CHAPTER 8

Learning Internal Representations
by Error Propagation

D. E. RUMELHART, G. E. HINTON, and R. J. WILLIAMS

THE PROBLEM

We now have a rather good understanding of simple two-layer associ-
ative networks in which a set of input patterns arriving at an input layer
are mapped directly to a set of output patterns at an output layer. Such
networks have no hidden units. They involve only input and output
units. In these cases there is no internal representation. The coding pro-
vided by the external world must suffice. These networks have proved
useful in a wide variety of applications (cf. Chapters 2, 17, and 18).
Perhaps the essential character of such networks is that they map simi-
lar input patterns to similar output patterns. This is what allows these
networks to make reasonable generalizations and perform reasonably on
patterns that have never before been presented. The similarity of pat-
terns in a PDP system is determined by their overlap. The overlap in
such networks is determined outside the learning system itself—by
whatever produces the patterns.

The constraint that similar input patterns lead to similar outputs can
lead to an inability of the system to learn. certain mappings from input
to output. Whenever the representation provided by the outside world
is such that the similarity structure of the input and output patterns are
very different, a network without internal representations (i.e., a

8. LEARNING INTERNAL REPRESENTATIONS 319

network without hidden units) will be unable to perform the necessary
mappings. A classic example of this case is the exclusive-or (XOR)
problem illustrated in Table 1. Here we see that those patterns which
overlap least are supposed to generate identical output values. This
problem and many others like it cannot be performed by networks
without hidden units with which to create their own internal representa-
tions of the input patterns. It is interesting to note that had the input
patterns contained a third input taking the value 1 whenever the first
two have value 1 as shown in Table 2, a two-layer system would be able
to solve the problem.

Minsky and Papert (1969) have provided a very careful analysis of
conditions under which such systems are capable of carrying out the
required mappings. They show that in a large number of interesting
cases, networks of this kind are incapable of solving the problems. On
the other hand, as Minsky and Papert also pointed out, if there is a
layer of simple perceptron-like hidden units, as shown in Figure 1, with
which the original input pattern can be augmented, there is always a
recoding (i.e.,” an internal representation) of the input patterns in the
hidden units in which the similarity of the patterns among the hidden
units can support any required mapping from the input to the output
units. Thus, if we have the right connections from the input units to a
large enough set of hidden units, we can always find a representation
that will perform any mapping from input to output through these hid-
den units. In the case of the XOR problem, the addition of a feature
that detects the conjunction of the input units changes the similarity

TABLE 1
Input Parterns Output Patterns
00 - 0
01 — 1
10 — 1
11 — 0
TABLE 2
Input Patterns Quiput Patterns
000 - . 0
010 — 1
100 — 1
111 — 0

320 BASIC MECHANISMS

Output Patterns

Internal
Representation
Units

Input Patterns

FIGURE 1. A multilayer network. In this case the information coming to the input
units is recoded into an internal representation and the outputs are generated by the inter-
nal representation rather than by the original pattern. Input patterns can always be
encoded, if there are enough hidden units, in a form so that the appropriate output pat-
tern can be generated from any input pattern.

structure of the patterns sufficiently to allow the solution to be learned.
As illustrated in Figure 2, this can be done with a single hidden unit.
The numbers on the arrows represent the strengths of the connections
among the units. The numbers written in the circles represent the
thresholds of the units. The value of +1.5 for the threshold of the hid-
den unit insures that it will be turned on only when both input units
are on. The value 0.5 for the output unit insures that it will turn on
only when it receives a net positive input greater than 0.5. The weight
of —2 from the hidden unit to the output unit insures that the output
unit will not come on when both input units are on. Note that from the
point of view of the output unit, the hidden unit is treated as simply
another input unit. It is as if the input patterns consisted of three
rather than two units.

8. LEARNING INTERNAL REPRESENTATIONS 321

Output Unit

Hidden Unit

Input Units

|
FIGURE 2. A simple XOR network with one hidden unit. See text for explanation.

The existence of networks such as this illustrates the potential power
of hidden units and internal representations. The problem, as noted by
Minsky and Papert, is that whereas there is a very simple guaranteed
learning rule for all problems that can be solved without hidden units,
namely, the perceptron convergence procedure (or the variation due
originally to Widrow and Hoff, 1960, which we call the delta rule; see
Chapter 11), there is no equally powerful rule for learning in networks
with hidden units. There have been three basic responses to this lack.
One response is represented by competitive learning (Chapter $5) in
which simple unsupervised learning rules are employed so that useful
hidden units develop. Although these approaches are promising, there
is no external force to insure that hidden units appropriate for the
required mapping are developed. The second response is to simply
assume an internal representation that, on some a priori grounds, seems
reasonable. This is the tack taken in the chapter on verb learning
(Chapter 18) and in the interactive activation model of word perception
(McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982).
The third approach is to attempt to develop a learning procedure capable
of learning an internal representation adequate for performing the task
at hand. One such development is presented in the discussion of
Boltzmann machines in Chapter 7. As we have seen, this procedure
involves the use of stochastic units, requires the network to reach
equilibrium in two different phases, and is limited to symmetric net-
works. Another recent approach, also employing stochastic units, has
been developed by Barto (1985) and various of his colleagues (cf. Barto

322 BASIC MECHANISMS

& Anandan, 1985). In this chapter we present another alternative that
works with deterministic units, that involves only local computations,
and that is a clear generalization of the delta rule. We call this the gen-
eralized delta rule. From other considerations, Parker (1985) has
independently derived a similar generalization, which he calls learning-
logic. Le Cun (1985) has also studied a roughly similar learning
scheme. In the remainder of this chapter we first derive the general-
ized delta rule, then we illustrate its use by providing some results of
our simulations, and finally we indicate some further generalizations of
the basic idea.

THE GENERALIZED DELTA RULE

The learning procedure we propose involves the presentation of a set
of pairs of input and output patterns. The system first uses the input
vector to produce its own output vector and then compares this with
the desired output, or target vector. If there is no difference, no learning
takes place. Otherwise the weights are changed to reduce the differ-
ence. In this case, with no hidden units, this generates the standard
delta rule as described in Chapters 2 and 11. The rule for changing
weights following presentation of input/output pair p is given by

A, wi =ty — 05) b= 13y M

where 1,; is the target input for jth component of the output pattern for
pattern p, o, is the jth element of the actual output pattern produced
by the presentation of input pattern p, i, is the value of the ith ele-
ment of the input pattern 8,; = t,, — 0,;, and A, w;; is the change to be
made to the weight from the /th to the jth unit following presentation
of pattern p.

The delta rule and gradient descent. There are many ways of deriv-
ing this rule. For present purposes, it is useful to see that for linear
units it minimizes the squares of the differences between the actual and
the desired output values summed over the output units and all pairs of
input/output vectors. One way to show this is to show that the deriva-
tive of the error measure with respect to each weight is proportional to
the weight change dictated by the delta rule, with negative constant of
proportionality. This corresponds to performing steepest descent on a
surface in weight space whose height at any point in weight space is
equal to the error measure. (Note that some of the following sections

8. LEARNING INTERNAL REPRESENTATIONS 323

are written in italics. These sections constitute informal derivations of
the claims made in the surrounding text and can be omitted by the
reader who finds such derivations tedious.)

To be more specific, then, let

1 2
£, = 72 (1 = 0y)? @
j

be our measure of the error on input/output pattern p and let E = ZEP be our
overall measure of the error. We wish to show that the delta rule implements a gra-
dient descent in E when the units are linear. We will proceed by simply showing
that

JE,
a w ji
which is proportional to A, wj; as prescribed by the delta rule. When there are no
hidden units it is straightforward to compute the relevant derivative. For this purpose
we use the chain rule to write the derivative as the product of two parts: the deriva-
tive of the error with respect to the outpur of the unit times the derivative of the out-
put with respect to the weight.
9, _ 3E, o, 3)
dw; 90y dw;

Bpjbpis

The first part tells how the error changes with the output of the jth unit and the
second part tells how much changing Wj; changes that output. Now, the derivatives
are easy to compute. First, from Equation 2

o, (4)
60:,- == (5 —0y) = =3,

Not surprisingly, the contribution of unit U; to the error is simply proportional to 8 ;.
Moreover, since we have linear units,

0y = X Wil)
I
JSfrom which we conclude that

EPL =i,
pi
dw;
Thus, substituting back into Equation 3, we see that

JE,

aw;

324 BASIC MECHANISMS

as desired. Now, combining this with the observation that

SE 0k,

0 Wi; ») Wi

should lead us to conclude that the net change in wy; after one complete cycle of pat-
tern presentations is proportional to this derivative and hence that the delta rule
implements a gradient descent in E. In fact, this is strictly true only if the values of
the weights are nor changed during this cycle. By changing the weights after each
pattern is presented we depart to some extent from a true gradient descent in E.
Nevertheless, provided the learning rate (i.e., the constant of proportionality) is suffi-
ciently small, this departure will be negligible and the delta rule will implement a very
close approximation to gradient descent in sum-squared error. In particular, with
small enough learning rate, the delta rule will find a set of weights minimizing this
error function.

The delta rule for semilinear activation functions in feedforward
networks. We have shown how the standard delta rule essentially
implements gradient descent in sum-squared error for linear activation
functions. In this case, without hidden units, the error surface is shaped
like a bowl with only one minimum, so gradient descent is guaranteed
to find the best set of weights. With hidden units, however, it is not so
obvious how to compute the derivatives, and the error surface is not
concave upwards, so there is the danger of getting stuck in local
minima. The main theoretical contribution of this chapter is to show
that there is an efficient way of computing the derivatives. The main
empirical contribution is to show that the apparently fatal problem of
local minima is irrelevant in a wide variety of learning tasks.

At the end of the chapter we show how the generalized delta rule can
be applied to arbitrary networks, but, to begin with, we confine our-
selves to layered feedforward networks. In these networks, the input
units are the bottom layer and the output units are the top layer. There
can be many layers of hidden units in between, but every unit must
send its output to higher layers than its own and must receive its input
from lower layers than its own. Given an input vector, the output vec-
tor is computed by a forward pass which computes the activity levels of
each layer in turn using the already computed activity levels in the ear-
lier layers.

Since we are primarily interested in extending this result to the case
with hidden units and since, for reasons outlined in Chapter 2, hidden
units with linear activation functions provide no advantage, we begin by
generalizing our analysis to the set of nonlinear activation functions
which we call semilinear (see Chapter 2). A semilinear activation func-
tion is one in which the output of a unit is a differentiable function of
the net total input,

8. LEARNING INTERNAL REPRESENTATIONS 325

netpj = ijiopi, (7)
]

where o; = J; if unit / is an input unit. Thus, a semilinear activation
function is one in which

0, = f; (net,) (8)

and f is differentiable. The generalized delta rule works if the network
consists of units having semilinear activation functions. Notice that
linear threshold units do not satisfy the requirement because their
derivative is infinite at the threshold and zero elsewhere.

To get the correct generalization of the delta rule, we must set
3E,

k]
0 Wii

Apwj = —

where E is the same sum-squared error function defined earlier. As in the standard
delta rule it is again useful to see this derivative as resuiting from the product of two
parts: one part reflecting the change in error as a function of the change in the net
input to the unit and one part representing the effect of changing a particular weight
on the net input. Thus we can write '

9E, OE, dnei, 0
aWji anetpj awj,)

By Equation 7 we see that the second factor is

dnet,; (10)
— = a ijopk = Op,‘.
dw; Ow; Y

Now let us define
JE,
dnet,;

8y =

(By comparing this to Equation 4, note that this is consistent with the definition of
8, used in the original delta rule for linear units since 0,; = net,; when unit u; is
linear.) Equation 9 thus has the equivalent form

3E,

— —3 8
Bwj,-

2i Opi-

This says that to implement gradient descent in E we should make our weight
changes according to)

B, Wi =m0, ' (1

326 BASIC MECHANISMS

Jjust as in the standard delta rule. The trick is to figure out what 8 o should be for
each unit U; in the network. The interesting result, which we now derive, is that
there is a simple recursive computation of these 8’s which can be implemented by
propagating error signals backward through the nerwork.

To compute 8,; = — we apply the chain rule to write this partial deriva-

D
a nefpj ’
tive as the product of two factors, one factor reflecting the change in error as a func-
tion of the output of the unit and one reflecting the change in the output as a Sunc-
tion of changes in the input. Thus, we have

3E, 9E, 8o, (12)

2 anetpj

S = — .
8o, dnety

Let us compute the second factor. By Equation 8 we see that
8o,
dnety;

= ff, (ne[pj)7

which is simply the derivative of the squashing function f ; Jor the Jth unit,
evaluated at the.net input net,; to that unit. To compute the first factor, we con-
sider two cases. First, assume that unit U; is an output unit of the nerwork. In this
case, it follows from the definition of Ep that

0L, . _
d Opj - (tp. Opj)s

which is the same result as we obtained with the standard delta rule. Substituting
for the two factors in Equation 12, we get

8y = (1 — 0y)f j (nety)) a3

for any output unit ;. Ifu; is not an output unir we use the chain rule to write

5 35 Sty _ 5 % 85, ., .3 3E,

% Gnetpk Bopj k anetpk aopj i % anetpk

Wi = 25pk Wyj -
k
In this case, substituting for the two factors in Equation 12 yields
8, = [(nety)‘ll;apk Wij 14

whenever U; is not an output unit. Equations 13 and 14 give a recursive procedure
for computing the 3's for all units in the nerwork, which are then used to compute
the weight changes in the network according to FEquation 11. This procedure consti-
tutes the generalized delta rule for a feedforward network of semilinear units.

These results can be summarized in three equations. First, the gen-
eralized delta rule has exactly the same form as the standard delta rule
of Equation 1. The weight on each line should be changed by an
amount proportional to the product of an error signal, 8, available to

8. LEARNING INTERNAL REPRESENTATIONS 327

the unit receiving input along that line and the output of the unit send-
ing activation along that line. In symbols,

Ap wji = 'nSPjOp,-.

The other two equations specify the error signal. Essentially, the deter-
mination of the error signal is a recursive process which starts with the
output units. If a unit is an output unit, its error signal is very similar
to the standard delta rule. It is given by

8y = (i = 05)f s (nety;)

where f; (net,;) is the derivative of the semilinear activation function
which maps the total input to the unit to an output value. Finally, the
error signal for hidden units for which there is no specified target is
determined recursively in terms of the error signals of the units to
which it directly connects and the weights of those connections. That is,

8y = S (nety;) 2.8 Wy
k

whenever the unit is not an output unit.

The application of the generalized delta rule, thus, involves two
phases: During the first phase the input is presented and propagated
forward through the network to compute the output value o,; for each
unit. This output is then compared with the targets, resulting in an
error signal §,, for each output unit. The second phase involves a
backward pass through the network (analogous to the initial forward
pass) during which the error signal is passed to each unit in the net-
work and the appropriate weight changes are made. This second, back-
ward pass allows the recursive computation of § as indicated above.
The first step is to compute § for each of the output units. This is sim-
ply the difference between the actual and desired output values times
the derivative of the squashing function. We can then compute weight
changes for all connections that feed into the final layer. After this is
done, then compute &’s for all units in the penultimate layer. This
propagates the errors back one layer, and the same process can be
repeated for every layer. The backward pass has the same computa-
tional complexity as the forward pass, and so it is not unduly expensive.

We have now generated a gradient descent method for finding
weights in any feedforward network with semilinear units. Before
reporting our results with these networks, it is useful to note some
further observations. It is interesting that not all weights need be vari-
able. Any number of weights in the network can be fixed. In this
case, error is still propagated as before; the fixed weights are simply not

328 BASIC MECHANISMS

modified. It should also be noted that there is no reason why some
output units might not receive inputs from other output units in earlier
layers. In this case, those units receive two different kinds of error:
that from the direct comparison with the target and that passed through
the other output units whose activation it affects. In this case, the
correct procedure is to simply add the weight changes dictated by the
direct comparison to that propagated back from the other output units.

SIMULATION RESULTS

We now have a learning procedure which could, in principle, evolve
a set of weights to produce an arbitrary mapping from input to output.
However, the procedure we have produced is a gradient descent pro-
cedure and, as such, is bound by all of the problems of any hill climb-
ing procedure —namely, the problem of local maxima or (in our case)
minima. Moreover, there is a question.of how long it might take a sys-
tem to learn. Even if we could guarantee that it would eventually find
a solution, there is the question of whether our procedure could learn
in a reasonable period of time. It is interesting to ask what hidden
units the system actually develops in the solution of particular prob-
lems. This is the question of what kinds of internal representations the
system actually creates. We do not yet have definitive answers to these
questions. However, we have carried out many simulations which lead
us to be optimistic about the local minima and time questions and to be
surprised by the kinds of representations our learning mechanism dis-
covers. Before proceeding with our results, we must describe our simu-
lation system in more detail. In particular, we must specify an activa-
tion function and show how the system can compute the derivative of
this function.

A useful activation function. In our above derivations the derivative
of the activation function of unit u;, f’;(net;), always played a role.
This implies that we need an activation function for which a derivative
exists. It is interesting to note that the linear threshold function, on
which the perceptron is based, is discontinuous and hence will not suf-
fice for the generalized delta rule. Similarly, since a linear system
achieves no advantage from hidden units, a linear activation function
will not suffice either. Thus, we need a continuous, nonlinear activa-
tion function. In most of our experiments we have used the logistic
activation function in which

8. LEARNING INTERNAL REPRESENTATIONS 329

N 1 (15)
oi T (T w0, 6,)
1+e ¢

where 6§ is a bias similar in function to a threshold.! In order to apply
our learning rule, we need to know the derivative of this function with
respect to its total input, net,;, where net,; = ij,- 0,;+ ;. It is easy to
show that this derivative is given by

Thus, for the logistic activation function, the error signal, 3,;, for an
output unit is given by

8y = (ty — 0,)0, (1= 05),
and the error for an arbitrary hidden u; is given by

Bpj = Opj(l - Opj)§8pkwkj.

It should be noted that the derivative, o, (1 — o,), reaches its max-
imum for o,; = 0.5 and, since 0<o0,<1, approaches its minimum as
0,; approaches zero or one. Since the amount of change in a given
weight is proportional to this derivative, weights will be changed most
for those units that are near their midrange and, in some sense, not yet
committed to being either on or off. This feature, we believe, contri-
butes to the stability of the learning of the system.

One other feature of this activation function should be noted. The
system can not actually reach its extreme values of 1 or 0 without infin-
itely large weights. Therefore, in a practical learning situation in which
the desired outputs are binary {0,1}, the system can never actually
achieve these values. Therefore, we typically use the values of 0.1 and
0.9 as the targets, even though we will talk as if values of {0,1} are
sought.

The learning rate. Our learning procedure requires only that the
change in weight be proportional to §E,/dw. True gradient descent
requires that infinitesimal steps be taken. The constant of proportional-
ity is the learning rate in our procedure. The larger this constant, the
larger the changes in the weights. For practical purposes we choose a

1 Note that the values of the bias, 6;, can be learned just like any other weights. We
simply imagine that 6; is the weight from a unit that is always on.

330 BASIC MECHANISMS

learning rate that is as large as possible without leading to oscillation.
This offers the most rapid learning. One way to increase the learning
rate without leading to oscillation is to modify the generalized delta rule
to include a momentum term. This can be accomplished by the follow-
ing rule:

iji(n+1)=n(8pj0pi)+C!AWJ','(H) (16)

where the subscript n indexes the presentation number, 7 is the learn-
ing rate, and o is a constant which determines the effect of past weight
changes on the current direction of movement in weight space. This
provides a kind of momentum in weight space that effectively filters
out high-frequency variations of the error-surface in the weight space.
This is useful in spaces containing long ravines that are characterized by
sharp curvature across the ravine and a gently sloping floor. The sharp
curvature tends to cause divergent oscillations across the ravine. To
prevent these it is necessary to take very small steps, but this causes
very slow progress along the ravine. The momentum filters out the
high curvature and thus allows the effective weight steps to be bigger.
In most of our simulations o was about 0.9. Our experience has been
that we get the same solutions by setting o = 0 and reducing the size of
7, but the system learns much faster overall with larger values of «
and 7.

Symmetry breaking. Our learning procedure has one more problem
that can be readily overcome and this is the problem of symmetry
breaking. If all weights start out with equal values and if the solution
requires that unequal weights be developed, the system can never learn.
This is because error is propagated back through the weights in propor-
tion to the values of the weights. This means that all hidden units con-
nected directly to the output inputs will get identical error signals, and,
since the weight changes depend on the error signals, the weights from
those units to the output units must always be the same. The system is
starting out at a kind of local maximum, which keeps the weights equal,
but it is a maximum of the error function, so once it escapes it will
never return. We counteract this problem by starting the system with
small random weights. Under these conditions symmetry problems of
this kind do not arise.

The XOR Problem

It is useful to begin with the exclusive-or problem since it is the clas-
sic problem requiring hidden units and since many other difficult

8. LEARNING INTERNAL REPRESENTATIONs 331

problems involve an XOR as a subproblem. We have run the XOR
problem many times and with a couple of exceptions discussed below,
the system has always solved the problem. Figure 3 shows one of the
solutions to the problem. This solution was reached after 558 sweeps
through the four stimulus patterns with a learning rate of n = 0.5. In
this case, both the hidden unit and the output unit have positive biases
so they are on unless turned off. The hidden unit turns on if neither
input unit is on. When it is on, it turns off the output unit. The con-
nections from input to output units arranged themselves so that they
turn off the output unit whenever both inputs are on. In this case, the
network has settled to a solution which is a sort of mirror image of the
one illustrated in Figure 2.

We have taught the system to solve the XOR problem hundreds of
times. Sometimes we have used a single hidden unit and direct con-
nections to the output unit as illustrated here, and other times we have
allowed two hidden units and set the connections from the input units
to the outputs.to be zero, as shown in Figure 4. In only two cases has
the system encountered a local minimum and thus been unable to solve
the problem. Both cases involved the two hidden units version of the

@ Output Unit \‘
1

42 / \-42 \

o |

/ -9.4 ‘

/ \ Hidden Unit l\

/ \ !

/- - |
64 -64

Input Units

FIGURE 3. Observed XOR network. The connection weights are written on the arrows
and the biases are written in the circles. Note a positive bias means that the unit is on
unless turned off.

332 BASIC MECHANISMS

. .
FIGURE 4. A simple architecture for solving XOR with two hidden units and no direct
connections from input to output.

problem and both ended up in the same local minimum. Figure 5
shows the weights for the local minimum. In this case, the system
correctly responds to two of the patterns—namely, the patterns 00 and
10. In the cases of the other two patterns 11 and 01, the output unit
gets a net input of zero. This leads to an output value of 0.5 for both
of these patterns. This state was reached after 6,587 presentations of
each pattern with 5=0.25. 2 Although many problems require more
presentations for learning to occur, further trials on this problem
merely increase the magnitude of the weights but do not lead to any
improvement in performance. We do not know the frequency of such
local minima, but our experience with this and other problems is that
they are quite rare. We have found only one other situation in which a
local minimum has occurred in many hundreds of problems of various
sorts. We will discuss this case below.

The XOR problem has proved a useful test case for a number of
other studies. Using the architecture illustrated in Figure 4, a student
in our laboratory, Yves Chauvin, has studied the effect of varying the

2 If we set = 0.5 or above, the system escapes this minimum. In general, however,
the best way to avoid local minima is probably to use very small values of 7.

8. LEARNING INTERNAL REPRESENTATIONS 333

FIGURE 5. A network at a local minimum for the exclusive-or problem. The dated
lines indicate negative weights. Note that whenever the right most input unit is on it
turns on both hidden units. The weights connecting the hidden units to the output are
arranged so that when both hidden units are on, the output unit gets a net input of zero.
This leads to an output value of 0.5. In the other cases the network provides the correct
answer.

number of hidden units and varying the learning rate on time to solve
the problem. Using as a learning criterion an error of 0.01 per pattern,
Yves found that the average number of presentations to solve the prob-
lem with 5 = 0.25 varied from about 245 for the case with two hidden
units to about 120 presentations for 32 hidden units. The results can
be summarized by P = 280 — 33log,H, where P is the required
number of presentations and H is the number of hidden units
employed. Thus, the time to solve XOR is reduced linearly with the
logarithm of the number of hidden units. This result holds for values of
H up to about 40 in the case of XOR. The general result that the time
to solution is reduced by increasing the number of hidden units has
been observed in virtually all of our simulations. Yves also studied the
time to solution as a function of learning rate for the case of eight hid-
den units. He found an average of -about 450 presentations with
n = 0.1 to about 68 presentations with n = 0.75. He also found that

334 BASIC MECHANISMS

learning rates larger than this led to unstable behavior. However,
within this range larger learning rates speeded the learning substantially.
In most of our problems we have employed learning rates of n = 0.25
or smaller and have had no difficulty.

Parity

One of the problems given a good deal of discussion by Minsky and
Papert (1969) is the parity problem, in which the output required is 1 if
the input pattern contains an odd number of 1s and 0 otherwise. This
is a very difficult problem because the most similar patterns (those
which differ by a single bit) require different answers. The XOR prob-
lem is a parity problem with input patterns of size two. We have tried a
number of parity problems with patterns ranging from size two to eight.
Generally we have employed layered. networks in which direct connec-
tions from the input to the output units are not allowed, but must be
mediated through a set of hidden units. In this architecture, it requires
at least N hidden units to solve parity with patterns of length N. Fig-
ure 6 illustrates the basic paradigm for the solutions discovered by the
system. The solid lines in the figure indicate weights of +1 and the
dotted lines indicate weights of —1. The numbers in the circles
represent the biases of the units. Basically, the hidden units arranged

FIGURE 6. A paradigm for the solutions to the parity problem discovered by the learn-
ing system. See text for explanation.

8. LEARNING INTERNAL REPRESENTATIONS 335

themselves so that they count the number of inputs. In the diagram,
the one at the far left comes on if one or more input units are on, the
next comes on if two or more are on, etc. All of the hidden units
come on if all of the input lines are on. The first m hidden units come
on whenever m bits are on in the input pattern. The hidden units then
connect with alternately positive and negative weights. In this way the
net input from the hidden units is zero for even numbers and +1 for
odd numbers. Table 3 shows the actual solution attained for one of our
simulations with four input lines and four hidden units. This solution
was reached after 2,825 presentations of each of the sixteen patterns
with n = 0.5. Note that the solution is roughly a mirror image of that
shown in Figure 6 in that the number of hidden units turned on is
equal to the number of zero input values rather than the number of
ones. Beyond that the principle is that shown above. 1t should be noted
that the internal representation created by the learning rule is to
arrange that the number of hidden units that come on is equal to the
number of zeros in the input and that the particular hidden units that
come on depend only on the number, not on which input units are on.
This is exactly the sort of recoding required by parity. It is not the kind
of representation readily discovered by unsupervised learning schemes
such as competitive learning.

The Encoding Problem

Ackley, Hinton, and Sejnowski (1985) have posed a problem in
which a set of orthogonal input patterns are mapped to a set of orthogo-
nal output patterns through a small set of hidden units. In such cases
the internal representations of the patterns on the hidden units must be
rather efficient. Suppose that we attempt to map N input patterns onto
N output patterns. Suppose further that log,N hidden units are pro-
vided. In this case, we expect that the system will learn to use the

TABLE 3

Number of On Hidden Unit Output
Input Units Patterns Value

0 — 1111 — 0

1 — 1011 . - 1

2 — 1010 - 0

3 - 0010 — 1

4 - 0000 — 0

336 BASIC MECHANISMS

FIGURE 7. A network for solving the encoder problem. In this problem there are N
orthogonal input patterns each paired with one of N orthogonal output patterns. There
are only logV, hidden units. Thus, if the hidden units take on binary values, the hidden
units must form a binary number to encode each of the input patterns. This is exactly
what the system learns to do. ’

hidden units to form a binary code with a distinct binary pattern for
each of the N input patterns. Figure 7 illustrates the basic architecture
for the encoder problem. Essentially, the problem is to learn an encod-
ing .of an N bit pattern into a log,N bit pattern and then learn to
decode this representation into the output pattern. We have presented
the system with a number of these problems. Here we present a prob-
lem with eight input patterns, eight output patterns, and three hidden
units. In this case the required mapping is the identity mapping illus-
trated in Table 4. The problem is simply to turn on the same bit in the

TABLE 4
Input Patterns Qutput Patterns
10000000 — 10000000
01000000 —_ 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 - _ 00000100
00000010 — 00000010
00000001 - 00000001

8. LEARNING INTERNAL REPRESENTATIONS 337

output as in the input. Table 5 shows the mapping generated by our
learning system on this example. It is of some interest that the system
employed its ability to use intermediate values in solving this problem.
It could, of course, have found a solution in which the hidden units
took on only the values of zero and one. Often it does just that, but in
this instance, and many others, there are solutions that use the inter-
mediate values, and the learning system finds them even though it has
a bias toward extreme values. It is possible to set up problems that
require the system to make use of intermediate values in order to solve
a problem. We now turn to such a case.

Table 6 shows a very simple problem in which we have to convert
from a distributed representation OVer two units into a local representation
over four units. The similarity structure of the distributed input pat-
terns is simply not preserved in the local output representation.

We presented this problem to our learning system with a number of
constraints which made it especially difficult. The two input units were
only allowed to connect to a single hidden unit which, in turn, was
allowed to connect to four more hidden units. Only these four hidden
units were allowed to connect to the four output units. To solve
this problem, then, the system must first convert the distributed

TABLE $
Input Hidden Unit Output
Patterns Patterns Patterns
10000000 — 5 O 0 — 10000000
01000000 — O 1! 0 — 01000000
00100000 — 1 1 0 — 00100000
00010000 — 1 1 1 — 00010000
00001000 — O 1 1 — 00001000
00000100 — 5 0 1 — 00000100
00000010 — 1 O 5 — 00000010
00000001 — 0 O S5 — 00000001
TABLE 6
Input Patterns QOutput Patterns
00 — 1000
01 — - 0100
10 — 0010
11 — 0001

338 BASIC MECHANISMS

representation of the input patterns into various intermediate values of
the singleton hidden unit in which different activation values
correspond to the different input patterns. These continuous values
must then be converted back through the next layer of hidden units—
first to another distributed representation and then, finally, to a local
representation. This problem was presented to the system and it
reached a solution after 5,226 presentations with n = 0.05. 3 Table 7
shows the sequence of representations the system actually developed in
order to transform the patterns and solve the problem. Note each of
the four input patterns was mapped onto a particular activation value of
the singleton hidden unit. These values were then mapped onto distri-
buted patterns at the next layer of hidden units which were finally
mapped into the required local representation at the output level. In
principle, this trick of mapping patterns into activation values and then
converting those activation values back into patterns could be done for
any number of patterns, but it becomes increasingly difficult for the
system to make the necessary distinctions as ever smaller differences
among activation values must be distinguished. Figure 8 shows the
network the system developed to do this job. The connection weights
from the hidden units to the output units have been suppressed for
clarity. (The sign of the connection, however, is indicated by the form
of the connection—e.g., dashed lines mean inhibitory connections).
The four different activation values were generated by having relatively
large weights of opposite sign. One input line turns the hidden unit full
on, one turns it full off. The two differ by a relatively small amount so
that when both turn on, the unit attains a value intermediate between 0
and 0.5. When neither turns on, the near zero bias causes the unit to
attain a value slightly over 0.5. The connections to the second layer of
hidden units is likewise interesting. When the hidden unit is full on,

TABLE7

Input Singleton Remaining Qutput
Patterns Hidden Unit Hidden Units Patterns
10 — 0 - 1110 -— 0010
11 — 2 - 1100 -— 0001
00 — .6 - 500 3 ~— 1000
01 —_ 1 - 0001 -— 0100

3 Relatively small learning rates make units employing intermediate values easier 1o
obtain. ,

8. LEARNING INTERNAL REPRESENTATIONS 339

Output
Units

Hidden |
Units "

Input
Units

FIGURE 8. The network illustrating the use of intermediate values in solving a problem.
See text for explanation.

the right-most of these hidden units is turned on and all others turned
off. When the hidden unit is turned off, the other three of these hid-
den units are on and the left-most unit off. The other connections
from the singleton hidden unit to the other hidden units are graded so
that a distinct pattern is turned on for its other two values. Here we
have an example of the flexibility of the learning system.

Our experience is that there is a propensity for the hidden units to
take on extreme values, but, whenever the learning problem calls for it,
they can learn to take on graded values. It is likely that the propensity
to take on extreme values follows from the fact that the logistic is a sig-
moid so that increasing magnitudes of its inputs push it toward zero or
one. This means that in a problem in which intermediate values are
required, the incoming weights must remain of moderate size. It is
interesting that the derivation of the generalized delta rule does not
depend on all of the units having identical activation functions. Thus,
it would be possible for some units, those required to encode informa-
tion in a graded fashion, to be linear while others might be logistic.
The linear unit would have a much wider dynamic range and could
encode more different values. This would be a useful role for a linear
unit in a network with hidden units.

340 BASIC MECHANISMS

Symmetry

Another interesting problem we studied is that of classifying input
strings as to whether or not they are symmetric about their center. We
used patterns of various lengths with various numbers of hidden units.
To our surprise, we discovered that the problem can always be solved
with only two hidden units. To understand the derived representation,
consider one of the solutions generated by our system for strings of
length six. This solution was arrived at after 1,208 presentations of each
six-bit pattern with n = 0.1. The final network is shown in Figure 9.
For simplicity we have shown the six input units in the center of the
diagram with one hidden unit above and one below. The output unit,
which signals whether or not the string is symmetric about its center, is
shown at the far right. The key point to see about this solution is that
for a given hidden unit, weights that are symmetric about the middle
are equal in magnitude and opposite in sign. That means that if a sym-
metric pattern-is on, both hidden units will receive a net input of zero
from the input units, and, since the hidden units have a negative bias,
both will be off. In this case, the output unit, having a positive bias,

Hidden Unit

~
~ .
~ ~
Output
Z Unit
~
-~
e
~

|
FIGURE 9. Network for solving the symmetry problem. The six open circles represent

the input units. There are two hidden units, one shown above and one below the input
units. The output unit is shown to the far left. See text for explanation.

8. LEARNING INTERNAL REPRESENTATIONS 341

will be on. The next most important thing to note about the solution is
that the weights on each side of the midpoint of the string are in the
ratio of 1:2:4. This insures that each of the eight patterns that can
occur on each side of the midpoint sends a unique activation sum to
the hidden unit. This assures that there is no pattern on the left that
will exactly balance a non-mirror-image pattern on the right. Finally,
the two hidden units have identical patterns of weights from the input
units except for sign. This insures that for every nonsymmetric pat-
tern, at least one of the two hidden units will come on and turn on the
output unit. To summarize, the network is arranged so that both hid-
den units will receive exactly zero activation from the input units when
the pattern is symmetric, and at least one of them will receive positive
input for every nonsymmetric pattern.

This problem was interesting to us because the learning system
developed a much more elegant solution to the problem than we had
previously considered. This problem was not the only one in which this
happened. The parity solution discovered by the learning procedure
was also one that we had not discovered prior to testing the problem
with our learning procedure. Indeed, we frequently discover these
more elegant solutions by giving the system more hidden units than it
needs and observing that it does not make use of some of those pro-
vided. Some analysis of the actual solutions discovered often leads us
to the discovery of a better solution involving fewer hidden units.

Addition

Another interesting problem on which we have tested our learning
algorithm is the simple binary addition problem. This problem is
interesting because there is a very elegant solution to it, because it is
the one problem we have found where we can reliably find local
minima and because the way of avoiding these local minima gives us
" some insight into the conditions under which local minima may be
found and avoided. Figure 10 illustrates the basic problem and a
minimal solution to it. There are four input units, three output units,
and two hidden units. The output patterns can be viewed as the binary
representation of the sum of two two-bit binary numbers represented
by the input patterns. The second and fourth input units in the
diagram correspond to the low-order bits of the two binary numbers
and the first and third units correspond to the two higher order bits.
The hidden units correspond to the carry bits in the summation. Thus
the hidden unit on the far right comes on when both of the lower order
bits in the input pattern are turned on, and the one on the left comes

342 BASIC MECHANISMS

Output Units

Input Units .

FIGURE 10. Minimal network for adding two two-bit binary numbers. There are four
input units, three output units, and two hidden units. The output patterns can be viewed
as the binary representation of the sum of two two-bit binary numbers represented by the
input patterns. The second and fourth input units in the diagram correspond to the low-
order bits of the two binary numbers, and the first and third units correspond to the two
higher order bits. The hidden units correspond to the carry bits in the summation. The
hidden unit on the far right comes on when both of the lower order bits in the input pat-
tern are turned on, and the one on the left comes on when both higher order bits are
turned on or when one of the higher order bits and the other hidden unit is turned on.
The weights on all lines are assumed to be +1 except where noted. Negative connec-
tions are indicated by dashed lines. As usual, the biases are indicated by the numbers in
the circles. -

on when both higher order bits are turned on or when one of the
higher order bits and the other hidden unit is turned on. In the
diagram, the weights on all lines are assumed to be +1 except where
noted. Inhibitory connections are indicated by dashed lines. As usual,
the biases are indicated by the numbers in the circles. To understand-
how this network works, it is useful to note that the lowest order out-
put bit is determined by an exclusive-or among the two low-order input
bits. One way to solve this XOR problem is to have a hidden unit
come on when both low-order input bits are on and then have it inhibit
the output unit. Otherwise either of the low-order input units can turn
on the low-order output bit. The middle bit is somewhat more

8. LEARNING INTERNAL REPRESENTATIONS 343

difficult. Note that the middle bit should come on whenever an odd
number of the set containing the two higher order input bits and the
lower order carry bit is turned on. Observation will confirm that the
network shown performs that task. The left-most hidden unit receives
inputs from the two higher order bits and from the carry bit. Its bias is
such that it will come on whenever two or more of its inputs are turned
on. The middle output unit receives positive inputs from the same
three units and a negative input of —2 from the second hidden unit.
This insures that whenever just one of the three are turned on, the
second hidden unit will remain off and the output bit will come on.
Whenever exactly two of the three are on, the hidden unit will turn on
and counteract the two units exciting the output bit, so it will stay off.
Finally, when all three are turned on, the output bit will receive —2
from its carry bit and +3 from its other three inputs. The net is posi-
tive, so the middle unit will be on. Finally, the third output bit should
turn on whenever the second hidden unit is on—that is, whenever
there is a carry from the second bit. Here then we have a minimal net-
work to carry -out the job at hand. Moreover, it should be noted that
the concept behind this network is generalizable to an arbitrary number
of input and output bits. In general, for adding two m bit binary
numbers we will require 2m input units, m hidden units, and m+1 out-
put units.

Unfortunately, this is the one problem we have found that reliably
leads the system into local minima. At the start in our learning trials
on this problem we allow any input unit to connect to any output unit
and to any hidden unit. We allow any hidden unit to connect to any
output unit, and we allow one of the hidden units to connect to the
other hidden unit, but, since we can have no loops, the connection in
the opposite direction is disallowed. Sometimes the system will discover
essentially the same network shown in the figure.* Often, however, the
system ends up in a local minimum. The problem arises when the XOR
problem on the low-order bits is not solved in the way shown in the
diagram. One way it can fail is when the "higher" of the two hidden
units is "selected" to solve the XOR problem. This is a problem
because then the other hidden unit cannot "see" the carry bit and there-
fore cannot finally solve the problem. This problem seems to stem
from the fact that the learning of the second output bit is always depen-
dent on learning the first (because information about the carry is neces-
sary to learn the second bit) and therefore lags behind the learning of
the first bit and has no influence on the selection of a hidden unit to

4 The network is the same except for the highest order bit. The highest order bit is
always on whenever three or more of the input units are on. This is always learned first
and always learned with direct connections to the input units.

