NOTES ON THE POINCARE-BENDIXSON THEOREM

JONATHAN LUK

Our goal in these notes is to understand the long-time behavior of solutions to ODEs. For this it will be
very useful to introduce the notion of w-limit sets. A remarkable result - the Poincaré—Bendixson theorem -
is that for planar ODEs, one can have a rather good understanding of w-limit sets. I have been benefited
a lot from the textbook Differential equations, dynamical systems and an introduction to chaos by Hirsch—
Smale-Devaney while preparing for these notes. As alwyas, this is a preliminary version, if you have
any comments or corrections, even very minor ones, please let me know.

Consider the following ODE, i.e.,

W/ (t) = F(u(t)), (0.1)
where F' : R®* — R" is C!. In particular, the Picard-Lindel6f theorem applies. Therefore, we know that
given any initial data, there exists a unique maximal solution.

Definition 0.1 (Flow map). Let ugp € R™ and u(t) be the unique maximal solution to the ODE (0.1) with
initial data ug. Suppose t is in the maximal interval of existence. Define

pt(uo) = uf(t).

Remark 0.2. The Picard-Lindel6f theorem implies that for every ug € R™, there exists € such that ¢:(ug)
is well-defined for t € (—e, €). Moreover, it is in fact true that ; : R® — R™ is C! (whenever it is defined)
(Exercise: think about why this is true).

Definition 0.3 (w-limit set). Let ug be such that ¢:(ug) is well-defined for all ¢ > 0. Then its w-limit set
Q is defined as
Q= {x € R": ¢y, (ug) — x for some sequence tj, — oco}.

We can prove some easy properties.

Proposition 0.4. Let Q be an w-limit set associated to the flow @i(ug). The following properties hold:

e ) is closed.
o Ifx € Q, then pi(x) € Q (as long as pi(x) is well-defined).
e If Q is bounded, then it is connected.

Proof. (1) By definition, we can write
Q= ﬂ-,—zo{u(t) it > T}.

Since € is an intersection of closed set, it is closed.
(2) If x € €, then there exists s — oo such that * = limp_,o0 s, (uo). Then, as long as ¢.(z) is
well-defined!,

pi(r) = @t(klim @s (u0)) = lim oy, (uo)-
—00 k—oo

Hence, ¢¢(x) € Q.
(3) This is left as an Exercise (cf. HWS).

Here are a few examples of w-limit sets:
(1) Suppose ug is an equilibrium point. Then the w-limit set associated to ¢ (ug) is ug
(2) Suppose u is an equilibrium point and wg is a point such that ¢;(ug) — w as ¢ — oco. Then the
corresponding w-limit set is w.
(3) Let ¢¢(ug) be a periodic solution. Then the corresponding w-limit set is exactly the image of ¢ (ug).

INote that we have used that ¢ is continuous here, cf. Remark 0.2.
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(4) A less obvious example is the following:

2 (t) = sinz(t) (—focosw(t) - COSW)) ’

y'(t) = siny(t) (cos x(t) — 1i0 cos y(t)) :

It is easy to check that (7, %), (0,0), (0,7), (7,0), (7, 7) are all equilibrium points. Moreover,
consider any initial data point in (0, 7) x (0,7)\{(%, §)}, the solution approaches the square bounded
by x = 0,7, y = 0, 7. (This is not so easy to prove, but you will investigate some aspects of this in the
homework.) In particular, the w-limit set, which is the square as above, consists of four equilibrium

points (the vertices of the square) and four segments connecting them.
It is a remarkable fact that on R?, bound w-limit sets in general do not get much more complicated than the
examples that we have seen!

Theorem 0.5 (Poincaré-Bendixson). Consider a planar ODE, i.e., assume n = 2. Let Q be a non-empty
bounded w-limit set. Then either Q) contains at least one equilibrium point, or there exists a periodic solution
u(t) such that the image of u(t) is exactly €.

Remark 0.6. Notice that this is false on R™ for n > 2! One example we have seen is Problem 4 on HW5.
(Exercise: Show that indeed in the setting of that problem, there exists a solution w(t) such that the w-limit
set does not obey the conclusion of Theorem 0.5.)

The remainder of these notes will be devoted to a proof of Theorem 0.5. From now on, we will consider
(0.1) and fix n = 2.

1. TRANSVERSAL LINE

Given the ODE (0.1) (with n = 2), we can define the notion of transversal lines.

Definition 1.1 (Transversal lines). A line segment S = {Azo+(1—A)x1 : A € (0,1)} is said to be transversal
if for every x € S, F(x) is non-vanishing and is not parallel to S.

The following is an easy fact about transversal lines:

Lemma 1.2. Let S be a transversal line and xo € S. Then there exists an open set U with x € U and a C*
function 7 : U — R such that @ ) (x) € S for allz € U.

Proof. Let (y,z) be the coordinates on R%. Without loss of generality, assume that zo = (0,0) and S is a
subset of y = 0. For € sufficiently small to be determined, define a map ¥ : Bg(0,¢) x Bg2(0,¢) — R by

U(t,z) = mpi(x),

where 7 : R? — R is the map (y, 2) + v.

Fact: ¥ is a C! map. (This can be proven using the definitions and carefully studying (0.1), but we will
omit the proof.)

Now, by definition ¥(0,0) = 0. Moreover, since S is transversal, %—%’(0, 0) = wF(x0) # 0. The conclusion
of the proposition hence follows from the implicit function theorem. O

2. MAIN MONOTONICITY PROPERTY

The main technical proposition that builds towards the Poincaré—Bendixson theorem is the following
monotonicity property.

Proposition 2.1. Let S be a transversal line and u(t) be a solution to the ODE. Suppose u(to), u(t1) and
u(ta) are three points on S with tg < t1 < to such that u(te) # u(t1), then they are monotonic along S.

Proof. Consider the curve I' C R? given by
= {u(t):t € [to,t1]} U{z € S : = is between u(ty) and u(t1)}.
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By the Jordan curve theorem?, I' divides R? into two components, D and Dy. Since F(u(t;)) is transversal
to S, u must either enter Dq or Dy after ¢1. Suppose that u enters Dy after time tq, i.e., suppose there exists
€ > 0 such that u(t) € Dy for ¢ € (¢1,t1 +¢). We claim that u(t) € D; for all t > ¢;. Assume not, then there
exists a time t, > ¢1 such that u(t,) € T, but this is impossible:

e we cannot have u(t.) € {u(t) : t € [to,t1]} since this contradicts the uniqueness of solutions; and
e we cannot have u(t,) € {x € S : z is between u(to) and u(¢1)} since F points towards D; on that
set.

In particular, this implies u(ts) € int(D;), from which it follows that the points u(tg), u(t1) and u(t2) are
monotonic along S. U

Proposition 2.2. Let u(t) be a solution to (0.1) and Q be the corresponding w-limit set. Let S be a
transversal line. Then S N has at most one point.

Proof. Suppose not, i.e., assume that x1,zo € SN are distinct. By Lemma 1.2, there exists Uy, Us disjoint
open neighborhoods of x7, xo respectively such that the conclusion of Lemma 1.2 holds. Since z1,zs € (,
there exist sequences of times {t1,}°2; and {t2,}02, with ¢1 ,,t2, — oo such that u(t1,) — z1 and
u(te,n) — x2. Without loss of generality, we can assume that w(t1,) € Ui, u(ts,) € Uz for all n € N.
Using Lemma 1.2, there exist sequences of times {#;,}°°; and {f3,}°; with #; ,,%2,, — oo such that
u(fl,n) — 7 and u(fg,n) — x5 and u(flm),u(fg,n) € S for all n € N. From this one easily concludes that
there are three times, say, t11 < ta,, < t1,,, (for some n,,n., € N) such that u(t11) # u(t2.,), but the
three points u(t~1_,1), u(fg,n*) and u(fl,n”) are not monotonic along S. This contradicts Proposition 2.1. O

3. PROOF OF POINCARE-BENDIXSON THEOREM

We now prove the Poincaré—Bendixson theorem. We will consider a non-empty, bounded w-limit set 2
with no equilibrium points. Our goal will be to show that 2 coincides with the image of a periodic solution.
This will be done in two steps. In the first step, we show that the flow starting from any point in  is
periodic. In the second step, we prove that the image of the periodic solution is in fact all of 2.

Proposition 3.1. Let Q be the w-limit set associated to the solution pi(ug). Suppose Q is non-empty,
bounded and has no equilibrium points. If y € 0, then pi(y) is a periodic solution.

Proof. By Proposition 0.4, ¢:(y) € Q as long as it is defined. In particular, by the extension theorem, this
implies ¢;(y) is defined for all ¢ > 0. Since {¢:(y)}+>0 is bounded, by the Bolzano—Weierstrass theorem,
there exists a sequence {t;}%2, with ¢, — oo and a point z such that ¢y, (y) — 2. Since ¢y, (y) € Q for all
k € N and  is closed (by Proposition 0.4), this implies z € . In particular, z is not an equilibrium point.
Therefore, we can find a transversal line S passing through z.

Since ¢, (y) — 2z, by Lemma 1.2, there exists {, — oo such that ¢;, (y) — z and ¢y, (y) € S. Since
vz, (y) € SN Q, by Proposition 2.2, they must in fact be the same point for all k € N.

In particular, there exist 5, # fx, such that Piy, (y) = Pi, (y). This implies that ¢:(y) is a periodic
solution. ]

Proposition 3.2. Let Q be the w-limit set associated to the solution ¢(ug). Suppose Q is non-empty,
bounded and has no equilibrium points and y € Q. Then Q\ Us>o{wi(y)} = 0.

Proof. It suffices to show that Q\ U;>o{®:(y)} is closed. This is because by Proposition 0.4, €2 is connected.
Therefore, if we can write Q = (Ui>o{¢:(y)}) U (2 \ Ui>0{p+(y)}) as a union of two disjoint closed sets, one
of them must be empty. Since Us>o{w:(y)} # 0, it follows that Q\ Ui>o{e:(y)} = 0.

Now take a sequence of points {z;}7°; C @\ Us>o{¢:(y)} and suppose z; — z. Our goal is to show that
z € Q\ Up>o{v:(y)}. This would imply that Q\ Ui>o{w:(y)} is closed.

First, we note that since € is closed, z € ). In particular, z is not an equilibrium point. We can therefore
find a traversal line S such that z € S. For every k € N, since z; € (1, there exists a sequence of times
{tr,e}72, (with ¢, — oo as £ — o0o) such that ¢y, ,(ug) — 2z as £ — oo. By Lemma 1.2, for sufficiently
large k, we can find {fx¢}52, (with #;, — oo as £ — oo) such that ¢i,., (o) — 2z as £ — oo and moreover

2The Jordan curve theorem says that any continuous simple closed curve in the plane divides the plane into two disjoint
components (the “inside” and the “outside”).
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¢i, ,(uo) € S for all £ € N. By Proposition 2.2, all these points must coincide, and therefore ¢y, ,(uo) =
for all k sufficiently large and for all £ € N. In particular, this implies 2z = z for all k sufficiently large
Since z; € Q\ U>o{wi(y)}, it follows that z € Q\ Us>o{w:(y)}. This concludes the proof. O

Combining Propositions 3.1 and 3.2 gives Theorem 0.5.



