7

Connections and disconnections: acquired
dyslexia in a computational model of reading
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Introduction

In this chapter we describe a new, parallel distributed processing (PDP) model
of visual word recognition and pronunciation, the acquisition of these skills,
and their breakdown following brain injury. The model consists of a working,
computational simulation of the process of learning to recognize and
pronounce written words. In developing this model we were motivated by two
general concerns. The first is that, since word recognition is a key component
of reading, a comprehensive account of word recognition is critical to an
understanding of this important human cognitive skili. A basic characteristic
of reading comprehension is that it occurs ‘on-line’, i.e. essentially as the
stimulus is perceived. This characteristic derives in part from the fact that
words are recognized rapidly and usually effortlessly; a large amount of
research has addressed the types of knowledge and processes that support this
capacity, the kinds of information that become available as part of the
recognition process, and how this information contributes to other aspects of
reading. Furthermore, word recognition presents important developmental
issues; learning to read words is among the first tasks confronting the
beginning reader, and problems in reading acquisition are typically associated
with deficits in this skill. Finally, reading impairments that are a
consequence of brain injury are often associated with deficits in word
recognition; studies of these acquired forms of dyslexia have provided
important evidence concerning the reading process and its neurological
realization. As reading résearchers, one of our primary goals was to develop
a computational model that incorporates much of what is known about
these aspects of word recognition.

The other primary motivation for this work was the observation that word
recognition provides a domain in which to explore the properties of the
connectionist or parallel distributed processing (PDP) approach to under-
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standing human cognition. This approach represents the modern realization
of Hebb's (1949) idea that complex human behaviours emerge from the
operation of aggregations of simple neuronal processing units. The approach
has generated broad interest among cognitive- and neuro-scientists, and has
been applied to a wide range of problems in perception, learning, and
cognition (e.g. McClelland and Rumelhart 1986; Rumelhart and McClelland
1986a). The first generation of connectionist models illustrated the basic
principles and the potential of this approach, but were limited in scope. As a
relatively mature area of research, word recognition presented a domain in
which to develop a second-generation model capable of simulating a broad
range of behavioural phenomena in detail. Such a comprehensive model
would provide a basis for assessing the value of the connectionist approach in
the development of explanatory theories. :

The plan of the paper is as follows. We first provide an overview of the
model, describing its basic structure and operation. We then summarize the
model’s account of the task of naming words aloud. This material is developed
in greater detail elsewhere (Seidenberg 1988a; Seidenberg and McClelland
1988a,b), so our treatment of these issues will necessarily be limited. The main
focus of this paper concerns our initial explorations of the model’s potential to
account for certain reading disorders that are observed following brain injury.
Although it is by no means a complete theory of word recognition and
pronunciation, the model provides a plausible account of some basic
phenomena concerning normal performance; we sought to determine whether
aspects of pathological performance could be captured in terms of damage to
this system. This work represents one of the first attempts to describe and
explain pathological performance following brain injury by ‘lesioning’ a
working computational model of normal performance. Although these studies
are as yet preliminary in nature, we think that this effort illustrates the utility
and potential of the approach.

Overview of the model

We conceive of a lexical processing module with the general form illustrated in
Fig.7.1. The long-term goal is an integrated theory that accounts for various
aspects of lexical processing involving orthographic, phonological, and
semantic information. Such a theory would specify how these types of
information are represented in memory, and how they are used in tasks such as
deriving the meaning of a word from its written form, deriving the spelling of a
word from its meaning or its pronunciation, and deriving a pronunciation
from spelling. The implemented model, represented by that part of Fig. 7.1 in
heavy outline, is concerned with how readers recognize letter strings and
pronounce them aloud. The model consists of a network of interconnected
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MAKE /mAk/

Fig. 7.1 General framework for processing of words in reading: the implemented
model is in bold outline.

processing units. There are 400 units used to code orthographic information,
200 hidden units, and 460 units used to code phonological information. There
are connections from all orthographic units to all hidden units, and from all
hidden units to all phonological units. In addition, there is a set of connections
from the hidden units back to the orthographic units. The connections
between units carry weights that govern the spread of activation through the
system. As will become clear below, these weights encode what the model
knows about written English, specifically orthographic redundancy (i.c. the
frequency and distribution of letter patterns in the lexicon) and the
correspondences between orthography and phonology.

Orthographic and phonological representations

The orthographic and phonological codes for words (and non-words) are
represented as patterns of activation distributed over a number of primitive
representational units. Each processing unit has an activation value ranging
from 0 to 1. The representations of different entities are encoded as different
patterns of activity over these units. The details of these representational
schemes are described elsewhere (Seidenberg and McClelland 1988a,b); here
we summarize some of their main features.

The phonological representation we employed was the one developed by
Rumelhart and McClelland (1986b). The phonemes in a letter string are
encoded as a set of triples, each specifying a phoneme and its flankers. The
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word MAKE, for example, consists of three such triples or ‘Wickelphones’ (in
honor of Wickelgren 1969). The correspondence between Wickelphones and
units is one-to-many. Each Wickelphone is encoded as a pattern of activation
over a sct of units representing phonetic features. Each unit represents a triple
of phonetic features, one feature of the first of the three phonemes in each

Wickelphone, one feature of the second of the three, and one of the third. For

example, there is a unit that represents [vowel, fricative, stop]. This unit
should be activated for any word containing a Wickelphone in which this
sequence occurs, such as the words POST and SOFT. Word boundaries are
also represented in the featural representation, so that there is a unit, for
example, that represents [vowel, liquid, word-boundary]; this unit would
come on in words like CAR and CALL. In Rumelhart and McClelland’s
(1986h) scheme, there are 460 units and each Wickelphone activates 16 of them
(see their paper for discussion).

The representation used at the graphemic level has similarities with that
used at the phonological level, but it consists of 400 units set up according to a
slightly different scheme. For each unit, there is a table containing a list of 10
possible first letters, 10 possible middle letters, and 10 possible end letters.
These tables are generated randomly, except for the constraint that the symbol
for beginning/end of word does not occur in the middle position. When the
unitis on, it indicates that the string being represented contains one of the 1000
possible triples that could be made by selecting one member from the first list
ol 10, one from the second, and one from the third. Each letter triple activates
about 20 units. Though each.unit is highly ambiguous, over the full set of 400
such randomly constructed units, the probability that any two sequences of
three letters would activate all and only the same units in common is effectively
zero.

In sum, both the phonological and the orthographic representations can be
described as coarse-coded, distributed representations of the sort discussed by
Hinton, McClelland, and Rumelhart (1986). The representations allow any
letter and phoneme sequences to be represented, subject to certain saturation
and ambiguity limits that can arise when the strings get too long. Thus, there is
a minimum of built-in knowledge of orthographic or phonological structure.
The use of a local context-sensitive coding scheme promotes the exploitation
of local contextual similarity as a basis for generalization in the model; that is,
what the model learns to do for a grapheme in one local context (e.g. the M in
MAKE) will tend to transfer to the same grapheme in similar local contexts
(e.g. M in MADE and MATE and, to a lesser extent, M in contexts such as
MILE and SMALL). Note that we do not claim that these encoding schemes
are fully sufficient for representing all of the letter or phoneme sequences that
form words (see Pinker and Prince 1988). However, we are presently applying
the model only to monosyllables, for which the representation is adequate (see
Seidenberg and McClelland, 1988b, for discussion).
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Processing in the model

The model takes a letter string as input and yields two types of output: (1)-a
pattern of activation across the phonological units; and (2) a recreatjon of the
input pattern across the orthographic units. The former can be thought of as
the model’s computation of a phonological code for the input, and will be
discussed in some detail because of its relevance to the word naming task. The
latter can be considered a representation of the orthographic input in a short-
term sensory store and is critical to our account of lexical decision (Seidenberg
and McClelland 1988a.,b). Each word-processing trial begins with the
presentation of a letter string, which the simulation program then encodes into
a pattern of activation over the orthographic units, according to the
representational assumptions described above. Next, activations of the hidden
units are computed on the basis of the pattern of activation at the orthographic
level. For each hidden unit, a quantity termed the net input is computed: this is
the activation of each input unit times the weight on the connection from that
input unit to the hidden unit, plus a bias term unique to the unit. The bias term
may be thought of as an extra weight or connection to the unit from a special
unit that always has activation of 1.0. The activation of the hidden unit is
then determined from the net input using a non-linear function called the
logistic function. The activation function must be non-linear for reasons
described in Rumelhart, Hinton, and McClelland (1986). It must be
monotonically increasing and have a smooth first derivative for reasons
having to do with the learning rule. The logistic function satisfies these
constraints.

Once activations over the hidden units have been computed, these are used
to compute activations for the phonological units and new activations for the
orthographic units based on feedback from the hidden units. These activations
are computed following exactly the same procedures already described: first
the net input to each unit is calculated, based on the activations of all of the
hidden units; then the activation of each of these units is computed, based on
the net inputs.

Learning

When the model is first initialized, the connection strengths and biases in the
network are assigned random initial values between —0.5 and +0.5. This
means that each hidden unit computes an entirely arbitrary function of the
input it receives from the orthographic units, and sends a random pattern of

. excitatory and inhibitory signals to the phonological units and back to the

orthographic units. This also means that the network has no initial
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knowledge of spelling patterns or of correspondences between spelling and
sound. Thus, the model is effectively tabula rasa; the abilities to re-create the
orthographic input and generate its phonological code arise as a result of
learning from exposure to letter strings and the corresponding strings of
phonemes.

Learning occurs in the model in the following way. An orthographic string
is presented and processing takes place as described above, producing first a
pattern of activation over the hidden units, then a feedback pattern on the
orthographic units and a feedforward pattern on the phonological units. At
this point these two output patterns produced by the model are compared to
the correct, target patterns that the model should have produced. The target
for the orthographic feedback pattern is simply- the orthographic input
pattern; the target for the phonological output is the pattern representing the

correct pronunciation of the presented letter string. A real-world counterpart .

of this second procedure would be a child seeing a letter string and hearing a
teacher or other person say its correct pronunciation.

For each graphemic and phonemic unit, the difference between the correct
or target activation of the unit and its actual activation is computed. The
learning procedure adjusts the strengths of all of the connections in the
network in proportion to the extent to which this change will reduce a measure
of the total error, E. This algorithm is the ‘back-propagation’ learning
procedure of Rumelhart, Hinton, and Williams (1986). Readers are referred to
Rumelhart et al. for an explanation of how the weights are modified. The most
important feature is that the rule changes the strength of each weight in
proportion to the size of the effect that changing it will have on the error
measure. Large changes are made to weights that have a large effect on E, and
small changes are made to weights that have a small effect on E.

The training corpus

The model was trained on all of the monosyllabic words consisting of three or
more letters in the Kucera and Francis (1967) word count, minus proper
nouns, foreign words, abbreviations, and words that are formed by the
addition of a final -s or -ed inflection. This is not a complete list of the
uninflected monosyllabic words in English; for example, the word FONT is

one of many that do not appear in Kucera and Francis. Nevertheless, the-

corpus provides a reasonable approximation of the set of monosyllables in the
vocabulary of an average American reader. To this list we added a number of
words that had been used in some of the experiments that we planned to
simulate. The resulting corpus contained 2897 words.

The training regime was divided into a series of 250 epochs. In each epoch,
each word had a probability of being presented that was a logarithmic function
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of its Kucera and Francis frequency. The most frequent word (THE) had a
probability of about 0.93; words occurring once per million had probabilities
of about 0.05. Thus, the expected value of the number of presentations of a
word over 250 epochs ranged from about 230 to about 12. Since the sampling
process is in fact random, about 5 per cent of the lowest-frequency items will
have occurred less than six times during training. ‘

This sampling method is not intended to mimic the experience of children
learning to read in American culture. In the model, all words are available for
sampling throughout training, with frequency represented by the probability
of selection on a given learning trial. In actual experience, however, frequency
derives in part from age at acquisition; words that are higher-frequency for
adults tend to be learned earlier by children. Moreover, our treatment of
frequency only approximates the differences in familiarity that are relevant to
skilled readers, for two reasons. First, there are known inaccuracies in
standard frequency norms (Gernsbacher 1984), especially in the lower-
frequency range. Second, our encoding of frequency greatly underweights the
advantage of higher-frequency words relative to words of lower frequency. In
the Kucera and Francis (1967) count, for example, frequencies range from
about 70 000 to 1; with the logarithmic compression used in our model, the
ratio of highest-frequency word to lowest- is only about 16 to I.

Characterizing the model’s performance

The model produces patterns of activation across the orthographic and
phonological units as its output. For word naming, we assume that the pattern
over the phonological units serves as the input to a system that constructs an
articulatory-motor program, which in turn is executed by the motor system,
resulting in an overt pronunciation response. In reality, we believe that these
processes operate in a cascaded fashion: the response is triggered when the
articulatory-motor program has evolved to the point where it is sufficiently
differentiated from other possible motor programs. Thus, activation would
begin to build up first at the orthographic units, propagating continuously
from there to the hidden and phonological units and from there to the motor
system.

The simulation model simplifies this procedure. Activations of the
phonological units are computed in a single step, and the construction and
execution of articulatory-motor programs are unimplemented. Activations

.computed in this manner can be shown to correspond to the asymptotic

activations that would be achieved in a cascaded process (Cohen, Dunbar,
and McClelland 1988). We use the phonological error score—the sum of the
squared differences between the target activation value for each phonological
unit and the actual activation computed by the network—to relate the model’s
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performance to experimental data on latency and accuracy of word-naming
responses. The error score is a measure of how closely the pattern computed by
the net matches the correct pronunciation (or any other specified pronuncia-
tion). In general, after training the error score is lower for the correct
pronunciation than for any other.

Even though the correct phonological code may be the best match to the
pattern of activation over the phonological units, there is still considerable
variation in error scores, and we assume that lower error scores are correlated
with faster and more accurate responses under time pressure. The rationale for
the accuracy assumption is simply that a low error score signifies a pattern
produced by the network that is relatively clear and free from noise, providing

a better signal on which the articulatory-motor programming and execution -

processes can operate. The rationale for the speed assumption is that in a
cascaded system, patterns that are relatively clear (low in error) at asymptote
reach a criterion level of clarity relatively quickly. Simulations demonstrating
this point are presented in Cohen, Dunbar, and McClelland (1988).

The error score should not be viewed as a literal measure of the accuracy of
an overt response made by the network. The error scores can never actually
reach zero, since the logistic function used in setting the activations of units
prevents activations from ever reaching their maximum or minimum values.
With continued practice, error scores simply get smaller and smaller, as
activations of units approximate more and more closely to the target values of
1 and 0. This improvement continues well beyond the point where the correct
answer is the best match to the pattern produced by the network.

We also calculate an orthographic error score, analogous to the phonologi-
cal error score, which provides a measure of the familiarity and redundancy of
a letter string. This measure plays an important role in our account of lexical
decision performance, but will not be considered further here (see Seidenberg
and McClelland 1988a,b).

In sum, when presented with letter strings, the model produces ortho-
graphic and phonological codes which provide the basis for performing tasks
such as lexical decision and naming. We characterize the model’s performance
in terms of error scores calculated for different types of stimuli after different
amounts of training, and relate these to human performance on these tasks.
Because the model contains such a large pool of words, we can perform very
close simulations of many empirical phenomena reported in the literature,
often using the identical stimuli as in a particular experiment. :

Summary of the model’s performance

Seidenberg and McClelland (1988a,b) describe a broad range of behavioural
phenomena simulated by the model. Here we briefly summarize results from
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simulations of the task of naming words and non-words aloud. We focus on
naming because the acquired forms of dyslexia discussed below are typically
associated with impairments on this task. The problem of learning to read
single words aloud in English is largely determined by properties of the writing
system. The alphabetic writing system for English is a code for representing
spoken language; units in the writing system—letters and letter patterns—lar-
gely correspond to speech units such as phonemes. However, the correspon-
dence between the written and spoken codes is notoriously complex; many
correspondences are inconsistent (e.g. -AVE is usually pronounced as in
GAVE, SAVE, and CAVE, but there is also HAVE) or wholly arbitrary (e.g.
-OLO- in COLONEL, -PS in CORPS). These inconsistencies derive from
several sources: there is a competing demand that the orthography preserve
morphological information; there are diachronic changes in pronunciation;
there is lexical borrowing and historical accident. In fact, the English
orthography partially encodes several types of information (orthographic,
phonological, syllabic, morphological) simultaneously. Thus, English pro-
vides an example of what can be termed a quasiregular system: a body of
knowledge that is systematic but admits many exceptions (Seidenberg 1988a).
In such systems the relationships among entities are statistical rather than
categorical.

During the training phase, the model is exposed to a significant fragment
of written English. The effect of the learning rule is that the model picks up on
facts about orthographic-phonological correspondences and encodes them
in terms of the weights on connections betwecn units. Eventually, the weights
achieve values that permit the model to produce the correct output for
almost any word in the training set, despite the quasiregular character of the
writing system. By ‘correct’” we mean that the error score for the correct
pronunciation is typically very much smalier in magnitude than the error
score for an incorrect pronuncation. As already mentioned, even when the
best fit is the correct phonological code, the size of the error score varies; i.c.
the model performs better on some stimuli than on others. How well it
performs on a given stimulus depends on factors such as the frequency of the
word and its similarity to other words in the corpus. We evaluate the model
by comparing its performance on different types of words to that of human
subjects. :

Consider two classes of words that have been studied in a large number of
behavioural experiments. Regular words such as MUST, LIKE, and CANE
contain spelling patterns that recur in a large number of words, always with
the same pronunciation. MUST, for example, contains the ending -UST; all
monosyllabic words that end in this pattern rhyme (JUST, DUST, etc.). The
words sharing the critical spelling pattern are termed the neighbours of the
input string (Glushko 1979). Neighbours have been primarily defined in ter'{ns
of word-endings, also termed rimes (Treiman and Chafetz 1987) or bodies



140 Patterson, Seidenberg, and McClelland

(Patterson and Morton 1985), although other aspects of word structure also
matter (Taraban and McClelland 1987; Kay 1987). Exception words such as
HAVE, SAID, and LOSE contain a common spelling pattern which in this
particular word is pronounced irregularly. That is, since -AVE is usually

pronounced as in GAVE and SAVE, the word HAVE is characterized by an’

exceptional spelling-to-sound correspondence. In terms of orthographic
structure, regular and exception words are similar: both contain spelling
patterns that recur in many words. Whereas regular words are thought to obey
the pronunciation ‘rules’ of English, exception words do not. Given that these
two word classes are similar in orthographic structure, and that they can be
equated for other factors such as length and frequency, then differences
between them in terms of processing difficulty must be attributed to the one
dimension along which they differ, regularity of spelling-sound correspond-
ences.

Studies examining the processing of such words have yielded the following
results. First of all, there are frequency effects: higher-frequency words are
named more quickly than lower-frequency words. In addition, regularity
effects—faster naming latencies for regular words compared to exceptions—are
substantial with lower-frequency items, but may be small or non-existent for
higher-frequency words (Andrews 1982; Seidenberg et al. 1984; Seidenberg
1985b; Waters and Seidenberg 1985; Taraban and McClelland 1987). In short,
there is a frequency by regularity interaction. In Taraban and McClelland’s
study, the difference between lower-frequency regular and exception words

was a statistically significant 32 ms, while the difference for higher-frequency '

“words was a non-significant 13 ms.

To examine the model’s performance on these types of words, we used the -

identical stimulus set studied by Taraban and McClelland (1987, Experi-
ment 1). Figure 7.2 presents the model’s performance on this set of high- and
low-frequency regular and exception words after different amounts of training.
Each data point represents the mean phonological error score for the 24 items
of each type used in the Taraban and McClelland experiment. Training
reduces the error scores for all words following a negatively accelerated
trajectory. Throughout training, there is a frequency effect: the model
performs better on the words to which it is exposed more often. Note that
although the test stimuli are dichotomized into high- and low-frequency
groups, frequency is actually a continuous variable and it has continuous
effects in the model. Early in training, there are large regularity effects for both
high- and low-frequency items; in both frequency classes, regular words
produce smaller error scores than exception words. Additional training
reduces the regularity effect for higher-frequency words, to the point where it is
eliminated by 250 epochs. However, the regularity effect for lower-frequency
words remains. Figure 7.3 demonstrates the similarity of results from Taraban
and McClelland’s adult subjects and from the model.
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Fig. 7.2 The model’s mean phonological error scores at various stages in training for
the words used by Taraban and McClelland (1987).

The frequency-by-regularity interactions obtained in two additional
studies, with different sets of stimulus words (Seidenberg 1985b, Experiment
2; Seidenberg et al. 1984a, Experiment 3), have been recreated with equal
success by the model’s performance (see Seidenberg and McClelland 1988b).
Indeed, following simulations of 14 conditions from eight experiments
comparing regular and exception words, Seidenberg and McClelland
obtained a correlation of 0.915 between the experimental data (difference in
naming latency between regular and exception words) and the model’s
performance (difference in phonological error score between regular and
exception words).

The model is revealing about the behavioural phenomena in two respects.
First, it is clear that in the model the frequency by regularity interaction results
because the output for both types of higher-frequency words approaches
asymptote before the output for the lower-frequency words. Hence the
difference between the higher-frequency regular and exception words is
eliminated, while the difference between the two types of lower-frequency
words remains. This result suggests that the interaction observed in the
behavioural data is attributable to a kind of ‘floor’ effect due to the acquisition
of a high level of skill in de-coding common words. In the model, the
differences between the two types of lower-frequency words would also
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Fig. 7.3 Results of the Taraban and McClelland (1987) study (top panel) and the
model’s performance at 250 epochs (lower panel)

diminish if training were continued for more epochs. This aspect of the model
provides an explanation for Seidenberg’s (1985) finding that there are
individual differences among skilled readers in terms of regularity effects. The
fastest subjects in his study showed no regularity effect, even for words that are
‘lower’ in frequency according to standard norms. The model suggests that the
fastest readers may have encountered lower-frequency words more often than

the slower subjects, with the result that these words effectively become ‘high-

frequency’ items.

Second, the model provides a theoretical link between effects of frequency
and regularity. Both effects are due to the fact that connections that are
required for correct performance have been adjusted more frequently in the
required direction for frequent or regular items than for infrequent or irregular
items. This holds for frequent words simply because they are presented more
often. It holds for regular words because they make use of the same

connections as other, neighbouring, regular words. Hence, regularity effects
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are frequency effects: both derive from the effects of repeated adjustment of
connection weights:in the same direction.

Not only in its simulation of frequency and regularity effects but, more
generally, the model’s performance is determined by the connection weights
which reflect the aggregate effects of many individual learning trials with the
items in the training set. In effect, learning results in the recreation within
the network of significant aspects of the structure of written English. Because
the entire set of weights is used in computing the phonological codes for all
words, and because all of the weights are updated on every learning trial, there
is a sense in which the output for a given word is a function of training on all
words in the set. Differences between words derive from facts about the writing
system distilled during the learning phase. The main influence on the
phonological output is the number of times the model was exposed to the word
itself; after a sufficient amount of training, this is the only factor relevant to
performance on ‘high-frequency’ words. Performance on less-frequent words,
however, is also affected by exposure to other words. Words that resemble one
another in spelling-sound correspondences have mutually beneficial effects on
the weights; words that are similar in spelling but dissimilar in pronunciation
have mutually inhibitory effects on the weights. Performance is then
determined by the cumulative effects of training on the weights.

To see this more clearly, consider the following experiment. We test the
model’s performance on the low-frequency regular word TINT; with the
weights from 250 epochs, it produces an error score of 8.92. We train the model
on another word, adjusting the weights according to the learning algorithm,
and then re-test TINT. By varying the properties of the training word, we can
determine which aspects of the model’s experience exert the greatest influence
on the weights relative to the target. In effect, we can simulate the phonological
priming effects studied by Meyer, Schvaneveldt, and Ruddy (1974), Hillinger
(1980), Tanenhaus, Flanigan, and Seidenberg (1980), and others. For
example, Meyer et al. observed that lexical decision latencies to a target word
such as ROUGH were facilitated when preceded by the rhyming prime
TOUGH but inhibited when preceded by the similarly spelled non-rhyme
COUGH. For the purposes of the simulation, we examined the cumulative
effects of a sequence of ten prime (learn)—target (test) trials. The primes were a
rhyming orthographic neighbour (MINT), a non-rhyming orthographic
neighbour (the exception word, PINT), a word with the same consonants but
a different vowel (TENT), and an unrelated control (RASP). The data are
presented in Fig. 7.4.

The results indicate, first, that overlap in the ends of words (word-bodies or
rimes) has greater impact than overlap in word-beginnings. Thus, priming
TINT with MINT has greater impact than priming TINT with TENT (it also
has greater impact than priming with a word such as TINS or TILT). The
model supports the common assumption that the terminal segments of words
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'Fig. 7.4 Effects on the phonological error score for TINT of training with MINT,
PINT, TENT or RASP.

are especially critical to naming (Glushko 1979; Meyer, Schvaneveldt, and
Ruddy 1974; Seidenberg et al. 1984a; Patterson and Morton 1985; Brown
1987; Treiman and Chafetz 1987). This fact derives from properties of the
learning algorithm and the training corpus. Word-bodies turn out to be salient
because there is more redundancy at the ends than at the beginnings. The
learning algorithm picks up on these regularities, which have a large impact on
the weights. Importantly, these same characteristics of the model also dictate
that the effective relationships between words are not limited to word-bodies.
These units happen to be especially salient, but they are not the only aspects of
word structure relevant to processing. Thus, in the priming experiment, both

TENT and RASP have small effects on the weights relevant to TINT, as do’

many other words. Experimental data by Kay (1987) confirm the relevance to
naming of neighbourhoods defined over word-initial segments.

The other important point is that the model encodes facts about the
consistency of spelling-sound correspondences. Thus, priming TINT with
MINT has a large positive effect on the weights, but priming with PINT has
complementary negative effects. It is clear, then, why the model performs
better on regular words than on exceptions. The model’s training on MINT

‘and HINT and LINT and PRINT, matching in both spelling pattern and '

pronunciation, pushes the values of the weights in the same direction. The
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exception word PINT suffers because the weights come to reflect the fact that
words ending in -INT typically rhyme with MINT. Having been exposed to
PINT and its pronunciation, the model produces the correct phonological
code for PINT; however, this code yields a larger error score than for a
comparable regular word, owing to the impact of training on the gang of
words like MINT. )

The impact of the model’s experiences during training can be evaluated not
only by presenting words from the training vocabulary but by presenting
novel words. Non-words have played an important role in experimental
considerations of how people convert print to sound, because such stimulus
items can be constructed along any dimensions that the experimenter fancies.
In a widely cited study, Glushko (1979) demonstrated that readers are quicker
to pronounce non-words (like TIFE) derived from a word-body whose
neighbourhood has a regular, consistent pronunciation (LIFE, KNIFE,
WIFE, etc.) than to pronounce nonwords (like TIVE) with an inconsistent
neighbourhood (FIVE v. GIVE). As Seidenberg and McClelland (1988b) have
shown, the significant 22 ms difference obtained in Glushko’s Experiment 2 is
mirrored by a significant difference of over two points in the model’s
phonological error scores for these two types of non-word.

The foregoing description of the model’s performance in word naming has
focused primarily on regularity effects. This is partly due to the prominence of

" this issue in the literature on reading over the past decade or so, and partly

because regularity effects are particularly germane to certain types of reading
disorders, to which we now turn. Before doing so, however, we wish to
emphasize that evaluations of the model’s naming performance are by no
means restricted to the contrast between regular and exception words.
Seidenberg and McClelland (19884,b) and Seidenberg (1988a) present
successful simulations of experiments on many other characteristics of words,
and the reader is referred to these papers for a picture of the full scope of the
model.

" Acquired dyslexia

We turn now to questions concerning the impairments of word naming
characteristic of certain forms of acquired dyslexia. We have suggested that the
model provides a good characterization of a broad range of phenomena
related to the naming performance of skilled readers, and that it provides an
integrated explanation for these phenomena in terms of the consequences of
learning. As a learning model, it also speaks to the issue of how these skills are
acquired. Furthermore, the model provides an interesting perspective on the
kinds of impairments characteristic of developmental and acquired dyslexias.
Devé!ppmen_t_al dyslexia, which could be seen as a failure to acquire the
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knowledge that underlies word recognition and naming, is discussed in

Seidenberg and McClelland (1988). Acquired dyslexia, arising from damage to
a fully developed normal system, is discussed here.

Acquired dyslexia refers to impairments in reading processes observed
following brain injury in people who were previously normal readers. Several
different types of acquired dyslexia have been identified, each characterized by
impairments to selected aspects of processing (for recent reviews, see Coltheart
1985; Ellis and Young 1988). Many of these impairments relate to the process
of naming words aloud; in fact, word-naming performance has provided the
primary basis for distinguishing among different varieties of acquired dyslexia.
These impairments presumably reflect damage to part(s) of the neural
machinery responsible for word recognition and pronunciation. Since our
model provides a computational account of some of this machinery, it should
be possible to simulate word-naming impairments by selectively damaging the
model. In this section we report some preliminary experiments of this sort.

Acquired forms of dyslexia have primarily been discussed in the context of a
class of ‘dual-route’ models. As the name implies, these accounts emphasize
the idea that two different procedures or mechanisms are required in order to
account for naming performance. The mechanisms are distinguished in terms
of the types of knowledge representations involved and the types of letter
strings to which these are suited. One mechanism involves rules encoding the
reader’s knowledge of the correspondences between spelling and pronuncia-
tion characteristic of written English. These mapping rules can be used to
construct a correct pronunciation of any letter string that obeys them-—speci-
fically, regular words such as MUST and regular non-words such as NUST;
the rule-based procedure will generate incorrect pronunciations for words that
violate the rules (e.g. exceptions such as HAVE). This mechanism has been
termed a ‘non-lexical’ or ‘subword-level’ process because the rules involve
generalizations concerning spelling sound correspondences rather than
knowledge of whole specific words. The other mechanism involves stored

represcntations of the pronunciations of known words. The idea here is that

the reader identifies a familiar word (directly on the basis of its spelling, and
possibly further by consulting its meaning) and then accesses a stored
representation of its pronunciation. This mechanism could apply to all known
words, but would fail in the case of novel strings such as non-words, which lack
represemauons in memory. This mechanism has been termed a ‘lexical’ or
‘word-level’ process because the relevant knowledge representations concern
the pronuncmllons of individual words. Further descriptions of dual-routine
accounts of word naming can be found in Patterson, Marshall, and Coltheart
(1985).!

The major theoretical alternative to the dual-routine model, analogy
theory, carved things up slightly differently. Analogy theories proposed by
Glushko (1979), Marcel (1980), Humphreys and Evett (1985) and others
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contain a single type of knowledge representation relevant to pronunciation:
they eliminated the separate rule-based knowledge about correspondences
between graphemes and phonemes, leaving only the lexical representations,
which were thought to be employed in naming both words and non-words. As
Patterson and Coltheart (1987) noted, however, these models |mphc1tly
preserved the distinction between two phonological procedures in naming:

. while a word could be named by accessing a stored .phonological represen-

tation, the pronunciation of a non-word still had to be created by segmenting
known words and cobbling together the phonology of the mdmdual segments
comprising the non-word.

In summary, most theorizing about how readers (of English) translate
orthography to phonology has assumed that different naming mechanisms are
required for the correct pronunciation of exception words on the one hand and
non-words on the other. One of the main contributions of the Seidenberg and
McClelland (1988a,b) model is that it accomplishes this translation process
with a single mechanism employing weighted connections between units. All
items—regular and irregular, word and non-word—are pronounced using the
knowledge encoded in the same sets of connections. This model also differs
from dual-routine accounts in that there are no rules specifying the regular
spelling-sound correspondences of the language, and there is no lexicon in
which the pronunciations of words are listed. The model also differs from

. proposals by Glushko ( 1979) and Brown (1987) in that there are no lexical

nodes representing individual words and no influences from orthographic
neighbours at the time of processing a word. Where the model agrees with
these accounts is in regard to the notion that regularity effects result from a
conspiracy among known words. In the present model, this conspiracy is
realized in the setting of connection strengths. Words with similar spellings
and pronunciations produce overlapping, mutually beneficial changes in the
connection weights.

Some of the evidence thought to support the distinction between two
naming prbcesses came from studies of normal readers pronouncing various
types of letter strings. However, this general class of theories perhaps took
even greater comfort from the neuropsychological literature. In particular, the
patterns of reading performance in two ‘varieties’ of acquired dyslexia,
phonological and surface dyslexia, have been considered to provide crucial
evidence. Phonological dyslexic patients (Beauvois and Derouesné 1979;
Shallice and Warrington 1980; Patterson 1982) show a dissociation between
word and non-word naming; in some cases (e.g. Funnell 1983), the dis-
sociation can be dramatic, with around 90 per cent success on words of any
class or length but total failure to read aloud even the simplest non-words.
Surface dyslexic patients (Marshall and Newcombe 1973; Shallice and
Warrington 1980; Coltheart et al. 1983) show a dissociation between regular
and cheption word naming. Though performance on exception words has






