the first 10 trials there is no difference between
regular and irregular verbs. However , beginning on Trial 11 when the
410 midfrequency verbs were introduced , the regular verbs show better
performance. It is important to notice that there is no interfering effect
on the regular verbs as the midfrequency verbs are being learned.
There is , however , substantial interference on the irregular verbs. This
interference leads to a dip in performance on the irregular verbs.
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FIGURE 4. The percentage of correct features for regular and irregular high- frequency
verbs as a function of trials.

Equality of performance between regular and irregular verbs is never
again attained during the training period. This is the so-called U-
shaped learning curve for the learning of the irregular past tense. Per-
formance is high when only a few high- frequency, largely irregular
verbs are learned , but then drops as the bulk of lower-frequency regular
verbs are being learned.

We have thus far only shown that performance on high-frequency
irregular verbs drops; we have not said anything about the nature of the
errors. To examine this question , the response strength of various pos-
sible response alternatives must be compared. To do this , we compared
the strength of response for several different response alternatives. We
compared strengths for the correct past tense , the present , the base+ed
and the past +ed. Thus , for example with the verb give we compared
the response strength of /gAV/, /giv/, /givd/, and /gAvd/. We deter-
mined the response strengths by assuming that these response alterna-
tives were competing to account for the features that were actually
turned on in the output. The details of the competition mechanism
called a binding network are described in the Appendix. For present
purposes, suffice it to say that each alternative gets a score that
represents the percentage of the total features that it accounts for. If
two alternatives both account for a given feature, they divide the score
for that feature in proportion to the number of features each accounts
for uniquely. We take these response strengths to correspond roughly
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to relative response probabilities, though we imagine that the actual

generation of overt responses is accomplished by a different version of
the binding network , described below. In any case , the total strength of
all the alternatives cannot be greater than 1 , and if a number of
features are accounted for by none of the alternatives, the total will be

less than 1.
Figure 5 compares the response strengths for the correct alternative

to the combined strength of the regularized alternatives. 4 Note in the
figure that during the first 10 trials the response strength of the correct
alternative grows rapidly to over .5 while that of the regularized alterna-
tive drops from about .2 to. 1. After the midfrequency verbs are intro-
duced, the response strength for the correct alternative drops rapidly
while the strengths of regularized alternatives jump up. From about
Trials 11 through 30, the regularized alternatives together are stronger

than the correct response. After about Trial 30, the strength of the

correct response again exceeds the regularized alternatives and contin-
ues to grow throughout the 200- trial learning phase. By the end, the

correct response is much the strongest with all other alternatives
below .

..c::
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CfJ
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80 120
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160 200

FIGURE 5. Response strengths for the high-frequency irregular verbs. The response
strengths for the correct responses are compared with those for the regularized alterna-
tives as a function of trials.

4 Unless otherwise indicated. the regularized alternatives are considered the base+ed
and past +ed alternatives. In a later section of the paper we shall discuss' the pattern 
differences between these alternatives. In most cases the base+ed alternative is much
stronger than the past +ed alternative.
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The rapidity of the growth of the regularized alternatives is due to
the sudden influx of the medium-frequency verbs. In real life 
would expect the medium-frequency verbs to come in somewhat more
slowly so that the period of maximal regularization would have a some-
what slower onset.

Figure 6 shows the same data in a slightly different way. In this
case , we have plotted the ratio of the correct response to the sum of
the correct and regularized response strengths. Points on the curve
below the .5 line are in the region where the regularized response is
greater that the correct response. Here we see clearly the three stages.
In the first stage, the first 10 trials of learning, performance on these
high- frequency verbs is quite good. Virtually no regularization takes
place. During the next 20 trials, the system regularizes and systemati-

cally makes errors on the verbs that it previously responded to
correctly. Finally, during the remaining trials the model slowly elim-
inates the regularization responses as it approaches adult performance.

In summary, then , the model captures the three phases of learning
quite well , as well as the gradual transition from Phase 2 to Phase 3.

It does so without any explicit learning of rules. The regularization
is the product of the gradual tuning of connection strengths in response

C,)
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FIGURE 6. The ratio of the correct response to the sum of the correct and regularized
response. Points on the curve below the .5 line are in the region where the regularized

response is greater than the correct response.
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to the predominantly regular correspondence exhibited by the
medium- frequency words. It is not quite right to say that individual

pairs are being stored in the network in any simple sense. The connec-
tion strengths the model builds up to handle the irregular forms do not
represent these items in any separable way; they represent them in the
wClY they must be represented to be stored along with the other verbs in
the same set of connections.

Before discussing the implications of these kinds of results further , it
is useful to look more closely at the kinds of errors made and at the
learning rates of the medium-frequency regular and irregular verbs.

Learning the medium-jrequency verbs. Figure 7 A' compares the
learning curves for the regular verbs of high and medium frequency,
and Figure 7B compares the learning curves for the corresponding

groups of irregular verbs. Within only two or three trials the medium-
frequency verbs catch up with their high-frequency counterparts.
Indeed, in the case of the irregular verbs , the medium-frequency verbs
seem to surpass the high- frequency ones. As we shall see in the fol-
lowing section , this results from the fact that the high-frequency verbs
include some of the most difficult pairs to learn , including, for exam-
ple , the gol went pair which is the most difficult to learn (aside from the
verb this is the only verb in English in which the past and root form
are completely unrelated). It should also be noted that even at this
early stage of learning there is substantial generalization. Already, on
Trial the very first exposure to the medium-frequency verbs
between 65 and 75 percent of the features are produced correctly.
Chance responding is only 50 percent. Moreover , on their first presen-
tation , 10 percent more of the features of regular verbs are correctly
responded to than irregular ones. Eventually, after 200 trials of learn-
ing, nearly all of the features are being correctly generated and the sys-
tem is near asymptotic performance on this verb set. As we shall see
below , during most of the learning period the difference between high-
and medium-frequency verbs is not important. Rather , the differences
between different classes of verbs is the primary determiner of per-
formance. We now turn to a discussion of these different types.

Types of Regular and Irregular Verbs

To this point , we have treated regular and irregular verbs as two
homogeneous classes. In fact , there are a number of distinguishable
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FIGURE 7. The learning curves for the high- and medium-frequency verbs.

types of regular and irregular verbs. Bybee and Slobin 0982) have
studied the different acquisition patterns of the each type of verb. 
this section we compare their results to the responses produced by our
simulation model.

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil



18. LEARNING THE PAST TENSE 247

Bybee and Slobin divided the irregular verbs into nine classes
defined as follows: 

I. Verbs that do not change at all to form the past tense , e.

beat, cut , hit.

II. Verbs that change a final I dl to It I to form the past tense , e.

sendl sent , buildl built.

III. Verbs that undergo an internal vowel change and also add a
final It I or I dl , e. jeellJelt , losellost , sayl said, telll told.

. Verbs that undergo an internal vowel change , delete a final
consonant, and add a final It I or Idl, bringlbrought
catch I caught. 

V. Verbs that undergo an internal vowel change whose stems end
in a dental , e. bitelbit jindlfound, ride I rode.

VIa. Verbs that undergo a vowel change of Iii tolal singlsang,
drink I drank.

VIb. Verbs that undergo an internal vowel change of Iii or lal 

r I stingl stung, hangl hung. 

VII. All other verbs that undergo an internal vowel change , e.

givel gave , breakl broke.

VIII. All verbs that undergo a vowel change and that end in a dip-
thongal sequence, e. blowlblew flylflew.

A complete listing by type of all of the irregular verbs used in our study
is given in Table 7.

In addition to these types of irregular verbs , we distinguished three
categories of regular verbs: (a) those ending in a vowel or voiced con-
sonant , which take a I dl to form the past tense; (b) those ending in a

. voiceless consonant , which take a It/; and (c) those 'ending in It I 

Criteria from Bybee and Siobin 0982, pp. 268-269).

6 Following Bybee and Siobin , we included buy/bought in this class even though no
final consonant is deleted.

7 For many purposes we combine Classes VIa and VIb in our analyses.
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TABLE 7

IRREGULAR VERBS

Frequency

Type High LowMedium

III feel

have
make

get

- .

VIa

VIb

VII give
take
come

VIII

beat fit set spread
hit cut put

build send spend

deal do flee tell sell
hear keep leave sleep
lose mean say sweep

think buy bring

seek teach

meet shoot write lead
understand sit mislead
bleed feed stand light
find fight read meet
hide hold ride

drink ring sing swim

drag hang swing

shake arise rise run
become bear wear speak
brake drive strike
fall freeze choose

throw blow grow

draw fly know see

thrust
bid

bend lend

creep
weep

catch

breed
wind
grind

dig cling

stick

tear

I dl, which take a final dl to form the past tense. The number of
regular verbs in each category, for each of the three frequency levels, is
given in Table 8.

Type I: No-change verbs. A small set of English verbs require no
change between their present- and past-tense forms. One factor com-
mon to all such verbs is that they already end in I tl or I d/. Thus , they
superficially have the regular past-tense form--even in the present
tense. Stemberger 0981) points out that it is common in inflectional
languages not to add an additional inflection to base forms that already
appear to have the inflection. Not all verbs ending in It I or I dl show
no change between present and past (in fact the majority of such verbs
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TABLE 8

NUMBER OF REGULAR VERBS OF EACH TYPE

Frequency

Type Suffix Example High Medium Low

End in dental /"d/
End in voiceless /t/

consonant
look

start

End in voiced
consonant or
vowel

/d/ move 176

in English do show a change between present and past tense), but there
is a reasonably large group- the Type I verbs of Bybee and Slobin- that
do show this trend. Bybee and Slobin 0982) suggest that children
learn relatively early on that past-tense verbs in English tend to end in
It I or I dl and thus are able to correctly respond to the no-change verbs
rather early. Early in learning, they suggest, children also incorrectly

generalize this " no-change rule " to verbs whose present and past tenses
differ.

The pattern of performance just described shows up very clearly in
data Bybee and Slobin 0982) report from an elicitation task with
preschool children. In this task, preschoolers were given the present-

tense form of each of several verbs and were asked to produce the
corresponding past-tense form. They used the set of 33 verbs shown in
Table 9.

The results were very interesting. Bybee and Slobin found that verbs
not ending in tl d were predominately regularized and verbs ending in
tl d were predominately used as no-change verbs. The number of
occurrences of each kind is shown in Table 10. These preschool

TABLE 9

VERBS USED BY BYBEE & SLOBIN

Type of Verb Verb List

Regular
Vowel change
Vowel change + 1/ d

No change
Other

walk smoke melt pat smile climb
drink break run swim throw meet shoo! ride
do buy lose sell sleep help teach catch
hit hurt set shut cut put beat

go make build lend
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TABLE 10

REGULAR AND NO CHANGE RESPO~SES
TO t/d AND OTHER VERBS

(Data from Bybee & Siobin. 1982)

Verb Ending Regular Suffix No Change

No! l/d
l/d

203

157

---_

children have , at this stage , both learned to regularize verbs not ending
in t I d and , largely, to leave verbs ending in tl d without an additional
ending.

Interestingly, our simulations show the same pattern of results. The
system learns both to regularize and has a propensity not to add an

additional ending to verbs already ending in tl d. In order to compare
the simulation results to the human data we looked at the performance
of the same verbs used by Bybee and Slobin in our simulations. Of the
33 verbs , 27 were in the high- and medium-frequency lists and thus
were included in the training set used in the simulation. The other six
verbs (smoke, catch , lend, pat, hurt and shut) were either in the low-
frequency sample or did not appear in our sample at all. Therefore , we
will report on 27 out of the 33 verbs that Bybee and Slobin tested.

It is not clear what span of learning trials in our simulation
corresponds best to the level of the preschoolers in Bybee and Slobin
experiment. Presumably the period during which regularization is
occurring is best. The combined strength of the regularized alternatives
exceeds correct response strength for irregulars from about Trial 
through Trials 20 to 30 depending on which particular irregular verbs
we look at. We therefore have tabulated our results over three dif-
ferent time ranges-Trials 11 through 15 , Trials 16 through 20, and
Trials 21 through 30. In each case we calculated the average strength
of the regularized response alternatives and of the no-change response
alternatives. Table 11 gives these strengths for each of the different
time periods.

The simulation results show clearly the same patterns evident in the
Bybee and Slobin data. Verbs ending in tl d always show a stronger
no-change response and a weaker regularized response than those not
ending in tl d. During the very early stages of learning, however, the
regularized response is stronger than the no-change response-even 
the verb does end with tl d. This suggests that the generalization that
the past tense of tld verbs is formed by adding /"d/ is stronger than
the generalization that verbs ending in tl d should not have an ending
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TABLE II

AVERAGE SIMULATED STRENGTHS OF
REGULARIZED AND NO-CHANGE RESPONSES

Time Period Verb Ending Regularized No Change

11- not 1/ d

lId

16- not tld
tld 0.35

21- not 

lId 0.41 .

---

added. However, as learning proceeds , this secondary generalization is
made (though for only a subset of the tl d verbs , as we shall see), and
the simulation shows the same interaction that Bybee and Slobin 0982)
found iri their preschoolers.

The data and the simulations results just described conflate two
aspects of performance , namely, the tendency to make no-change errors
with tl d verbs that are not no-change verbs and the tendency to make
correct no-change responses to the tl d verbs that are no-change verbs.
Though Bybee and Slobin did not report their data broken down by this
factor , we can examine the results of the simulation to see whether in
fact the model is making more no-change errors with tl d verbs for
which this response is incorrect. To examine this issue , we return to
the full corpus of verbs and consider the tendency to make no-change
errors separately for irregular verbs other than Type I verbs and for reg-
ular verbs.

Erroneous no-change responses are clearly stronger for both regular
and irregular tl d verbs. Figure SA compares the strength of the

erroneous no-change responses for irregular verbs ending in tl d (Types
II and V) versus those not ending in tld (Types III , IV, VI , VII , and
VIII). The no-change response is erroneous in all of these cases.
Note , however , that the erroneous no-change responses are stronger for
the tl d verbs than for the other types of irregular verbs. Figure 
shows the strength of erroneous no-change responses for regular verbs
ending in lid versus those not ending in tl d. Again, the response
strength for the no-change response is clearly greater when the regular
verb ends in a dental.

We also compared the regularization responses for irregular verbs
whose stems end in tl d with irregulars not ending in tl d. The results
are shown in Figure 8e. In this case, the regularization responses are
initially stronger for verbs that do not end in tl d than for those that do.
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FIGURE 8. A: The strength of erroneous no-change responses for irregular verbs ending
in a dental versus those not ending in a dental. B: The strength of erroneous no-change

responses for regular verbs ending in a dental versus those not ending in a dental. C:

The strength of erroneous regularization responses for irregular verbs ending in a dental
versus those not ending in a dental.
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Thus , we see that even when focusing only on erroneous responses, the
system shows a greater propensity to respond with no change to tl d
verbs , whether or not the verb is regular , and a somewhat greater ten-
dency to regularize irregulars not ending in tl d.

There is some evidence in the literature on language acquisition that
performance on Type I verbs is better sooner than for irregular verbs
involving vowel changes-Types III through YIII. Kuczaj (1978)
reports an experiment in which children were to judge the grammatical-

ity of sentences involving past tenses. The children were given sen-
tences involving words like hit or hilled or ate or eared and asked
whether the sentences sounded " silly." The results , averaged over three
age groups from 3;4 to 9;0 years, showed that 70 percent of the
responses to the no-change verbs were correct whereas only 31 percent
of the responses to vowel-change irregular verbs were correct. Most 
the errors involved incorrect acceptance of a regularized form. Thus
the results show a clear difference between the verb types, with per-
formance on the Type I verbs superior to that on Type III through VIII
verbs.

The simulation model too shows better performance on Type I verbs
than on any of the other types. These verbs show fewer errors than
any of the other irregular verbs. Indeed the error rate on Type I verbs
is equal to ihat on the most difficult of the regular verbs. Table 
gives the average number of Wickelfeatures incorrectly generated (out
of 460) at different periods during the learning processes for no-change
(i.e. , Type I) irregular verbs , vowel-change (i. , Type III-VIII) irregu-
lar .verbs , regular verbs ending in tl d regular verbs not ending in tl d
and regular verbs ending in tl d whose stem is a eve (consonant-
vowel-consonant) monosyllable. The table clearly shows that
throughout learning, fewer incorrect Wickelfeatures are generated for
no-change verbs than for vowel-change verbs. Interestingly, the table

TABLE 12

A VERAGE NUMBER OF WICKELFEA TURES INCORRECTLY GENERATED

Trial
Irregular Verbs Regular Verbs

Number Type I Types III-VIII Ending in rid Not Ending in rid CVtld

11- 89. 123. 74.1 82. 87.
16- 57. 93. 45. 51.2 60.
21- 45. 78. 32. 37. 47.
31- 34. 61.3 22. 26. 37.
51- 100 18. 39. 11.4 12. 21.5
101-200 11.8 21.5 7.4 12.
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also shows that one subset of regulars are no easier than the Type I
irregulars. These are the regular verbs which look on the surface most
like Type I verbs , namely, the monosyllabic eve regular verbs ending
in tl d. These include such verbs as bat, wait, ShOUl, head etc.
Although we know of no data indicating that people make more no-
change errors on these verbs than on multisyllabic verbs ending in 

this is a clear prediction of our model. Essentially what is happening is
that the model is learning that monosyllables ending in tl d sometimes
take no additional inflection.8 This leads to quicker learning of the no-
change verbs relative to other irregular verbs and slower learning of
regular verbs which otherwise look like no-change verbs. It should be
noted that the two regular verbs employed by Bybee and Slobin which
behaved like no-change verbs were both monosyllables. It would be
interesting to see if whether no-change errors actually occur with verbs
like decide or devote.

Types III- VIII: Vowel-change verbs. To look at error patterns on
vowel-change verbs (Types III-VIII), Bybee and Slobin (1982) analyzed
data from the spontaneous speech of preschoolers ranging from 11h to 5
years of age. The data came from independent sets of data collected by
Susan Ervin-Tripp and Wick Miller , by Dan Slobin , and by Zell Green-
berg. In all , speech from 31 children involving the use of 69 irregular
verbs was studied. Bybee and Slobin recorded the percentages of regu-
larizations for each of the various types of vowel-change verbs. Table
13 gives the percentages of regularization by preschoolers , ranked from
most to fewest erroneous regularizations. The results show that the
two verb types which involve adding a tl d plus a vowel change (Types
III and IV) show the least regularizations, whereas the verb type 
which the present tense ends in a diphthong (Type VIII) shows by far
the most regularization.

It is not entirely clear what statistic in our model best corresponds to
the percentage of regularizations. It will be recalled that we collected
response strength measures for four different response types for irregu-
lar verbs. These were the correct response, the no-change response
the base +ed regularization response, and the past + ed regularization
response. If we imagine that no-change responses are , in general , diffi-
cult to observe in spontaneous speech , perhaps the measure that would
be most closely related to the percentage of regularizations would be
the ratio of the sum of the strengths of the regularization responses to

8 Though the model does not explicitly encode number of syllables , monosyllabic
words are distinguished from multisyllabic words by the fact that the former contain no
Wickelphones of the form C . There are no no-change verbs in English containing such

v v
Ickelphones.
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TABLE 13

PERCENTAGE OF REGULARIZATION
BY PRESCHOOLERS

(Data from Bybee & Siobin , 1982)

Percentage
Verb Type Example Regularizations

VIII blew
sang
bit

VII broke
III felt

caught

the sum of the strengths of regularization responses and the correct
response- that is

(base+ed past+ed)
(base+ed past+ed correct) 

As with our previous simulation , it is not entirely clear what portion
of the learning curve corresponds to the developmental level of the

children in this group. We therefore calculated this ratio for several
different time periods around the period of maximal overgeneralization.
Table 14 shows the results of these simulations.

The spread between different verb classes is not as great in the simu-
lation as in the children s data , but the simulated rank orders show a

TABLE 14

STRENGTH OF REGULARIZATION RESPONSES

RELA TIVE TO CORRECT RESPONSES

Average
Trials Trials Trials Trials

Data 11- 16- 21- 11-

Rank
Order Type Percent Type Ratio Type Ratio Type Ratio Type Ratio

VIII VIII VIII VIII VIII
VII VII VII VII

VII .59 .46 .56
III III III III

III .40
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remarkable similarity to the results from the spontaneous speech of the
preschoolers, especially in the earliest time period. Type VIII verbs
show uniformly strong patterns of regularization whereas Type III and
Type IV verbs, those whose past tense involves adding a tl d at the end
show relatively weak regularization responses. Type VI and Type VII
verbs produce somewhat disparate results. For Type VI verbs, the
simulation conforms fairly closely to the children s speech data in the
earliest time period , but it shows rather less strength for regularizations
of these verbs in the later time periods and in the average over Trials
11-30. For Type VII verbs , the ' model errs in the opposite direction:
Here it tends to show rather greater strength for regularizations of these
verbs than we see in the children s speech. One possible reason for
these discrepancies may be the model's insensitivity to word frequency.
Type VI verbs are , in fact , relatively low-frequency verbs , and thus , in

the children s speech these verbs may actually be at a relatively earlier
stage in acquisition than some of the more frequent irregular verbs.
Type VII verbs are, in general , much more frequent-in fact , on the
average they occur more than twice as often (in the gerund form) in
the Kucera-Francis count than the Type VI verbs. In our simulations
all medium-frequency verbs were presented equally often and the dis-
tinction was not made. A higher-fidelity simulation including finer gra-
dations of frequency variations among the verb types might lead to a
closer correspondence with the empirical results. In any case, these
verbs aside , the simulation seems to capture the major features of the
data very nicely.

Bybee and Slobin attribute the pattern of results they found to factors
that would not be relevant to our model. They proposed , for example
that Type III and IV verbs were more easily learned because the final
tl d signaled to the child that they were in fact past tenses so the child
would not have to rely on context as much in order to determine that
these were past-tense forms. In our simulations , we found these verbs
to be easy to learn , but it must have been for a different reason since
the learning system was always informed as to what the correct past
tense really was. Similarly, Bybee and Slobin argued. that Type VIII
verbs were the most difficult because the past and present tenses were
so phonologicalIy different that the child could not easily determine
that the past and present tenses of these verbs actualIy go together.
Again , our simulation showed Type VIII verbs to be the most difficult
but this had nothing to do with putting the past and present tense
together since the model was always given the present and past tenses
together.
Our model , then , must offer a different interpretation of Bybee and

Slobin s findings. The main factor appears to be the degree to which
the relation between the present and past tense of the verb 
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idiosyncratic. Type VIII verbs are most difficult because the relation-
ship between base form and past tense is most idiosyncratic for these
verbs. Thus, the natural generalizations implicit in the population of
verbs must be overcome for these verbs , and they must be overcome
in a different way for each of them. A very basic aspect of the mapping
from present to past tense is that most of the word, and in particular
everything up to the final vowel , is unchanged. For regular verbs , alI

of the phonemes present in the base form are preserved in the past
tense. Thus, verbs that make changes to the base form are going
against the grain more than those that do not; the larger the changes
the harder they will be to learn. Another factor is that past tenses of
verbs generalIy end in /t/ or I d/.

Verbs that violate the basic past-tense pattern are all at a disadvan-
tage in the model , of course , but some suffer less than others because

there are other verbs that deviate from the basic pattern in the same
way. Thus, these verbs are less idiosyncratic than verbs such as
gol went , seel saw and drawl drew which represent completely idiosyn-
cratic vowel changes. The difficulty with Type VIII verbs , then , is sim-
ply that , as a class , they are simply more idiosyncratic than other verbs.
Type III and IV verbs (e. feellfelt , catch caught), on the other hand
share with the vast bulk of the verbs in English the feature that the

past tense involves the addition of a tl d. The addition of the tl d makes
these verbs easier than , say, Type VII verbs (e. comelcame) because
in Type VII verbs the system must not only learn that there is a vowel
change , but it must also learn that there is not an addition of tl d to the
end of the verb.

Type VI verbs (singl sang, drag drug) are interesting from this point
of view , because they involve fairly common subregularities not found
in other classes of verbs such as those in Type V. In the model
the Type VI verbs may be learned relatively quickly because of this
subregularity.

Types of regularization. We have mentioned that there are two dis-
tinct ways in which a child can regularize an irregular verb: The child
can use the base+ed form or the past+ed form. Kuczaj (1977) has
provided evidence that the proportion of past + ed forms increases, rela-

. tive to the number of base+ed forms, as the child gets older. He
found, for example, that the nine youngest children he studied had
more base+ed regu1arizations than past+ed regularizations whereas
four out of the five oldest children showed more past +ed than
base+ed regularizations. In this section , we consider whether our
model exhibits this same general pattern. Since the base form and the
past-tense form are identical for Type I verbs, we restrict our analysis
of this issue to Types II through VIII.
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Figure 9 compares the average response strengths for base+ed and
past +ed regularizations as a function of amount of training. The results
of this analysis are more or less consistent with Kuczaj's findings.
Early in learning, the base+ed response alternative is clearly the
stronger of the two. As the system learns, however, the two come
together so that by about 100 trials the base + ed and the past + ed
response alternatives are roughly equally strong. Clearly, the simula-

tions show that the percentage of regularizations that are past +ed
increases with experience-just as Kuczaj found in children. In addi-
tion , the two curves come together rather late , consistent with the fact
reported by Kuczaj (1977), that these past +ed forms predominate for
the most part in children who are exhibiting rather few regularization
errors of either type. Of the four children exhibiting more past +ed
regularizations , three were regularizing less than 12% of the time.

A closer look at the various types of irregular verbs shows that this
curve is the average of two quite different patterns. Table 15 shows the
overall percentage of regularization strength due to the base+ed alter-
native. It is clear from the table that the verbs fall into two general
categories , those of Types III, IV , and VIII which have an overall
preponderance of base+ed strength (the percentages are all above .5)
and Types II , VII , V , and VI which show an overall preponderance of
past + ed strength (the percentages are all well below .5). The major
variable which seems to account for the ordering shown in the table is
the amount the ending is changed in going from the base form to the

..c::
+.I Base+ed
I::
CI,)

...

+.I

CI,)
IIJ

I::

Po.
IIJ
CI,)

I:t:
Past+ed

120 160 200
Trials

FIGURE 9. Average response strength for base+ed and past+ed responses for verb
Types II through VIII.
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TABLE 15

PERCENTAGE OF REGULARIZATION
STRENGTH DUE TO BASE + 

Verb Type Percent base+ed Examples

III sleep/~Iept
catch/ caught

VIII 068 see/saw
0.38 spend/ spent

VII 0.38 come/came
bite/bit
sing/ sang

. ,

past-tense form. If the ending is changed little , as in sing/sang 

come/came the past+ed response is relatively stronger. If the past
tense involves a greater change of the ending, such as see/saw
sleep/slept then the past+ed form is much weaker. Roughly, the idea
is this: To form the past + ed for these verbs two operations must occur.
The normal past tense must be created, and the regular ending must be
appended. When these two operations involve very different parts of
the verb , they can occur somewhat independently and both can readily
occur. When , on the other hand , both changes occur to the same por-
tion of the verb, they conflict with one another and a clear past + ed
response is difficult to generate. The Type II verbs , which do show an
overall preponderance of past +ed regularization strength , might seem
to violate this pattern since it involves some change to the end in its
past-tense form. Note , however , that the change is only a one feature
change from / d/ to / t/ and thus is closer to the pattern of the verbs
involving no change to the final phonemes of the verb. Figure lOA
shows the pattern of response strengths to base+ed and past +ed regu-
larizations for verb Types II , VII , V , and VI which involve relatively lit-
tle change of the final phonemes from base to past form. Figure lOB
shows the pattern of response strengths to base+ed and past+ed for
verb Types III , IV, and VIII. Figure lOA shows very clearly the pattern
expected from Kuczaj's results. Early in learning, base+ed responses

. are by far the strongest. With experience the past+ed response
becomes stronger and stronger relative to the base+ed regularizations
until , at about Trial 40 , it begins to exceed it. Figure lOB shows a dif-
ferent pattern. For these verbs the past +ed form is weak throughout
learning and never comes close to the base+ed regularization response.
Unfortunately, Kuczaj did not present data on the relative frequency of
the two types of regularizations separately for different verb types.
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Verb Types II, V, VI and VII

.c:

s::: Base+ed

s:::

Past+ed

e:=

120 160 200
Trials

. ". ~ . ..

Verb Types III, IV and VIII

80 120

Trials
160 200

.c:

s:::

s:::

e:=

FIGURE 10. A: The pattern of response strengths to base +ed and past +ed regulariza-
tions for verb Types II, V, VI. and VII. B: The pattern of response strengths to
base+ed and past+ed for verb Types III, IV, and VIII.

Thus for the present , this difference in type of regularization responses
remains an untested prediction of the model.
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Transfer to Novel Verbs

To this point we have only reported on the behavior of the system
on verbs that it was actually taught. In this section , we consider the
response of the model to the set of 86 low-frequency verbs which it
never saw during training. This test allows us to examine how well the
behavior of the model generalizes to novel verbs. In this section we
also consider responses to different types of regular verbs, and we
examine the model's performance in generating unconstrained
responses.

Overall degree of transfer. Perhaps the first question to ask is how
accurately the model generates the correct features of the new verbs.
Table 16 shows the percentage of Wickelfeatures correctly generated
averaged over the regular and irregular verbs. Overall , the performance
is quite good. Over 90 percent of the Wickelfeatures are correctly gen-
erated without any experience whatsoever with these verbs. Perform-

ance is, of course , poorer on the irregular verbs , in which the actual
past tense is relatively idiosyncratic. But even there , almost 85 percent
of the Wickelfeatures are correctly generated.

Unconstrained responses. Up until this point we have always pro-
ceeded by giving the model a set of response alternatives and letting it
assign a response strength to each one. This allows us to get relative
response strengths among the set of response alternatives we have pro-
vided. Of course, we chose as response alternatives those which we
had reason to believe were among the strongest. There is the possibil-
ity, however, that the output of the model might actually favor some
other , untested alternative some of the time. To see how well the out-
put of the model is really doing at specifying correct past tenses or
errors of the kind that children actually make , we must allow the model
to choose among all possible strings of phonemes.

To do this , we implemented a second version of the binding network.
This version is also described in the Appendix. Instead of a

TABLE 16

PROPORTION OF WICKELFEA TURES

CORRECTL Y GENERATED

Regular
Irregular
Overall
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competition among alternative strings , it involves a competition among
individual Wickelphone alternatives, coupled with mutual facilitation
between mutually compatible Wickelphones such as Jc A and k

m' 9

The results from the free-generation test are quite consistent wit h
our expectations from the constrained alternative phase, though they
did uncover a few interesting aspects of the model's performance that
we had not anticipated. In our analysis of these results we have con-
sidered only responses with a strength of at least .2. Of the 86 test
verbs , There were 65 cases in which exactly one of the alternatives
exceeded .2. Of these, 55 were simple regularization responses, four
were no-change responses, three involved double marking of regular
verbs, (e. type was responded to with /Up(d/), and there was one
case of a vowel change (e. slip/slept). There were 14 cases in which
two alternatives exceeded threshold and one case in which three
exceeded threshold. Finally, in six cases, no response alternative
exceeded threshold. This occurred with the regular verbs jump, pump,

soak, warm , trail and glare. In this case there were a number of alterna-
tives, including the correct past-tense form of each of these verbs
competing with a response strength of about .

Table 17 shows the responses generated for the 14 irregular verbs.
The responses here are very clear. All of the above-threshold
responses made to an irregular verb were either regularization
responses , no-change responses (to Type I and V verbs as expected) or
correct vowel-change generalizations. The fact that bid is correctly gen-
erated as the past for bid that wept is correctly generated as the past for
weep, and that clung is correctly generated as a past tense for cling illus-
trates that the system is not only sensitive to the major regular past-
tense pattern , but is sensitive to the subregularities as well. It should
also be noted that the no-change responses to the verbs grind and wind
occurs on monosyllabic Type V verbs ending in 1/ d, again showing evi-
dence of a role for this subregularity in English past-tense formation.

Of the 72 regular verbs in our low-frequency sample, the six verbs
mentioned above did not have any response alternatives above thresh-
old. On 48 of the remaining 66 regular verbs, the. only response
exceeding threshold was the correct one. The threshold responses to
the remaining 18 verbs are shown in Table 18.

9 The major problem with this method of generating responses is that it is tremen-
dously computer intensive. Had we used this method to generate responses throughout
the learning phase, we estimate that it would have taken O\!l!r three years of computer time
to complete the learning phase alone! This compares to the 260 hours of computer time
the learning phase took with the response alternatives supplied. It took about 28 hours to
complete the response generation process in testing just the 86 low-frequency verbs used
in this section of the study.
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TABLE 17

THE MODEL ' 5 RESPONSES TO UNFAMILIAR
LOW-FREQUENCY IRREGULAR VERBS

Verb Presented Phonetic Phonetic English Response
Type Word Input Response Rendition Strength

bid /bid/ /bid/ (bid)
thrust - st/ ' st" d: (thrusted)

bend /bend! / bend- d/ (bended)
lend /Iend/ /Iend' Oended)

III creep /krEP/ /krEPt/ (creeped) - 0.
weep /wr.p/ /wr.pt/ (weeped)

/wept/ (wept)

catch /kac! /kact/ (catched)

breed /brEd/ / brEd- (breeded) 0.48
grind /gnnd/ /gnnd/ (grind)
wind /wtnd/ /wtnd/ (wind)

cling /kliJ\/ /kliJ\d,l (clinged)
/krN/ (clung)

dig /dig/ /digdl (digged)
stick /stik/ /stikt/ (sticked)

VII tear /ter/ /terd/ (teared)

Note that for 12 of the 18 verbs listed in the table, the correct
response is above threshold. That means that of the 66 regular verbs to
which any response at all exceeded threshold, the correct response
exceeded threshold in 60 cases. It is interesting to note , also , that the
model never chooses the incorrect variant of the regular past tense. As
shown in Table 8 , verbs ending in a /t/ or /d/ take rd/ in the past

tense; verbs ending in unvoiced consonants take /t/, and verbs ending
in vowels or voiced consonants take / d/ . On no occasion does the
model assign a strength greater than .2 an incorrect variant of the past
tense. Thus , the model has clearly learned the substructure of the reg-
ular correspondence and adds the correct variant to all different types

. of base forms. These results clearly demonstrate that the model acts in
accordance with the regular pattern for English verbs and that it can
apply this pattern with a high level of success to novel as well as fami-

liar verbs.
In addition to the regular responses , five of the responses were no-

change responses. In three cases the no-change response was to a verb
ending in 1/ d. Four of the responses followed the pattern of Type III
verbs , modifying the vowel and adding a final / t/. Thus , for example
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TABLE 18

SYSTEM RESPONSES TO UNFAMILIAR LOW.FREQUENCY REGULAR VERBS

Verb Presented Phonetic Phonetic English Response
Type Word Input Response Rendition Rendition

End in guard 'iP rd/ 'iP rd/ (guard)
t/d 'iP rd" d/ (guarded)

kid /kid/ /kid/ (kid)
/kid" (kidded)

mate /mAt/ /mAt (mated) 0.43
/mAd- d/ (maded)

squat / skw /skw (squated)
/skw (squat)

/skw kt/ (squawked)

End in carp /karp/ /karpt/ (carped)
unvoiced /kapt (carpted)
consonant drip / drip/ /dript (dripted)

/dript/ (dripped)

map /map/ /rnapt'd/ (mapted)
/mapt/ (mapped)

shape /SAP/ /SApt/ (shaped) 0.43
/sipt/ (shipped)

sip /sip/ /sipt/ (sipped) 0.42
/sept/ (sepped)

slip /slip/ /slept/ (slept)

smoke /smOk/ /smOkt (smokted)
/smOk! (smoke)

snap /snap/ /snapt'd/ (snapted)

step /step/ /stept (stepted)

type /IIP/ /lIpt"d/ (typted) 0.33

End in brown /brwn/ /brwnd! (browned)
voiced /br nd! (brawned)
consonant hug / h" g/ /h- (hug)
or vowel

mail /mA /mA ld! (mailed)
/memb- Id/ (membled)

tour /tur/ /turd- (toureder)
/turd/ (toured)

we have the past of sip rendered as sept presumably on the model of

sleep/ slept, keep/kept , sweep/ swepl etc. Interestingly, three of the four
cases involved verbs whose base form ended in /p/ just as in the
models listed above. Even though these last responses are, strictly
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speaking, incorrect , they all indicate a sensitivity to the regular and
subregular patterns of the English past tense.

Perhaps the most surprising result evident from the table is the
occurrence of a double past marker on the responses to seven of the
verbs. Although we know of no references to this phenomenon in the
literature, we expect that children (and adults) do occasionally make
this kind of error. It is interesting, and possibly significant , that all
seven of these responses occurred to verbs whose correct past tense is
the addition of a /t/. It would be interesting to see whether children
errors of this type follow a similar pattern.

Finally, there were just four responses that involved the addition or
modification of consonants. These were maded as a past tense of male
squawked as a past tense for squal, membled as a past tense for mail and
lOureder as a past tense for lour. It is unlikely that humans would make
these errors , especially the last two, but these responses are, for the

most part, near threshold. Furthermore, it seems likely that many of
these responses could be filtered out if the model incorporated an
auto-associative network of connections among the output units. Such
a network could be used to clean up the output pattern and would prob-
ably increase the tendency of the model to avoid bizarre responses.
Unfortunately, we have not yet had the chance to implement this
suggestion.

Summary. The system has clearly learned the essential characteris-
tics of the past .tense of English. Not only can it respond correctly to
the 460 verbs that it was taught , but it is able to generalize and transfer
rather well to the unfamiliar low-frequency verbs that had never been
presented during training. The system has learned about the conditions
in which each of the three regular past-tense endings are to be applied
and it has learned not only the dominant , regular form of the past
tense , but many of the subregularities as well.

It is true that the model does not act as a perfect rule-applying
machine with novel past-tense forms. However , it must be noted that
people-or at least children , even in early grade-school years-are not

perfect rule-applying machines either. For example, in Berko s classic

(1958) study, though her kindergarten and first-grade subjects did often
. produce the correct past forms of novel verbs like spow, molt and rick
they did not do so invariably. In fact , the rate of regular past- tense
forms given to Berko s novel verbs was only 51 percen(IO Thus , we see

10 Unfortunately, Berko included only one regular verb to compare to her novel verbs.
The verb was melt. Children were 73 percent correct on this verb. The two novel verbs
that required the same treatment as melt (mon and bOOd) each received only 33 percent

correct responses.
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little reason to believe that our model's " deficiencies " are significantly
greater than those of native speakers of comparable experience.

CONCLUSIONS

We have shown that our simple learning model shows , to a remark-
able degree , the characteristics of young children learning the morphol-
ogy of the past tense in English. We have shown how our model gen-
erates the so-called U-shaped learning curve for irregular verbs and that
it exhibits a tendency to overgeneralize that is quite similar to the pat-
tern exhibited by young children. Both in children and in our model
the verb forms showing the most regularization are pairs such 
know/ knew and see/saw whereas those showing the least regularization
are pairs such as jeellJelt and catch/caught. Early in learning, our

model shows the pattern of more no-change responses to verbs ending
in 1/ d whether or not they are regular verbs , just as young children do.
The model , like children, can generate the appropriate regular past-
tense form to unfamiliar verbs whose base form ends in various con-
sonants or vowels. Thus , the model generates an / d/ suffix for verbs

ending in 1/ d a /t/ suffix for verbs ending in an unvoiced consonant

and a / d/ suffix for verbs ending in a voiced consonant or vowel.
In the model , as in children , different past-tense forms for the same

word can coexist at the same time. On rule accounts , such Iransilional
behavior is puzzling and difficult explain. Our model , like human chil-
dren , shows an relatively larger proportion of past +ed regularizations
later in learning. Our model , like learners of English , will sometimes
generate past- tense forms to novel verbs which show sensitivities to the
subregularities of English as well as the major regularities. Thus, the
past of cring can sometimes be rendered crang or crung. In short , our
simple learning model accounts for all of the major features of the
acquisition of the morphology of the English past tense.

In addition to our ability to account for the major known features of

the acquisition process , there are also a number of predictions that the
model makes which have yet to be reported. These include:

. We expect relatively more past+ed regularizations to irregulars
whose correct past form does not involve a modification of the

final phoneme of the base form.

. We expect that early in learning, a no-change response will
occur more frequently to a eve monosyllable ending in 1/ d
than to a more complex base verb form.
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. We expect that the double inflection responses (f dript dj) will
occasionally be made by native speakers and that they will
occur more frequently to verbs whose stem is ends in /p/ 
/k/.

The model is very rich and there are many other more specific predic-
tions which can be derived from it and evaluated by a careful analysis
of acquisition data.

We have , we believe , provided a distinct alternative to the view that
children learn the rules of English past-tense formation in any explicit
sense. We have shown that a reasonable account of the acquisition of
past tense can be provided without recourse to the notion of a " rule " as

anything more than a description of the language. We have shown that
for this case , there is no induction problem. The child need not figure
out what the rules are , nor even that there are rules. The child need
not decide whether a verb is regular or irregular. There is no question
as to whether the inflected form should be stored directly in the lexicon
or derived from more general principles. There isn t even a question

(as far as generating the past-tense form is concerned) as to whether a
verb form is one encountered many times or one that is being gen-
erated for the first time. A uniform procedure is applied for producing
the past-tense form in every case. The base form is supplied as input
to the past-tense network and the resulting pattern of activation is
interpreted as a phonological representation of the past form of that
verb. This is the procedure whether the verb is regular or irregular
familiar or novel.

In one sense , every form must be considered as being derived. In
this sense , the network can be considered to be one large rule for gen-
erating past tenses from base forms. In another sense , it is possible to
imagine that the system simply stores a set of rote associations between
base and past-tense forms with novel responses generated by " on- line
generalizations from the stored exemplars.

Neither of these descriptions is quite right , we believe. Associations
are simply stored in the network , but because we have a superpositional
memory, similar patterns blend into one another and reinforce each
other. If there were no similar patterns (Le. , if the feat ural representa-

. tions of the base forms of verbs were orthogonal to one another) there
would be no generalization. The system would be unable to generalize
and there would be no regularization. It is statistical relationships
among the base forms themselves that determine the pattern of
responding. The network merely reflects the statistics of the featural
representations of the verb forms.

We chose the study of acquisition of past tense in part because the
phenomenon of regularization is an example often cited in support of
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the view that children do respond according to general rules of
language. Why otherwise , it is sometimes asked , should they generate
forms that they have never heard? The answer we offer is that they do
so because the past tenses of similar verbs they are learning show such
a consistent pattern that the generalization from these similar verbs
outweighs the relatively small amount of learning that has occurred on
the irregular verb in question. We suspect that essentially similar ideas
will prove useful in accounting for other aspects of language acquisi-
tion. We view this work on past- tense morphology as a step toward a
revised understanding of language knowledge , language acquisition , and
linguistic information processing in general.
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APPENDIX

One important aspect of the Wickelfeature representation is that it
completely suppressed the temporal dimension. Temporal information
is stored implicitly in the feature pattern. This gives us a representa-
tional format in which phonological forms of arbitrary length can be
represented. It also avoids an a priori decision as to which part of the
verb (beginning, end , center, etc.) contains the past- tense inflection.
This grows out of the learning process. Unfortunately, it has its nega-
tive side as well. Since phonological forms do contain temporal infor-
mation, we need to have a method of converting from the Wickel-
feature representation into the time domain- in short, we need a
decoding network which converts from the Wickelfeature representa-
tion to either the Wickelphone or a phonological representational for-
mat. Since we have probabilistic units , this decoding process must be
able to work in the face of substantial noise. To do this we devised a
special sort of decoding network which we call a binding network.

Roughly speaking, a binding network is a scheme whereby a number of
units compete for a set of available features- finally attaining a strength
that is proportional to the number of features the units account for.
We proceed by first describing the idea behind the binding network
then describing its application to produce the set of Wickelphones
implicit in the Wickelfeature representation , and finally to produce the
set of phonological strings implicit in the Wickelfeatures.

Binding Networks

The basic idea is simple. Imagine that there are a set of input
features and a set of output features. Each output feature is consistent
with certain of the input features , inconsistent with certain other of the
input features , and neutral about still other of the input features. The
idea is to find a set of output features that accounts for as many as pos-
sible of the output features while minimizing the number of input
features accounted for by more than one output feature. Thus, we
want each of the output features to compete for input features. The
more input features it captures the stronger its position in the competi-
tion and the more claim it has on the features it accounts for. Thus
consider the case in which the input features are Wickelfeatures and the
output features are Wickelphones. The Wickelphones compete among
one another for the available Wickelfeatures. Every time a particular
Wickelphone "captures " a particular Wickelfeature , that input feature no

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil



-.J

270 PSYCHOLOGICAL PROCESSES

longer provides support for other Wickelphones. In this way, the sys-
tem comes up with a set of more or less nonoverlapping Wickelphones
which account for as many as possible of the available Wickelfeatures.
This means that if two Wickelphones have many Wickelfeatures in
common (e.

, k A m and k ) but one of them accounts for more
features than the other, the one that accounts for the most features will
remove nearly all of the support for the very similar output feature
which accounts for few if any input features uniquely. The binding net-
work described below has the property that if two output units are com-
peting for a set of input features , each will attain a strength propor-
tional to the number of input features uniquely accounted for by that
output feature divided by the total number of input features uniquely
accounted for by any output feature.

This is accomplished by a network in which each input unit has a
fixed amount of activation (in our case we assumed that it had a total
activation value of 1) to be distributed among the output units con-
sistent with that input feature. It distributes its activation in proportion
to the strength of the output. feature to which it is connected. This is
thus a network with a dynamic weight. The weight from input unit 

output unit i is thus given 

i) 
Li 

k. 

where ranges over the set of output units consistent with input units

j. 

The total strength of output unit at time is a linear function of
its inputs at time - 1 and is thus given by

(t- 

ak (r) = 
jk Wkjk (t) La, (t jk 

where A ranges over the set of input features consistent with output
feature , I

lk 
ranges over the set of output features consistent with

input feature A, and takes on value 1 if input feature is present and
is 0 otherwise.

We used the binding network described above to find the set of
Wickelphones which gave optimal coverage to the Wickelfeatures in the
input. The procedure was quite effective. We used as the set of output
all of the Wickelphones that occurred anywhere in any of the 500 or so
verbs we studied. We found that the actual Wickelphones were always
the strongest when we had 80 percent or more of the correct Wickel-
features. Performance dropped off as the percentage of correct
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Wickelfeatures dropped. Still when as few as 50 percent of the Wickel-
features were correct , the correct Wickelphones were still the strongest
most of the time. Sometimes , however , a Wickelphone not actually in
the input would become strong and push out the " correct " Wickel-
phones. If we added the constraint that the Wickelphones must fit
together to form an entire string (by having output features activate
features that are consistent neighbors), we found that more than 60
percent of correct Wickelfeatures lead to the correct output string more
than 90 percent of the time.

The binding network described above is designed for a situation in
which there is a set of input features that is to be divided up among a
set of output features. In this case, features that are present , but not
required for a particular output feature play no role in the evaluation of
the output feature. Suppose , however , that we have a set of alternative
output features , one of which is supposed to account for the entire pat-
tern. In this case , input features that are present, but not consistent
with a given output feature must count against that output feature.
One solution to this is to have input units excite consistent output units
according the the rule given above and to inhibit inconsistent output
units. In the case in which we tried to construct the entire phonological
string directly from a set of Wickelfeatures we used the following
activation rule:

ak (t) Jk wkJk (t) Li'Jk '
where Ik indexes the input features that are inconsistent with output
feature k. In this case , we used as output features all of the strings of
less than 20 phonemes which could be generated from the set of Wick-
elphones present in the entire corpus of verbs. This is the procedure
employed to produce responses to the lowest frequency verbs as shown
in Tables 17 and 18.
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