# NOTES ON THE POINCARÉ-BENDIXSON THEOREM 

JONATHAN LUK

Our goal in these notes is to understand the long-time behavior of solutions to ODEs. For this it will be very useful to introduce the notion of $\omega$-limit sets. A remarkable result - the Poincaré-Bendixson theorem is that for planar ODEs, one can have a rather good understanding of $\omega$-limit sets. I have been benefited a lot from the textbook Differential equations, dynamical systems and an introduction to chaos by Hirsch-Smale-Devaney while preparing for these notes. As alwyas, this is a preliminary version, if you have any comments or corrections, even very minor ones, please let me know.

Consider the following ODE, i.e.,

$$
\begin{equation*}
u^{\prime}(t)=F(u(t)) \tag{0.1}
\end{equation*}
$$

where $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is $C^{1}$. In particular, the Picard-Lindelöf theorem applies. Therefore, we know that given any initial data, there exists a unique maximal solution.

Definition 0.1 (Flow map). Let $u_{0} \in \mathbb{R}^{n}$ and $u(t)$ be the unique maximal solution to the ODE (0.1) with initial data $u_{0}$. Suppose $t$ is in the maximal interval of existence. Define

$$
\varphi_{t}\left(u_{0}\right)=u(t)
$$

Remark 0.2. The Picard-Lindelöf theorem implies that for every $u_{0} \in \mathbb{R}^{n}$, there exists $\epsilon$ such that $\varphi_{t}\left(u_{0}\right)$ is well-defined for $t \in(-\epsilon, \epsilon)$. Moreover, it is in fact true that $\varphi_{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is $C^{1}$ (whenever it is defined) (Exercise: think about why this is true).

Definition 0.3 ( $\omega$-limit set). Let $u_{0}$ be such that $\varphi_{t}\left(u_{0}\right)$ is well-defined for all $t \geq 0$. Then its $\omega$-limit set $\Omega$ is defined as

$$
\Omega:=\left\{x \in \mathbb{R}^{n}: \varphi_{t_{k}}\left(u_{0}\right) \rightarrow x \text { for some sequence } t_{k} \rightarrow \infty\right\} .
$$

We can prove some easy properties.
Proposition 0.4. Let $\Omega$ be an $\omega$-limit set associated to the flow $\varphi_{t}\left(u_{0}\right)$. The following properties hold:

- $\Omega$ is closed.
- If $x \in \Omega$, then $\varphi_{t}(x) \in \Omega$ (as long as $\varphi_{t}(x)$ is well-defined).
- If $\Omega$ is bounded, then it is connected.

Proof. (1) By definition, we can write

$$
\Omega=\cap_{\tau \geq 0} \overline{\{u(t): t \geq \tau\}} .
$$

Since $\Omega$ is an intersection of closed set, it is closed.
(2) If $x \in \Omega$, then there exists $s_{k} \rightarrow \infty$ such that $x=\lim _{k \rightarrow \infty} \varphi_{s_{k}}\left(u_{0}\right)$. Then, as long as $\varphi_{t}(x)$ is well-defined ${ }^{1}$,

$$
\varphi_{t}(x)=\varphi_{t}\left(\lim _{k \rightarrow \infty} \varphi_{s_{k}}\left(u_{0}\right)\right)=\lim _{k \rightarrow \infty} \varphi_{t+s_{k}}\left(u_{0}\right)
$$

Hence, $\varphi_{t}(x) \in \Omega$.
(3) This is left as an Exercise (cf. HW8).

Here are a few examples of $\omega$-limit sets:
(1) Suppose $u_{0}$ is an equilibrium point. Then the $\omega$-limit set associated to $\varphi_{t}\left(u_{0}\right)$ is $u_{0}$
(2) Suppose $\underline{u}$ is an equilibrium point and $u_{0}$ is a point such that $\varphi_{t}\left(u_{0}\right) \rightarrow \underline{u}$ as $t \rightarrow \infty$. Then the corresponding $\omega$-limit set is $\underline{u}$.
(3) Let $\varphi_{t}\left(u_{0}\right)$ be a periodic solution. Then the corresponding $\omega$-limit set is exactly the image of $\varphi_{t}\left(u_{0}\right)$.

[^0](4) A less obvious example is the following:
\[

$$
\begin{aligned}
x^{\prime}(t) & =\sin x(t)\left(-\frac{1}{10} \cos x(t)-\cos y(t)\right) \\
y^{\prime}(t) & =\sin y(t)\left(\cos x(t)-\frac{1}{10} \cos y(t)\right)
\end{aligned}
$$
\]

It is easy to check that $\left(\frac{\pi}{2}, \frac{\pi}{2}\right),(0,0),(0, \pi),(\pi, 0),(\pi, \pi)$ are all equilibrium points. Moreover, consider any initial data point in $(0, \pi) \times(0, \pi) \backslash\left\{\left(\frac{\pi}{2}, \frac{\pi}{2}\right)\right\}$, the solution approaches the square bounded by $x=0, \pi, y=0, \pi$. (This is not so easy to prove, but you will investigate some aspects of this in the homework.) In particular, the $\omega$-limit set, which is the square as above, consists of four equilibrium points (the vertices of the square) and four segments connecting them.
It is a remarkable fact that on $\mathbb{R}^{2}$, bound $\omega$-limit sets in general do not get much more complicated than the examples that we have seen!

Theorem 0.5 (Poincaré-Bendixson). Consider a planar ODE, i.e., assume $n=2$. Let $\Omega$ be a non-empty bounded $\omega$-limit set. Then either $\Omega$ contains at least one equilibrium point, or there exists a periodic solution $u(t)$ such that the image of $u(t)$ is exactly $\Omega$.

Remark 0.6. Notice that this is false on $\mathbb{R}^{n}$ for $n>2$ ! One example we have seen is Problem 4 on HW5. (Exercise: Show that indeed in the setting of that problem, there exists a solution $u(t)$ such that the $\omega$-limit set does not obey the conclusion of Theorem 0.5.)

The remainder of these notes will be devoted to a proof of Theorem 0.5. From now on, we will consider (0.1) and fix $n=2$.

## 1. Transversal Line

Given the ODE (0.1) (with $n=2$ ), we can define the notion of transversal lines.
Definition 1.1 (Transversal lines). A line segment $S=\left\{\lambda x_{0}+(1-\lambda) x_{1}: \lambda \in(0,1)\right\}$ is said to be transversal if for every $x \in \bar{S}, F(x)$ is non-vanishing and is not parallel to $S$.

The following is an easy fact about transversal lines:
Lemma 1.2. Let $S$ be a transversal line and $x_{0} \in S$. Then there exists an open set $U$ with $x \in U$ and a $C^{1}$ function $\tau: U \rightarrow \mathbb{R}$ such that $\varphi_{\tau(x)}(x) \in S$ for all $x \in U$.

Proof. Let $(y, z)$ be the coordinates on $\mathbb{R}^{2}$. Without loss of generality, assume that $x_{0}=(0,0)$ and $S$ is a subset of $y=0$. For $\epsilon$ sufficiently small to be determined, define a map $\Psi: B_{\mathbb{R}}(0, \epsilon) \times B_{\mathbb{R}^{2}}(0, \epsilon) \rightarrow \mathbb{R}$ by

$$
\Psi(t, x)=\pi \varphi_{t}(x)
$$

where $\pi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the map $(y, z) \mapsto y$.
Fact: $\Psi$ is a $C^{1}$ map. (This can be proven using the definitions and carefully studying ( 0.1 ), but we will omit the proof.)

Now, by definition $\Psi(0,0)=0$. Moreover, since $S$ is transversal, $\frac{\partial \Psi}{\partial t}(0,0)=\pi F\left(x_{0}\right) \neq 0$. The conclusion of the proposition hence follows from the implicit function theorem.

## 2. Main monotonicity property

The main technical proposition that builds towards the Poincaré-Bendixson theorem is the following monotonicity property.

Proposition 2.1. Let $S$ be a transversal line and $u(t)$ be a solution to the $O D E$. Suppose $u\left(t_{0}\right)$, $u\left(t_{1}\right)$ and $u\left(t_{2}\right)$ are three points on $S$ with $t_{0}<t_{1}<t_{2}$ such that $u\left(t_{0}\right) \neq u\left(t_{1}\right)$, then they are monotonic along $S$.

Proof. Consider the curve $\Gamma \subset \mathbb{R}^{2}$ given by

$$
\Gamma:=\left\{u(t): t \in\left[t_{0}, t_{1}\right]\right\} \cup\left\{x \in S: x \text { is between } u\left(t_{0}\right) \text { and } u\left(t_{1}\right)\right\}
$$

By the Jordan curve theorem ${ }^{2}, \Gamma$ divides $\mathbb{R}^{2}$ into two components, $D_{1}$ and $D_{2}$. Since $F\left(u\left(t_{1}\right)\right)$ is transversal to $S, u$ must either enter $D_{1}$ or $D_{2}$ after $t_{1}$. Suppose that $u$ enters $D_{1}$ after time $t_{1}$, i.e., suppose there exists $\epsilon>0$ such that $u(t) \in D_{1}$ for $t \in\left(t_{1}, t_{1}+\epsilon\right)$. We claim that $u(t) \in D_{1}$ for all $t>t_{1}$. Assume not, then there exists a time $t_{*}>t_{1}$ such that $u\left(t_{*}\right) \in \Gamma$, but this is impossible:

- we cannot have $u\left(t_{*}\right) \in\left\{u(t): t \in\left[t_{0}, t_{1}\right]\right\}$ since this contradicts the uniqueness of solutions; and
- we cannot have $u\left(t_{*}\right) \in\left\{x \in S: x\right.$ is between $u\left(t_{0}\right)$ and $\left.u\left(t_{1}\right)\right\}$ since $F$ points towards $D_{1}$ on that set.
In particular, this implies $u\left(t_{2}\right) \in \operatorname{int}\left(D_{1}\right)$, from which it follows that the points $u\left(t_{0}\right), u\left(t_{1}\right)$ and $u\left(t_{2}\right)$ are monotonic along $S$.

Proposition 2.2. Let $u(t)$ be a solution to (0.1) and $\Omega$ be the corresponding $\omega$-limit set. Let $S$ be a transversal line. Then $S \cap \Omega$ has at most one point.

Proof. Suppose not, i.e., assume that $x_{1}, x_{2} \in S \cap \Omega$ are distinct. By Lemma 1.2, there exists $U_{1}, U_{2}$ disjoint open neighborhoods of $x_{1}, x_{2}$ respectively such that the conclusion of Lemma 1.2 holds. Since $x_{1}, x_{2} \in \Omega$, there exist sequences of times $\left\{t_{1, n}\right\}_{n=1}^{\infty}$ and $\left\{t_{2, n}\right\}_{n=1}^{\infty}$ with $t_{1, n}, t_{2, n} \rightarrow \infty$ such that $u\left(t_{1, n}\right) \rightarrow x_{1}$ and $u\left(t_{2, n}\right) \rightarrow x_{2}$. Without loss of generality, we can assume that $u\left(t_{1, n}\right) \in U_{1}, u\left(t_{2, n}\right) \in U_{2}$ for all $n \in \mathbb{N}$. Using Lemma 1.2, there exist sequences of times $\left\{\tilde{t}_{1, n}\right\}_{n=1}^{\infty}$ and $\left\{\tilde{t}_{2, n}\right\}_{n=1}^{\infty}$ with $\tilde{t}_{1, n}, \tilde{t}_{2, n} \rightarrow \infty$ such that $u\left(\tilde{t}_{1, n}\right) \rightarrow x_{1}$ and $u\left(\tilde{t}_{2, n}\right) \rightarrow x_{2}$ and $u\left(\tilde{t}_{1, n}\right), u\left(\tilde{t}_{2, n}\right) \in S$ for all $n \in \mathbb{N}$. From this one easily concludes that there are three times, say, $\tilde{t}_{1,1}<\tilde{t}_{2, n_{*}}<\tilde{t}_{1, n_{* *}}$ (for some $n_{*}, n_{* *} \in \mathbb{N}$ ) such that $u\left(\tilde{t}_{1,1}\right) \neq u\left(\tilde{t}_{2, n_{*}}\right)$, but the three points $u\left(\tilde{t}_{1,1}\right), u\left(\tilde{t}_{2, n_{*}}\right)$ and $u\left(\tilde{t}_{1, n_{* *}}\right)$ are not monotonic along $S$. This contradicts Proposition 2.1.

## 3. Proof of Poincaré-Bendixson theorem

We now prove the Poincaré-Bendixson theorem. We will consider a non-empty, bounded $\omega$-limit set $\Omega$ with no equilibrium points. Our goal will be to show that $\Omega$ coincides with the image of a periodic solution. This will be done in two steps. In the first step, we show that the flow starting from any point in $\Omega$ is periodic. In the second step, we prove that the image of the periodic solution is in fact all of $\Omega$.

Proposition 3.1. Let $\Omega$ be the $\omega$-limit set associated to the solution $\varphi_{t}\left(u_{0}\right)$. Suppose $\Omega$ is non-empty, bounded and has no equilibrium points. If $y \in \Omega$, then $\varphi_{t}(y)$ is a periodic solution.

Proof. By Proposition $0.4, \varphi_{t}(y) \in \Omega$ as long as it is defined. In particular, by the extension theorem, this implies $\varphi_{t}(y)$ is defined for all $t \geq 0$. Since $\left\{\varphi_{t}(y)\right\}_{t \geq 0}$ is bounded, by the Bolzano-Weierstrass theorem, there exists a sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$ with $t_{k} \rightarrow \infty$ and a point $z$ such that $\varphi_{t_{k}}(y) \rightarrow z$. Since $\varphi_{t_{k}}(y) \in \Omega$ for all $k \in \mathbb{N}$ and $\Omega$ is closed (by Proposition 0.4 ), this implies $z \in \Omega$. In particular, $z$ is not an equilibrium point. Therefore, we can find a transversal line $S$ passing through $z$.

Since $\varphi_{t_{k}}(y) \rightarrow z$, by Lemma 1.2, there exists $\tilde{t}_{k} \rightarrow \infty$ such that $\varphi_{\tilde{t}_{k}}(y) \rightarrow z$ and $\varphi_{\tilde{t}_{k}}(y) \in S$. Since $\varphi_{\tilde{t}_{k}}(y) \in S \cap \Omega$, by Proposition 2.2, they must in fact be the same point for all $k \in \mathbb{N}$.

In particular, there exist $\tilde{t}_{k_{1}} \neq \tilde{t}_{k_{2}}$ such that $\varphi_{\tilde{t}_{k_{1}}}(y)=\varphi_{\tilde{t}_{k_{2}}}(y)$. This implies that $\varphi_{t}(y)$ is a periodic solution.

Proposition 3.2. Let $\Omega$ be the $\omega$-limit set associated to the solution $\varphi_{t}\left(u_{0}\right)$. Suppose $\Omega$ is non-empty, bounded and has no equilibrium points and $y \in \Omega$. Then $\Omega \backslash \cup_{t \geq 0}\left\{\varphi_{t}(y)\right\}=\emptyset$.

Proof. It suffices to show that $\Omega \backslash \cup_{t \geq 0}\left\{\varphi_{t}(y)\right\}$ is closed. This is because by Proposition $0.4, \Omega$ is connected. Therefore, if we can write $\Omega=\left(\cup_{t \geq 0}\left\{\varphi_{t}(y)\right\}\right) \cup\left(\Omega \backslash \cup_{t \geq 0}\left\{\varphi_{t}(y)\right\}\right)$ as a union of two disjoint closed sets, one of them must be empty. Since $\cup_{t \geq 0}\left\{\varphi_{t}(y)\right\} \neq \emptyset$, it follows that $\Omega \backslash \cup_{t \geq 0}\left\{\varphi_{t}(y)\right\}=\emptyset$.

Now take a sequence of points $\left\{z_{k}\right\}_{k=1}^{\infty} \subset \Omega \backslash \cup_{t \geq 0}\left\{\varphi_{t}(y)\right\}$ and suppose $z_{k} \rightarrow z$. Our goal is to show that $z \in \Omega \backslash \cup_{t \geq 0}\left\{\varphi_{t}(y)\right\}$. This would imply that $\Omega \backslash \cup_{t \geq 0}\left\{\varphi_{t}(y)\right\}$ is closed.

First, we note that since $\Omega$ is closed, $z \in \Omega$. In particular, $z$ is not an equilibrium point. We can therefore find a traversal line $S$ such that $z \in S$. For every $k \in \mathbb{N}$, since $z_{k} \in \Omega$, there exists a sequence of times $\left\{t_{k, \ell}\right\}_{\ell=1}^{\infty}$ (with $t_{k, \ell} \rightarrow \infty$ as $\ell \rightarrow \infty$ ) such that $\varphi_{t_{k, \ell}}\left(u_{0}\right) \rightarrow z_{k}$ as $\ell \rightarrow \infty$. By Lemma 1.2, for sufficiently large $k$, we can find $\left\{\tilde{t}_{k, \ell}\right\}_{\ell=1}^{\infty}$ (with $\tilde{t}_{k, \ell} \rightarrow \infty$ as $\ell \rightarrow \infty$ ) such that $\varphi_{\tilde{t}_{k, \ell}}\left(u_{0}\right) \rightarrow z_{k}$ as $\ell \rightarrow \infty$ and moreover

[^1]$\varphi_{\tilde{t}_{k, \ell}}\left(u_{0}\right) \in S$ for all $\ell \in \mathbb{N}$. By Proposition 2.2 , all these points must coincide, and therefore $\varphi_{\tilde{t}_{k, \ell}}\left(u_{0}\right)=z$ for all $k$ sufficiently large and for all $\ell \in \mathbb{N}$. In particular, this implies $z_{k}=z$ for all $k$ sufficiently large. Since $z_{k} \in \Omega \backslash \cup_{t \geq 0}\left\{\varphi_{t}(y)\right\}$, it follows that $z \in \Omega \backslash \cup_{t \geq 0}\left\{\varphi_{t}(y)\right\}$. This concludes the proof.
Combining Propositions 3.1 and 3.2 gives Theorem 0.5.


[^0]:    ${ }^{1}$ Note that we have used that $\varphi_{t}$ is continuous here, cf. Remark 0.2.

[^1]:    ${ }^{2}$ The Jordan curve theorem says that any continuous simple closed curve in the plane divides the plane into two disjoint components (the "inside" and the "outside").

