
NOTES ON THE POINCARÉ–BENDIXSON THEOREM

JONATHAN LUK

Our goal in these notes is to understand the long-time behavior of solutions to ODEs. For this it will be
very useful to introduce the notion of ω-limit sets. A remarkable result - the Poincaré–Bendixson theorem -
is that for planar ODEs, one can have a rather good understanding of ω-limit sets. I have been benefited
a lot from the textbook Differential equations, dynamical systems and an introduction to chaos by Hirsch–
Smale–Devaney while preparing for these notes. As alwyas, this is a preliminary version, if you have
any comments or corrections, even very minor ones, please let me know.

Consider the following ODE, i.e.,

u′(t) = F (u(t)), (0.1)

where F : Rn → Rn is C1. In particular, the Picard–Lindelöf theorem applies. Therefore, we know that
given any initial data, there exists a unique maximal solution.

Definition 0.1 (Flow map). Let u0 ∈ Rn and u(t) be the unique maximal solution to the ODE (0.1) with
initial data u0. Suppose t is in the maximal interval of existence. Define

ϕt(u0) = u(t).

Remark 0.2. The Picard–Lindelöf theorem implies that for every u0 ∈ Rn, there exists ε such that ϕt(u0)
is well-defined for t ∈ (−ε, ε). Moreover, it is in fact true that ϕt : Rn → Rn is C1 (whenever it is defined)
(Exercise: think about why this is true).

Definition 0.3 (ω-limit set). Let u0 be such that ϕt(u0) is well-defined for all t ≥ 0. Then its ω-limit set
Ω is defined as

Ω := {x ∈ Rn : ϕtk(u0)→ x for some sequence tk →∞}.

We can prove some easy properties.

Proposition 0.4. Let Ω be an ω-limit set associated to the flow ϕt(u0). The following properties hold:

• Ω is closed.
• If x ∈ Ω, then ϕt(x) ∈ Ω (as long as ϕt(x) is well-defined).
• If Ω is bounded, then it is connected.

Proof. (1) By definition, we can write

Ω = ∩τ≥0{u(t) : t ≥ τ}.
Since Ω is an intersection of closed set, it is closed.

(2) If x ∈ Ω, then there exists sk → ∞ such that x = limk→∞ ϕsk(u0). Then, as long as ϕt(x) is
well-defined1,

ϕt(x) = ϕt( lim
k→∞

ϕsk(u0)) = lim
k→∞

ϕt+sk(u0).

Hence, ϕt(x) ∈ Ω.
(3) This is left as an Exercise (cf. HW8).

�

Here are a few examples of ω-limit sets:

(1) Suppose u0 is an equilibrium point. Then the ω-limit set associated to ϕt(u0) is u0

(2) Suppose u is an equilibrium point and u0 is a point such that ϕt(u0) → u as t → ∞. Then the
corresponding ω-limit set is u.

(3) Let ϕt(u0) be a periodic solution. Then the corresponding ω-limit set is exactly the image of ϕt(u0).

1Note that we have used that ϕt is continuous here, cf. Remark 0.2.
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(4) A less obvious example is the following:

x′(t) = sinx(t)

(
− 1

10
cosx(t)− cos y(t)

)
,

y′(t) = sin y(t)

(
cosx(t)− 1

10
cos y(t)

)
.

It is easy to check that (π2 ,
π
2 ), (0, 0), (0, π), (π, 0), (π, π) are all equilibrium points. Moreover,

consider any initial data point in (0, π)×(0, π)\{(π2 ,
π
2 )}, the solution approaches the square bounded

by x = 0, π, y = 0, π. (This is not so easy to prove, but you will investigate some aspects of this in the
homework.) In particular, the ω-limit set, which is the square as above, consists of four equilibrium
points (the vertices of the square) and four segments connecting them.

It is a remarkable fact that on R2, bound ω-limit sets in general do not get much more complicated than the
examples that we have seen!

Theorem 0.5 (Poincaré–Bendixson). Consider a planar ODE, i.e., assume n = 2. Let Ω be a non-empty
bounded ω-limit set. Then either Ω contains at least one equilibrium point, or there exists a periodic solution
u(t) such that the image of u(t) is exactly Ω.

Remark 0.6. Notice that this is false on Rn for n > 2! One example we have seen is Problem 4 on HW5.
(Exercise: Show that indeed in the setting of that problem, there exists a solution u(t) such that the ω-limit
set does not obey the conclusion of Theorem 0.5.)

The remainder of these notes will be devoted to a proof of Theorem 0.5. From now on, we will consider
(0.1) and fix n = 2.

1. Transversal line

Given the ODE (0.1) (with n = 2), we can define the notion of transversal lines.

Definition 1.1 (Transversal lines). A line segment S = {λx0 +(1−λ)x1 : λ ∈ (0, 1)} is said to be transversal
if for every x ∈ S, F (x) is non-vanishing and is not parallel to S.

The following is an easy fact about transversal lines:

Lemma 1.2. Let S be a transversal line and x0 ∈ S. Then there exists an open set U with x ∈ U and a C1

function τ : U → R such that ϕτ(x)(x) ∈ S for all x ∈ U .

Proof. Let (y, z) be the coordinates on R2. Without loss of generality, assume that x0 = (0, 0) and S is a
subset of y = 0. For ε sufficiently small to be determined, define a map Ψ : BR(0, ε)×BR2(0, ε)→ R by

Ψ(t, x) = πϕt(x),

where π : R2 → R is the map (y, z) 7→ y.
Fact: Ψ is a C1 map. (This can be proven using the definitions and carefully studying (0.1), but we will

omit the proof.)
Now, by definition Ψ(0, 0) = 0. Moreover, since S is transversal, ∂Ψ

∂t (0, 0) = πF (x0) 6= 0. The conclusion
of the proposition hence follows from the implicit function theorem. �

2. Main monotonicity property

The main technical proposition that builds towards the Poincaré–Bendixson theorem is the following
monotonicity property.

Proposition 2.1. Let S be a transversal line and u(t) be a solution to the ODE. Suppose u(t0), u(t1) and
u(t2) are three points on S with t0 < t1 < t2 such that u(t0) 6= u(t1), then they are monotonic along S.

Proof. Consider the curve Γ ⊂ R2 given by

Γ := {u(t) : t ∈ [t0, t1]} ∪ {x ∈ S : x is between u(t0) and u(t1)}.
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By the Jordan curve theorem2, Γ divides R2 into two components, D1 and D2. Since F (u(t1)) is transversal
to S, u must either enter D1 or D2 after t1. Suppose that u enters D1 after time t1, i.e., suppose there exists
ε > 0 such that u(t) ∈ D1 for t ∈ (t1, t1 + ε). We claim that u(t) ∈ D1 for all t > t1. Assume not, then there
exists a time t∗ > t1 such that u(t∗) ∈ Γ, but this is impossible:

• we cannot have u(t∗) ∈ {u(t) : t ∈ [t0, t1]} since this contradicts the uniqueness of solutions; and
• we cannot have u(t∗) ∈ {x ∈ S : x is between u(t0) and u(t1)} since F points towards D1 on that

set.

In particular, this implies u(t2) ∈ int(D1), from which it follows that the points u(t0), u(t1) and u(t2) are
monotonic along S. �

Proposition 2.2. Let u(t) be a solution to (0.1) and Ω be the corresponding ω-limit set. Let S be a
transversal line. Then S ∩ Ω has at most one point.

Proof. Suppose not, i.e., assume that x1, x2 ∈ S ∩Ω are distinct. By Lemma 1.2, there exists U1, U2 disjoint
open neighborhoods of x1, x2 respectively such that the conclusion of Lemma 1.2 holds. Since x1, x2 ∈ Ω,
there exist sequences of times {t1,n}∞n=1 and {t2,n}∞n=1 with t1,n, t2,n → ∞ such that u(t1,n) → x1 and
u(t2,n) → x2. Without loss of generality, we can assume that u(t1,n) ∈ U1, u(t2,n) ∈ U2 for all n ∈ N.
Using Lemma 1.2, there exist sequences of times {t̃1,n}∞n=1 and {t̃2,n}∞n=1 with t̃1,n, t̃2,n → ∞ such that
u(t̃1,n) → x1 and u(t̃2,n) → x2 and u(t̃1,n), u(t̃2,n) ∈ S for all n ∈ N. From this one easily concludes that
there are three times, say, t̃1,1 < t̃2,n∗ < t̃1,n∗∗ (for some n∗, n∗∗ ∈ N) such that u(t̃1,1) 6= u(t̃2,n∗), but the
three points u(t̃1,1), u(t̃2,n∗) and u(t̃1,n∗∗) are not monotonic along S. This contradicts Proposition 2.1. �

3. Proof of Poincaré–Bendixson theorem

We now prove the Poincaré–Bendixson theorem. We will consider a non-empty, bounded ω-limit set Ω
with no equilibrium points. Our goal will be to show that Ω coincides with the image of a periodic solution.
This will be done in two steps. In the first step, we show that the flow starting from any point in Ω is
periodic. In the second step, we prove that the image of the periodic solution is in fact all of Ω.

Proposition 3.1. Let Ω be the ω-limit set associated to the solution ϕt(u0). Suppose Ω is non-empty,
bounded and has no equilibrium points. If y ∈ Ω, then ϕt(y) is a periodic solution.

Proof. By Proposition 0.4, ϕt(y) ∈ Ω as long as it is defined. In particular, by the extension theorem, this
implies ϕt(y) is defined for all t ≥ 0. Since {ϕt(y)}t≥0 is bounded, by the Bolzano–Weierstrass theorem,
there exists a sequence {tk}∞k=1 with tk → ∞ and a point z such that ϕtk(y) → z. Since ϕtk(y) ∈ Ω for all
k ∈ N and Ω is closed (by Proposition 0.4), this implies z ∈ Ω. In particular, z is not an equilibrium point.
Therefore, we can find a transversal line S passing through z.

Since ϕtk(y) → z, by Lemma 1.2, there exists t̃k → ∞ such that ϕt̃k(y) → z and ϕt̃k(y) ∈ S. Since
ϕt̃k(y) ∈ S ∩ Ω, by Proposition 2.2, they must in fact be the same point for all k ∈ N.

In particular, there exist t̃k1 6= t̃k2 such that ϕt̃k1
(y) = ϕt̃k2

(y). This implies that ϕt(y) is a periodic

solution. �

Proposition 3.2. Let Ω be the ω-limit set associated to the solution ϕt(u0). Suppose Ω is non-empty,
bounded and has no equilibrium points and y ∈ Ω. Then Ω \ ∪t≥0{ϕt(y)} = ∅.

Proof. It suffices to show that Ω \∪t≥0{ϕt(y)} is closed. This is because by Proposition 0.4, Ω is connected.
Therefore, if we can write Ω = (∪t≥0{ϕt(y)}) ∪ (Ω \ ∪t≥0{ϕt(y)}) as a union of two disjoint closed sets, one
of them must be empty. Since ∪t≥0{ϕt(y)} 6= ∅, it follows that Ω \ ∪t≥0{ϕt(y)} = ∅.

Now take a sequence of points {zk}∞k=1 ⊂ Ω \ ∪t≥0{ϕt(y)} and suppose zk → z. Our goal is to show that
z ∈ Ω \ ∪t≥0{ϕt(y)}. This would imply that Ω \ ∪t≥0{ϕt(y)} is closed.

First, we note that since Ω is closed, z ∈ Ω. In particular, z is not an equilibrium point. We can therefore
find a traversal line S such that z ∈ S. For every k ∈ N, since zk ∈ Ω, there exists a sequence of times
{tk,`}∞`=1 (with tk,` → ∞ as ` → ∞) such that ϕtk,`

(u0) → zk as ` → ∞. By Lemma 1.2, for sufficiently

large k, we can find {t̃k,`}∞`=1 (with t̃k,` → ∞ as ` → ∞) such that ϕt̃k,`
(u0) → zk as ` → ∞ and moreover

2The Jordan curve theorem says that any continuous simple closed curve in the plane divides the plane into two disjoint

components (the “inside” and the “outside”).
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ϕt̃k,`
(u0) ∈ S for all ` ∈ N. By Proposition 2.2, all these points must coincide, and therefore ϕt̃k,`

(u0) = z

for all k sufficiently large and for all ` ∈ N. In particular, this implies zk = z for all k sufficiently large.
Since zk ∈ Ω \ ∪t≥0{ϕt(y)}, it follows that z ∈ Ω \ ∪t≥0{ϕt(y)}. This concludes the proof. �

Combining Propositions 3.1 and 3.2 gives Theorem 0.5.


